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Abstract. This expository monograph cuts a short path from the common, elementary back-
ground in geometry (linear algebra, vector bundles, and algebraic ideals) to the most advanced
theorems about involutive exterior differential systems: (1) The incidence correspondence of
the characteristic variety, (2) Guillemin normal form and Quillen’s thesis, (3) The Integrability
of Characteristics by Guillemin, Quillen, Sternberg, and Gabber, and (4) Yang’s Hyperbolic-
ity Criterion. To do so, the geometric theory of PDEs is reinterpreted as the study of smooth
sub-bundles of the Grassmann bundle, whereby the rank-1 variety is emphasized. The primary
computational tool is an enhanced formulation of Guillemin normal form that is equivalent to
involutivity of tableaux.
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0. Introduction and overview. Given a system of partial differential equations
(PDEs) over a manifold, does the system of PDEs have any local solutions to the Cauchy
initial-value problem? That is, given initial conditions on a locally-defined hypersurface,
can we produce a local solution that satisfies those initial conditions and also satisfies the
PDEs? More generally, which initial hypersurfaces admit such solutions? Can we do this
iteratively by solving a sequence of initial-value problems from dimension 0 to 1, 1 to 2,
and so on to build solutions through any point?

These questions are the heart of exterior differential systems (EDS), a powerful spe-
cialist approach to the geometric study of PDEs. EDS typically present as ideals of
exterior differential forms over a manifold.
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Some deeper questions are: What is the shape of the family of local solutions obtained
in this way? How can we determine whether two systems of PDEs are “the same” up to
local coordinate transformations? Does the space of all PDEs (up to local coordinate
transformation) have any meaningful shape or structure of its own?

These deeper questions are answered by analyzing the characteristic variety of an EDS.
The original motivation for the characteristic variety is to see where the Cauchy initial-
value problem becomes ambiguous. That is, given an initial condition for our PDEs on a
local submanifold of dimension n − 1, when would the n-dimensional solutions for that
initial condition fail to be unique?

When analyzing the characteristic variety of various EDS, one discovers that the char-
acteristic variety is an exquisitely subtle structure that reveals far more than originally
anticipated. The characteristic variety dictates the internal geometry of the solutions of
the original PDEs, while also controlling the parameter space of all such solutions. Under
reasonable hypotheses, this means that EDS or PDEs can be understood up to coordinate
equivalence as “parametrized families of solution manifolds with associated characteristic
geometry.”

This is beautiful and important, but it has been a difficult topic for researchers to
access, because the foundations of EDS have not yet entered the common curriculum of
graduate students. Fluency with differential ideals remains a relatively rare skill, practiced
in a handful of schools worldwide. Indeed, it is common for researchers first encountering
the subject to become trapped in an endless cycle of translating systems from local jet
coordinates to differential forms and back again, without gaining any new geometric
insights and without using the most powerful theoretical ideas in EDS. In particular, it
can take many years for researchers to appreciate the central role that the characteristic
variety plays in uncovering geometric insights. However—despite the name—differential
forms are not themselves the core idea behind exterior differential systems. Differential
forms are merely a concise language. Rather, the core idea is to recognize that these
questions are more geometric than analytic, and that ideals (that is, conditions defined
by functions) and varieties (that is, shapes cut out by functions) must come into play. To
describe families of solutions, we need the geometric language of bundles, schemes, and
moduli.

Therefore, the goal of this monograph is to cut the shortest-possible expository path
from the common curriculum in geometry (linear algebra, vector bundles, and algebraic
ideals) to several key results regarding the characteristic variety. These key results are

(i) the incidence correspondence of the characteristic and rank-1 varieties, and its re-
lationship to eigenspace decomposition,

(ii) Guillemin normal form, its enhancements, and Quillen’s thesis,
(iii) the integrability of characteristics (Guillemin, Quillen, Sternberg, Gabber), and
(iv) Yang’s hyperbolicity criterion.

The required common curriculum is

(i) graduate-level linear algebra (short-exact sequences, dual spaces, the rank-nullity
theorem, tensor products, generalized eigenspaces, as in Artin’s Algebra [Art91]),
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(ii) the fundamentals of smooth manifolds (tangent spaces, Sard’s theorem, bundles, as
in Milnor’s Topology from the Differential Viewpoint [Mil97]), and

(iii) basic algebraic geometry (projective space, ideal, variety, scheme, as in Harris’ Al-
gebraic Geometry, a first course [Har92]).

To accomplish this, the subject of exterior differential systems is reinterpreted as
the study of smooth sub-bundles of the Grassmann bundle over a smooth manifold. In
doing so, the role of exterior differential forms becomes obscured, in favor of tableaux
(vector spaces of homomorphisms) and symbols (varieties of endomorphisms). Specifi-
cally, Guillemin normal form for tableaux and symbols plays the central computational
role, not differential forms. This is because most humans—and their computer algebra
systems—are more comfortable with matrices than with exterior algebra. Exterior diff-
erential ideals are not introduced until absolutely needed. This is because many of the
essential lemmas depend only on the geometry of the Grassmann bundle, which is the
variety of the trivial exterior differential system. This reformulation allows elementary
versions of those key results (in fact, almost all the lemmas are restatements of the
rank-nullity theorem), and it becomes possible to outline how these results could be used
to push the frontiers of the subject.

While the audience is assumed to have a general interest and cultural awareness of
PDEs or EDS in some form, all the required definitions are provided when needed. Even
so, it is wise always to have Bryant, Chern, Gardner, Goldschmidt, and Griffiths’s Exterior
Differential Systems [BCG+90] and Ivey and Landsberg’s Cartan for Beginners [IL03]
nearby. They are cited for comparison frequently. Another excellent reference is McKay’s
Introduction to Exterior Differential Systems [McK18], which appears in the same volume
as this monograph. A note for EDS experts: the results in these pages can be found in
numerous places in the literature in some form or other, and I have indicated my favorite
sources throughout. The only innovation here is in presentation. Most notably, in contrast
to the vast majority of expositions, the central topic is the C∞ characteristic variety, not
the Cω Cartan–Kähler theorem. This is because the key open question is “what does the
family of all involutive PDEs look like?” not “how do I solve this particular involutive
PDE?”

This monograph is organized into four parts, each containing several sections. Part I
covers the structure of tableau (subspaces of a space of homomorphisms) and the diff-
erential geometry of the Grassmann variety. Because the results are elementary—almost
trivially so—they provide a good foundation for building from the common curriculum
to the central topic. Part II converts those elementary results to the language of bundles,
PDEs and EDS. That language allows an enhanced version of Guillemin normal form
that is equivalent to involutivity. Part III achieves the key purpose of this monograph,
as a triumvirate is formed by the characteristic scheme, the rank-1 cone, and the mutual
eigenvector problem for symbols. Part IV examines the integrability of the characteris-
tic variety in various guises, and offers a general dogma (that the characteristic scheme
knows all coordinate-invariant data about a system of PDEs) that suggests possible future
developments in the theory of EDS.

This monograph was developed to support a series of lectures at the Institute of
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Mathematics at the Polish Academy of Sciences in September 2016, as part of a Workshop
on the Geometry of Lagrangian Grassmannians and Nonlinear PDEs.

Part I. Matrices and subspaces

1. Tableaux and symbols. Tableaux are very simple objects; every undergraduate
encounters the example “r × n matrices form a vector space using the usual matrix
operations,” and a tableau is any subspace of that vector space.

Given vector1 spaces W and V with dimW = r and dimV = n, a tableau is a linear
subspace of A ⊂ Hom(V,W ). We use the notation W ⊗ V ∗ and Hom(V,W ) interchange-
ably.

Being a subspace, any tableau A is the kernel of some linear map σ, called the symbol,
whose range is written as H1(A). We have a short exact sequence of spaces:

(1.1) 0→ A→W ⊗ V ∗ σ→ H1(A)→ 0,

whereH1(A) is just notation for (W⊗V ∗)/A. Let dimA = s and dimH1(A) = t = nr−s.
For example, let W = R3 and V = R3, and consider the 5-dimensional tableau

A ⊂W ⊗ V ∗ described in the standard bases by

(1.2)


α0 α1 α2
α1 α2 α3
α2 α3 α4

 : αi ∈ R

 .

If π ∈ W ⊗ V ∗ is a 3 × 3 matrix with entries πai , then the symbol σ defining A consists
of four conditions:

0 = π2
3 − π3

2 ,

0 = π1
3 − π3

1 ,

0 = π2
2 − π3

1 ,

0 = π1
2 − π2

1 .

(1.3)

1(a). Rank-one ideal. The fundamental theorem of linear algebra states that any ho-
momorphism π ∈ W ⊗ V ∗ has a well-defined rank. Thus, for any tableau A ⊂ W ⊗ V ∗,
we could ask how rank(π) varies across π ∈ A. For our purposes, the most interesting2

case is rank(π) = 1.
The space W ⊗ V ∗ admits the rank-1 ideal, R, which is irreducible and generated by

all 2× 2 minors {0 = πai π
b
j − πaj πbi } in any basis. This is a homogeneous ideal, so we may

consider the rank-1 cone in vector space or the rank-1 variety in projective space. (The
vertex of the rank-1 cone is the rank-0 matrix.)

For any A, consider the ideal A⊥ + R, which defines C ⊂ A as the variety C =
A ∩Var(R). The variety C is the set of matrices in A that are also rank-1; it is a linear
section of the rank-1 cone defined by R.

1When it becomes appropriate to do so, at (4.5) in Section 4, we switch from vector spaces
to complex projective spaces for algebraic convenience.

2There is a good reason that the rank-1 case is most interesting: the varieties of higher-rank
matrices are determined algebraically by the varieties of lower-rank matrices, so the geometry
of rank(π) across π ∈ A comes down to the rank-1 case.
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In the example (1.2), C can be parametrized as matrices of the form

(1.4)

 κ4 κ3τ κ2τ2

κ3τ κ2τ2 κτ3

κ2τ2 κτ3 τ4

 =

κ2

κτ

τ2

⊗ (κ2 κτ τ2) ,
which can be interpreted as the rational normal Veronese curve3,

(1.5) [κ4 : κ3τ : κ2τ2 : κτ3 : τ4] ∼= P1 ⊂ P4 ∼= PA.

Moreover, the projection of C to PV ∗ is another rational normal curve,

(1.6) [κ2 : κτ : τ2] ∼= P1 ⊂ P2 ∼= PV ∗.

This toy example plays a crucial role in applications for hyperbolic and hydrodynamically
integrable PDEs [FHK09, Smi09].

1(b). Generic bases. We would like to find a “good” basis in which to express a
tableau A and study its properties.

First, an analogy. When studying a single homomorphism F : Cn → Cr, or F ∈
Cr ⊗ Cn∗, there are various “good” bases of the domain and co-domain to express F .
A basis of Cn∗ is “generic” for F if the first rank(F ) columns are independent. A basis
of Fr is “generic” for F if the first rank(F ) rows of F are independent in that basis. Among
the generic bases, we can construct particularly “good” bases for writing F . When F is
written in a “good” basis, we say it is in a “normal form,” and the normal form allows
us readily to study properties of F . For example:

• Use Gaussian elimination4 to place F in reduced row-echelon form. Then, the rank,
kernel, and image of F are immediately apparent. The fundamental theorems in linear
algebra depend on this normal form.

• Apply a polar/unitary decomposition to find the singular-value decomposition of F .
Then, the norm of F and its action with respect to the Hermitian inner products of
Cn and Cr are immediately apparent. Important theorems in metric geometry and
multivariate statistics depend on this normal form.

• Solve a sequence of eigenvalue problems in the case n = r to find Jordan normal form.
Then, the eigenspace structure of F , and the commutative algebra of matrices to which
it belongs are immediately apparent. The theory of Lie groups and Lie algebras depends
on this normal form.

Given a tableau A ⊂ W ⊗ V ∗ with symbol σ, we are curious whether we can con-
struct bases that are “good” simultaneously for all homomorphisms in the tableau. This
situation is considerably more complicated than the situation of a single homomorphism,
and it turns out that it is most important to focus on the symbol maps, but we arrive
at a satisfying answer in Section 7. By the above analogy, it is convenient to establish a
notion of “generic” bases formulated in terms of independence. This is done as follows.

3 For more on Veronese curves and the more general Segre embeddings and determinantal
varieties, see [Har92, Sha94].

4Algorithmically, this is accomplished using improved Gram–Schmidt or Householder trian-
gularization. See [TB97] for a discussion of stability of row-reduction.
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In any bases of V ∗ and W , the tableau A is a space of r×n matrices only s of whose
entries are linearly independent. That is, in a given basis, we can consider the entries
π 7→ πai as elements of A∗, just as we think of the components v 7→ vi of vectors in V as
being linear functions on v ∈ Rn, using the dual basis of V ∗.

Across all bases of V ∗, there is a maximum number of independent entries that can
occur in column 1; call that number s1. (In a measure-zero set of bases of V ∗, the
number of actual independent entries in the first column may be less than s1.) Once
those independent entries are accounted for, there is a maximum number s2 of new
independent entries that can occur in the second column. (In a measure-zero set of bases
of V ∗ that achieve s1 in column 1, the number of actual independent entries in columns
1 and 2 may be less than s1 + s2.) Once those independent entries are accounted for,
there is a maximum number s3 of new independent entries that can occur in column 3.
(In a measure-zero set of bases of V ∗ that achieve s1 +s2 in columns 1 and 2, the number
of actual independent entries in columns 1, 2, and 3 may be less than s1 + s2 + s3.)
Continuing in this way, we have si as the number of new independent entries in the ith
column achieved for almost-all bases of V ∗. (In a measure-zero set of bases of V ∗ that
achieve s1 + s2 + . . .+ si−1 in columns 1 through i− 1, the number of actual independent
entries in columns 1 through i may be less than s1 + . . . + si.) Eventually, for such a
basis, there is a column ` where we have reached s1 + s2 + . . .+ s` = s, so there is some
maximum column ` ≤ n such that s` > 0, where the last independent entry appears. So,

s = s1 + s2 + . . .+ s` + s`+1 + . . .+ sn

= s1 + s2 + . . .+ s` + 0 + . . .+ 0.
(1.7)

The index ` is called the character of A, and the number s` is called the Cartan integer
of A. The tuple (s1, . . . , s`) gives the Cartan characters of A. Note that s1 ≥ s2 ≥ . . . ≥ s`,
since otherwise the maximality condition would have been violated in an earlier column.

Permanently reserve the index ranges

i, j ∈ {1, . . . , `, `+ 1, . . . , n},
λ, µ ∈ {1, . . . , ` },
%, ς ∈ { `+ 1, . . . , n}, and
a, b ∈ {1, . . . , r}.

(1.8)

A basis5 (ui) = (u1, . . . , un) of V ∗ is called generic if its Cartan characters achieve
the lexicographical maximum value (s1, s2, . . . , sn). As seen in the previous paragraph,
almost all bases of V ∗ are generic in this sense. Given a basis (ui) of V ∗, a basis6 (za) =
(z1, . . . , zr) of W is called generic if the first si independent entries in column i are
independent.

5We follow the notation of differential geometry. This notation indicates an ordered basis of
co-vectors, not a vector. Each ui is an element of V ∗.

6We follow the notation of differential geometry. This notation indicates an ordered basis of
vectors, not a co-vector. Each za is an element of W .
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Choose a generic basis (ui) = (u1, . . . , un) for V ∗, and let (ui) = (u1, . . . , un) be
its dual basis for V . Choose a generic basis (za) = (z1, . . . , zr) for W , and let (za) =
(z1, . . . , zn) be its dual basis for W ∗. An element of the tableau is written as

(1.9) π = πai (za ⊗ ui) ∈W ⊗ V ∗,

and the upper-left entries πaλ for a ≤ sλ form a basis of A∗.
Because the bases are generic, the symbol map σ can be written as

(1.10)
{

0 = πai −B
a,λ
i,b π

b
λ : 1 ≤ i ≤ n, si < a ≤ r

}
.

It is implicit that Ba,λi,b = 0 if a ≤ si or b ≥ sλ or i < λ. That is, entries to the lower-right
(unshaded) are written as linear combinations of the entries in the upper-left (shaded)
using the coefficients Ba,λi,b , as in Fig. 1.

r

s`

s1

sλ

si

1 λ i ` n

πbλ

πai

Ba,λi,b

Fig. 1. A tableau in generic bases. Image from [Smi15].

Consider the example (1.3), which is not written in generic bases. If we exchange
columns 2↔ 3 and rows 1↔ 3, then it becomes generic with (s1, s2, s3) = (3, 2, 0), seen
here:

(1.11)


α2 α4 α3
α1 α3 α2
α0 α2 α1

 =



π1

1 π1
2 π2

2

π2
1 π2

2 π1
1

π3
1 π1

1 π2
1


 .

Equation (1.10) becomes:

0 = π3
2 − 1π1

1 − 0π2
1 − 0π3

1 − 0π1
2 − 0π2

2 ,

0 = π1
3 − 0π1

1 − 0π2
1 − 0π3

1 − 0π1
2 − 1π2

2 ,

0 = π2
3 − 1π1

1 − 0π2
1 − 0π3

1 − 0π1
2 − 0π2

2 ,

0 = π3
3 − 0π1

1 − 1π2
1 − 0π3

1 − 0π1
2 − 0π2

2 .

(1.12)
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One can take the dual perspective, wherein the symbol coefficients Ba,λi,b define a map
from the upper-left independent entries to the lower-right entries. That is, consider the
map

(1.13) B ∈ V ∗ ⊗ V ⊗W ⊗W ∗ ∼= End(V ∗)⊗ End(W )

defined by

(1.14)
∑
a≤si

δλi δ
a
b (za ⊗ zb)⊗ (ui ⊗ uλ) +

∑
a>si

Ba,λi,b (za ⊗ zb)⊗ (ui ⊗ uλ).

Equation (1.14) is the formal inclusion A→W ⊗V ∗ in the defining exact sequence (1.1).
By fixing ϕ ∈ V ∗ and v ∈ V , we obtain an endomorphism B(ϕ)(v) : W → W defined
by the column relations of (πai ), as in Fig. 2. We use the shorthand Bλi for B(uλ)(ui),
but note that this is not quite the same as Ba,λi,b za ⊗ zb because of the identity term in
equation (1.14). That is, Bλλ =

∑
a≤sλ δ

a
b (za ⊗ zb) for all λ ≤ `.

r

s`

s1

sλ

si

1 λ i ` n

W−
λ

W−
i

0

Bλi

Fig. 2. The map Bλi for a tableau in generic bases. Image from [Smi15].

For the example (1.11)–(1.12), the maps Bλi : W →W are:

(1.15)

B1
1 =

1 0 0
0 1 0
0 0 1

 B1
2 =

0 0 0
0 0 0
1 0 0

 B1
3 =

0 0 0
1 0 0
0 1 0


B2

2 =

1 0 0
0 1 0
0 0 0

 B2
3 =

0 1 0
0 0 0
0 0 0

 .

So, if ϕ = ϕiu
i ∈ V ∗ and v = vjuj ∈ V , the endomorphism B(ϕ)(v) : W →W is

(1.16) B(ϕ)(v) =

ϕ1v
1 + ϕ2v

2 ϕ2v
3 0

ϕ1v
3 ϕ1v

1 + ϕ2v
2 0

ϕ1v
2 ϕ1v

3 ϕ1v
1

 .
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Using our generic basis (ui) for V and its dual basis (ui) for V ∗, define decompositions
V = U ⊕ Y and V ∗ = Y ⊥ ⊕ U⊥ using our index convention (1.8) as follows:

V = 〈u1, . . . , u`, u`+1, . . . , un〉 = 〈ui〉 ,
U = 〈u1, . . . , u` 〉 = 〈uλ〉 ,
Y = 〈 u`+1, . . . , un〉 = 〈u%〉 ,

(1.17)

and

V ∗ =
〈
u1, . . . , u`, u`+1, . . . , un

〉
=
〈
ui
〉
,

U∗ ∼= Y ⊥ =
〈
u1, . . . , u`

〉
=
〈
uλ
〉
,

Y ∗ ∼= U⊥ =
〈

u`+1, . . . , un
〉

= 〈u%〉 .
(1.18)

The isomorphisms U∗ ∼= Y ⊥ and Y ∗ ∼= U⊥ depend on the basis; they are non-canonical
but sometimes useful.

It is apparent from (1.14) that B(ϕ) = B(ϕ̃) if ϕ− ϕ̃ ∈ U⊥; that is if ϕ% = ϕ̃% for all
% ≥ `+ 1, so we usually consider B(ϕ) only for ϕ ∈ Y ⊥.

Thus, in generic bases, we have a collection Bλi of endomorphisms of W . For our
purposes of constructing a normal form, a “good” basis is one which makes the endomor-
phisms Bλi as structurally similar as possible. Section 1(c) imposes additional conditions
on the images of these endomorphisms for this purpose.

1(c). Endovolutive tableaux. Suppose (ui) and (za) are generic bases for A. For any i,
define a decomposition W = W−

i ⊕W+
i by

W = 〈z1, . . . , zsi , zsi+1, . . . , zr〉 = 〈za〉
W−

i = 〈z1, . . . , zsi 〉
W+

i = 〈 zsi+1, . . . , zr〉 .
(1.19)

By (1.14), the map Bλi : W →W has support W−
λ ⊂W , and its image lies in W+

i ⊂W .
More generally, for any ϕ ∈ V ∗, let W−(ϕ) = W−

λ and W+(ϕ) = W+
λ , where λ is

the minimum index such that ϕλ 6= 0. (For general ϕ, we have dim W−(ϕ) = s1.)

A tableau A expressed in bases (ui) and (za) is called endovolutive7 if Ba,λi,b = 0 for
all a > sλ. That is, endovolutive means that Bλi is an endomorphism of W−

λ ⊂W , as in
Fig. 3.

Note that the example (1.15) is endovolutive because s2 = 2 and B2
2 and B2

3 have
non-zero entries only in the upper-left 2× 2 part.

7The term endovolutive was coined in [Smi15], but the phenomenon was described previously
in [BCG+90, Chapter IV§5], [Yan87], and it is certainly familiar to anyone who has manipulated
tableaux of linear Pfaffian systems.
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r

s`

s1

sλ

si

1 λ i ` n

W−
λ

W−
i

W
+ i
∩

W
− λ

W
+ i
∩

W
+ λ

0

Bλi

0

Fig. 3. The map Bλi for an endovolutive tableau.

In this way, when considering endovolutive tableaux, it useful to arrange the symbol
endomorphisms as an `× n array of r × r matrices:

(1.20)



B1
1 B1

2 B1
3 B1

4 · · · B1
` · · · B1

n

0 B2
2 B2

3 B2
4 · · · B2

` · · · B2
n

0 0 B3
3 B3

4 · · · B3
` · · · B3

n

0 0 0 B4
4 · · · B4

` · · · B4
n

. . . Bλi
...

0 0 0 0 0 B`` · · · B`n


.

Each “diagonal” entry Bλλ is the r× r matrix for which the non-zero upper-left part is an
sλ × sλ identity matrix, Isλ . Endovolutivity means that Bλi , which is the r× r matrix in
row λ of (1.20), is zero outside the upper-left sλ × sλ part.

If a tableau is endovolutive in certain bases forW and V ∗, then it is also endovolutive
under any upper-triangular change-of-basis for ui 7→ giju

j . Under such a basis change, the
columns of (πai ) are linear combinations of the ones to their right, and the sub-matrices
in (1.20) change by the corresponding conjugation. Endovolutivity is a property of the
flag generated by the basis of V ∗.

1(d). Mutual eigenvectors and rank. For endovolutive bases, each Bλi is an endo-
morphism of a particular vector space, so it is sensible to consider an eigenvector problem
for these maps: For any λ, let

(1.21) W1(uλ) =
{
w ∈W−

λ : Bλµ w = δλµw, ∀µ ≤ `
}
.

That is, we want to find the vectors that are preserved by Bλλ = Isλ but are annihilated
by all Bλµ for µ 6= λ. More generally, let

(1.22) W1(ϕ) =
{
w ∈W−(ϕ) :

(∑
λ

ϕλ Bλµ−ϕµI
)
w = 0, ∀µ ≤ `

}
.



68 A. D. SMITH

Equation (1.22) can be rewritten as a mutual eigenvector problem on the ` endomor-
phisms B(ϕ)(u1),. . . , B(ϕ)(u`):

(1.23) W1(ϕ) =
{
w ∈W−(ϕ) : B(ϕ)(uµ)w = ϕµw, ∀µ ≤ `

}
.

Alternatively, because Bµµ = Isµ , equation (1.22) says that B(ϕ)(·)w is rank-1 when
restricted to Y ⊥, so we can rewrite it as

(1.24) W1(ϕ) =
{
w ∈W−(ϕ) : w ⊗ ϕ+ Ja% (za ⊗ u%) ∈ Ae, ∃J ∈W ⊗ U⊥

}
.

This space is the focus of [Gui68], and it plays an important part in our story. Unlike
W−(ϕ), its definition does not depend on the basis; its definition depends only on the
splitting V = U ⊕ Y . Its dimension is an important invariant.

1.25. Lemma. Suppose that the tableau A admits endovolutive bases. For generic ϕ,
dim W1(ϕ) = s`.

Lemma 1.25 is the result of a quick rank computation using (1.22)–(1.23). See [Smi15].
Our “good” basis and normal form will be built on the requirement that the maps Bλi

commute on certain combinations of these spaces (and thus the maps share generalized
eigenspaces and Jordan-block normal form there). That is, we are aiming for something
like the commutative subalgebras seen in [Ger61] and [GS00]. Endovolutivity allows sur-
prisingly direct computation of the desired conditions. For more detail on endovolutivity,
see [Smi15] and the references therein. We return to this topic in Section 5, but before
that we must introduce the geometry of subspaces.

2. Grassmann and universal bundles. The Grassmann variety is the set Grn(X) of
n-planes in an (n+r)-dimensional vector space X. It is a smooth projective variety and
a smooth manifold of dimension nr. An n-plane e ∈ Grn(X) is called an element.

2(a). Tangent and arctangent. Depending on one’s favorite notation, there are sev-
eral ways to see that the tangent space of Grn(X) at e is (X/e)⊗ e∗.

First, for any e ∈ Grn(X), choose a basis (ui) = (u1, . . . , un) for e, and choose
(za) = (z1, . . . , zr) so as to complete a basis of the entire vector space X. Any n-plane ẽ
near e admits a basis (ũi) = (ũ1, . . . , ũn) that we may assume is related by a matrix in
reduced column-echelon form:

(2.1)
(
ũ1 . . . ũn

)
=
(
u1 . . . un z1 . . . zr

)


1 . . . 0
. . .

0 . . . 1
K1

1 . . . K1
n

...
. . .

...
Kr

1 . . . Kr
n


.

More succinctly, using the summation convention:

(2.2) ũi = ui + zaK
a
i = ujδ

j
i + zaK

a
i .

That is, (ũi) and (ui) are related by an (n + r) × n matrix of rank n whose image
〈ũ1, . . . , ũn〉 = ẽ is determined uniquely by the r × n submatrix (Ka

i ). In this sense,
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Te Grn(X) is isomorphic to the space of r×n matrices, which is isomorphic to (X/e)⊗e∗.
This is easy and computational, but this isomorphism is not canonical for an abstract
vector space (without metric) because it depends on a choice of splitting X = e⊕ (X/e)
by choosing the complementary basis (za).

Alternatively, to see Te Grn(X) = (X/e)⊗e∗ and avoid splitting, we can use the dual8
short-exact sequences

0→ e→ X → X/e→ 0,
0→ e⊥ → X∗ → e∗ → 0.

(2.3)

Choose any basis (θa) = (θ1, . . . , θr) of the annihilator space e⊥ = (X/e)∗, and let
(za) = (z1, . . . , zr) be the corresponding dual basis of (X/e). Then, we may take the
coefficients Ka

i of

(2.4) K = za ⊗Ka
i (ẽ) = za ⊗ θa(ũi) ∈ (X/e)⊗ e∗

as nr coordinates on Te Grn(X); that is, Ka
i gives a basis of T ∗e Grn(X).

More abstractly, an explicit choice of bases (ui) for e and (θa) for e⊥ is unnecessary.
Instead, we need only the abstract homomorphism K ∈ (X/e)⊗ e∗, because the space9

(2.5) ẽ = 〈ũi〉 = 〈ui +K(ui)〉 = 〈v +K(v) : v ∈ e〉

is invariant under GL(n) transformations on (ui) and (ũi) as well as GL(r) transforma-
tions on θ. That is, ẽ is the “graph” of v 7→ v +K(v) over all v ∈ e.

Gr1(R2)

Te Gr1(R2) ∼= (X/e)⊗ e∗

e

ẽ

e⊥

Fig. 4. From e, identify a nearby line ẽ in R2 with a relative angle. The map from Te Gr1(R2) ∼=
(−∞,∞) to the neighborhood (−π/2, π/2) of e in Gr1(R2) is arctane. Its inverse is tane.

8Recall that (X/e)∗ is canonically isomorphic to e⊥: if [v] = {u + e} ∈ X/e, then ϕ([v]) =
ϕ(v) + 0 is well-defined for all ϕ ∈ e⊥.

9Note that v + K(v) is not well-defined in X for any particular v ∈ e, but the span over all
such v is well-defined.
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As in Fig. 4, the derivative map Grn(X) → (X/e) ⊗ e∗ near e is a multidimensional
generalization of the tangent function, so the inverse map10 is written

(2.6) arctane : (X/e)⊗ e∗ → Grn(X).

The reader is encouraged to read [MS74, §5] and [KN63] and to search for the terms
Plücker embedding and Stiefel manifold for more detail on this subject.

2.7. Remark. Notice that any linear subspace of (X/e)⊗ e∗ is a tableau in the sense of
Section 1. In some sense, it is the only example, as arbitrary V and W could be studied
by setting X = V ⊕W and e = V + 0. Moreover, any smooth submanifold Z ⊂ Grn(X)
with tangent space TeZ ⊂ Te Gr(X) at e ∈ Z gives TeZ as a tableau in (X/e) ⊗ e∗.
This observation is the heart of the entire subject of exterior differential systems, and it
reappears forcefully in Section 4.

2(b). Polar pairs. The purpose of this subsection is to establish two results, Lem-
mas 2.12 and 2.15, that tie the algebraic geometry of intersecting subspaces to the diff-
erential geometry of the Grassmannian. These lemmas are used in Part III to demonstrate
the correspondence between the characteristic variety (in the Cauchy problem of a system
of PDEs) and the rank-1 variety (of the tableau of an EDS) in Lemma 6.4, thus providing
the foundation of the geometric theory of PDEs.

Suppose that e, ẽ ∈ Grn(X), and that they intersect along a hyperplane. That is,
suppose e′ = e ∩ ẽ and dim e′ = n − 1. We call the pair of n-planes e and ẽ a polar pair
because they are both polar extensions11 of e′. For any e ∈ Grn(X), let

(2.8) Pol1(e) = {ẽ ∈ Grn(X) : dim(ẽ ∩ e) = n− 1}.

We say ẽ ∈ Pol1(e) is a polar pair of e. This relationship is symmetric—hence the un-
qualified term polar pair—as ẽ ∈ Pol1(e) if and only if e ∈ Pol1(ẽ), but this relationship
is not an equivalence relation, as it fails both reflexivity and transitivity.

v

ṽ

e

ẽ

e′

Fig. 5. Polar pairs.

10The map arctane is analogous to exponential map expp : TpM → M from Riemannian
geometry or Lie group representation theory, except that this description of arctane does not
make explicit use of a metric or group structure.

11This is a classical terminology that reappears in Section 6(a).
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Within the image of arctane, Lemma 2.9 ties the notion of polar pairs to lines in the
tangent space Te Grn(X),

2.9. Lemma. Suppose e ∈ Grn(X) and ẽ = arctane(K) for K ∈ (X/e) ⊗ e∗. Then
rank(K) = 1 if and only if ẽ ∈ Pol1(e).

Proof. Suppose that ẽ ∈ Pol1(e). Let e′ = e ∩ ẽ, so dim e′ = n − 1. Let (u1, . . . , un−1)
be a basis for e′, and extend that basis to a basis (u1, . . . , un−1, v) for e and to a basis
(u1, . . . , un−1, ṽ) for ẽ. Writing (2.2) in this case, it is apparent that only the nth column
of (Ka

i ) is nonzero. That is, the tangent homomorphism K ∈ (X/e) ⊗ e∗ is rank-1. (It
cannot be the degenerate rank-0 unless e = ẽ.)

Conversely, suppose that K ∈ (X/e) ⊗ e∗ is rank-1. Let e′ = kerK ⊂ e, which is a
subspace of e of dimension n− 1. Any line in e′ is preserved by the map e→ X defined
by the matrix in (2.2); hence, the subspace e′ is also a subspace of ẽ. (It cannot be the
degenerate case e = ẽ unless K is rank-0.)

The concept of polar pairs generalizes to co-dimensions k other than 1. For any e ∈
Grn(X), let

(2.10) Polk(e) = {ẽ ∈ Grn(X) : dim(ẽ ∩ e) = n− k}.

Because dimX = n+ r and dim e = n, the set Polk(e) is nonempty if and only if k ≤ r,
because n+ k = dim(e+ ẽ) ≤ n+ r. The definition is trivial and fairly useless for k = 0.
Again, the k-polar-pair relationship ẽ ∈ Polk(e) is symmetric but neither reflexive nor
transitive for the interesting case 0 < k ≤ r.

One can see immediately that Lemma 2.9 generalizes by replacing 1 with any rank k
to give Lemma 2.11.

2.11. Lemma. Suppose e ∈ Grn(X) and ẽ = arctane(K) for K ∈ (X/e) ⊗ e∗. Then
rank(K) = k if and only if ẽ ∈ Polk(e).

Next, we can generalize Lemma 2.11 to Lemma 2.12 by dropping the use of arctan.
That is, we can consider a k-polar pair (e, ẽ) where ẽ lies outside the open image of arctane.
From an algebraic perspective, Lemma 2.12 can be seen as a Grassmannian version of the
rank-nullity theorem. Phrased in other ways, it is popular true/false homework question
in undergraduate linear algebra textbooks.

2.12. Lemma. Fix e ∈ Grn(X) and ẽ ∈ Polk(e). The canonical maps ẽ 7→ ẽ/e and
ẽ 7→ (ẽ ∩ e)⊥/e⊥ both have rank-k images, yielding the incidence correspondence Fig. 6.

Polk(e)

Grk(X/e) Grk(e∗) ẽ/e

ẽ

(ẽ ∩ e)⊥/e⊥

Fig. 6. The incidence correspondence of polar pairs e and ẽ.

Proof. Let e′ = e∩ ẽ. Consider the short-exact sequences (2.3), and apply the rank-nullity
theorem of those maps on e′, which has dimension n−k. In the first short-exact sequence,
ẽ/e = e′/e has dimension k as a subspace of X/e. In the second short-exact sequence,
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the space (ẽ∩ e)⊥/e⊥ = (e′)⊥/e⊥ has dimension k as a subspace of e∗ = X∗/e⊥. In both
cases, and such subspace can be constructed this way.

Now, reconsider the case k = 1 in light of Lemma 2.12. Then each ẽ ∈ Pol1(e) yields
a hyperplane e′ = ẽ ∩ e. The right image (e′)⊥/e⊥ in Fig. 6 is some line [ξ] ∈ Pe∗. The
left image ẽ/e is some line [w] ∈ P(X/e). So, each ẽ ∈ Pol1(e) yields a rank-1 projective
homomorphism [w]⊗ [ξ] = [w ⊗ ξ] ∈ P((X/e)⊗ e∗). Any element of P((X/e)⊗ e∗) could
be obtained this way by appropriate choice of ẽ.

To see how this generalizes Lemma 2.9, let us write [w]⊗ [ξ] explicitly. Let

(ω1, . . . , ωn, θ1, . . . , θr)

be a basis for X∗ such that e = ker{θ1, . . . , θr} and e′ = ker{θ1, . . . , θr, ξ} for some
ξ = ξiω

i. Then, ẽ = ker{θ̃1, . . . , θ̃r} for some θ̃a = Jab θ
b+Ka

i ω
i. Because e′ ⊂ ẽ, we have

θ̃a ≡ 0 mod {θc, ξ}, so
Jab θ

b +Ka
i ω

i ≡ 0 mod {θc, ξ}, so
Ka
i ω

i ≡ 0 mod {θc, ξ}, so
Ka
i ω

i ≡ 0 mod {ξ}.

(2.13)

Hence, each Ka
i ω

i is a multiple of ξ; call it waξ. (Note that wa = 0 for all a if and only
if ẽ = e, which contradicts our assumption dim e′ = n− 1.) We can use this fact to build
a rank-1 homomorphism: Let (za) be the basis of X/e dual to (θa). Let (ωi) also denote
the basis of e∗ = X∗/e⊥ induced by ωi ∈ X∗, so that ξ ∈ e∗ also denotes the image of
ξ ∈ X∗. Let w = waza. Then the induced homomorphism

(2.14) K = za ⊗Ka
i ω

i = za ⊗ waξ = w ⊗ ξ ∈ (X/e)⊗ e∗

is rank-1. Each of w and ξ is well-defined up to scale, so K is well-defined up to scale,
yielding [K] = P((X/e)⊗ e∗).

It may be that ẽ lies outside the open image of arctane. How then do we interpretK? Is
there any relationship between ẽ and arctane(K)? From a differential geometric perspec-
tive, this is reminiscent of the failure of injectivity at large distances for the exponential
map in Riemannian geometry. Lemma 2.15 shows that for any polar pair ẽ of e, either ẽ
lies in the curve arctane([K]) or is the limit of the curve.

2.15. Lemma. Suppose e ∈ Grn(X) and ẽ ∈ Pol1(e). Then there is a continuous path
{eτ : 0 ≤ 0 ≤ 1} in Grn(X) such that e0 = e, e1 = ẽ, and eτ ∩ e = ẽ ∩ e = eτ ∩ ẽ for all
0 < τ < 1. The rank-1 line [K] induced by eτ via from Lemma 2.12 is constant across
0 < τ ≤ 1. Moreover, eτ ∈ arctane([K]) for 0 ≤ τ < 1.

Proof. Let e′ = e∩ ẽ. For some independent vectors v, w ∈ X, we may write e = e′ + 〈v〉
and ẽ = e′ + 〈w〉 and define12 a curve from e to ẽ in Grn(X) by
(2.16) eτ = e′ + 〈(1− τ)v + τw)〉 , 0 ≤ τ ≤ 1.
Note that e′ = e ∩ eτ = ẽ ∩ eτ for all 0 < τ < 1. It is apparent from (2.16) that eλ/e
is the line [τw] = [w], which is constant versus τ . It is also apparent from (2.16) that

12If preferred, one can reparametrize from a linear interpolation to a circular interpolation by
replacing τ with cosϑ and 1− τ with sinϑ for some angle 0 ≤ ϑ ≤ π/2.
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(eτ ∩ e)⊥/e⊥ = (e′)⊥/e⊥ is the line [ξ], which is constant versus τ . Hence, all such eτ
have the same representative rank-1 homomorphism, [w ⊗ ξ] = [K] in Lemma 2.12.

It may be that ẽ = e1 lies outside the open image of arctane. However, comparison of
(2.16) and (2.2) implies that all eτ lie inside the image of arctane for all τ < 1. So, the
image arctane([w ⊗ ξ]) contains an open set of {eτ} where eτ ∩ e = e′.

Consider the example summarized in Fig. 5, where

(2.17) e =
〈1

0
0

 ,

0
1
0

〉 , and ẽ =
〈1

0
0

 ,

0
0
1

〉 .
Note that ẽ is outside the open image of arctane because (2.2) breaks down as written in
this basis. But, eτ is the family obtained by rotating from e toward ẽ about the axis e′
through an angle arctan( τ

1−τ ), which varies from 0 to π
2 . For all 0 ≤ τ < 1, we have

(2.18) eτ =
〈1

0
0

 ,

 0
1− τ
τ

〉 =
〈1

0
0

 ,

 0
1
τ

1−τ

〉 .
Thus, the line of rank-1 matrices [K] in (X/e) ⊗ e∗ is written as [

(
0 1

)
] in this basis.

This line represented by every eτ in a curve that converges to ẽ as τ → 1. Indeed, up to
a choice of basis, this is essentially the only example.

Overall, we have learned that any k = 1 polar pair in Grn(X) is represented by a
line of rank-1 matrices in the tangent space, and vice-versa. This is sufficient for our
purposes, but those seeking a more detailed understanding of polar pairs are encouraged
to investigate Schubert varieties—for example in [Rob14]—and the other outgrowths of
Hilbert’s 15th problem.

2(c). The tautological bundle. Soon, we will consider algebraic equations defined
on e∗. To facilitate this, for any e ∈ Grn(X), we consider the complexified projective
space X = PX ⊗ C and its subspace Pe⊗ C. For standard complex projective space, we
write Pd for CPd = P(Cd+1). That is, X ∼= Pn+r−1, and Pe⊗ C ∼= Pn−1.

If we consider all such spaces across all e simultaneously, we obtain the tautological
bundle13 γ over Grn(X) with fiber
(2.19) γe = Pe⊗ C, ∀e ∈ Grn(X),
and its dual bundle γ∗ over Grn(X) with fiber
(2.20) γ∗e = Pe∗ ⊗ C, ∀e ∈ Grn(X),
and its annihilator bundle γ⊥ over Grn(X) with fiber
(2.21) γ⊥e = Pe⊥ ⊗ C, ∀e ∈ Grn(X),
and its cokernel bundle X/γ over Grn(X) with fiber
(2.22) (X/γ)e = P(X/e)⊗ C, ∀e ∈ Grn(X).
See Fig. 7.

13 These are also called universal bundles or canonical bundles. They are analogous to the
sheaves O(−1) and O(1), respectively, for varieties in projective space.
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Gr2(R3)

e

ẽ

γe

γ ẽ

Fig. 7. A cartoon of the tautological bundle, γ. Here e is a real 2-plane in R3, which can be
represented by a line because Gr2(R3) ∼= P(R3∗). Each γe ∼= P(R2) ⊗ C = P1 is a Riemann
sphere. Thus, γ is depicted as a bundle of 2-spheres over a hemisphere.

There is a dual pair of short exact sequences of projective bundles, analogous to (2.3).

(2.23)
0→ γe → X→ (X/γ)e → 0,

0→ γ⊥e → X∗ → γ∗e → 0.
Hence, the complex projectivized tangent bundle PT Gr(X) ⊗ C is isomorphic (canoni-
cally) to (X/γ)⊗γ∗. If we choose a splitting of these sequences, then we can use the dual
bases to establish a (non-canonical) decomposition PX ⊗ C ∼= γe ⊕ (X/γ)e for any e.

One can also consider the frame14 bundle Fγ over Grn(X) associated to γ, whose
fiber is all linear isomorphisms

(2.24) Fγ,e = {(ui) : γe
∼→ Pn−1} = {bases of γ∗e} ∼= PGL(n),

and the coframe bundle Fγ∗ over Grn(X) associated to γ∗, whose fiber is all linear
isomorphisms

(2.25) Fγ∗,e = {(ui) : γ∗e
∼→ Pn−1} = {bases of γe} ∼= PGL(n).

To write homogeneous complex-algebraic ideals on γ∗e that vary across e ∈ Grn(X), one
can choose any section (ui) of Fγ∗ to give coordinates, and use the ring

(2.26) S = C∞(Grn(X))[u1, . . . , un].

Part II. PDEs on manifolds

In this part, we build bundles whose fibers are the structures seen in Part I. This
produces a satisfying language for describing a system of PDEs on a manifold in Section 4.

14Some authors might flip the names of the frame and coframe bundles. I tend to choose this
notation because the frame bundle is covariant with diffeomorphisms on the base space, and
only contravariant objects get a “co-” prefix. The jargon for duality is always frustrating.
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3. Bundles upon bundles. If M is a smooth manifold of dimension m = n+ r, then
we can form the smooth bundle Grn(TM) with fiber Grn(TpM). Let $ : Grn(TM)→M

denote the bundle projection.
Because (2.3) holds for X = TpM at any p ∈ M , any local section of Grn(TM)

can be described by choosing its annihilator section of Grr(T ∗M), and vice-versa. For
every p ∈M , the Grassmann variety Grn(TpM) has a tautological bundle γ(p) with fiber
γe(p) = Pe⊗ C, a dual bundle, and so on.

The total space Grn(TM) is a manifold in its own right, so we may consider γ as
a bundle over the manifold Grn(TM), which is itself a bundle over M . In other words,
we can reinterpret all of Section 2(c) in terms of bundles over Grn(TM) by using X to
denote the projective bundle over Grn(TM) that has fiber Xe = PTpM ⊗ C at e with
$(e) = p. A complete description of some v ∈ γ would be (p, e, v) where v ∈ Pe⊗C, and
e ∈ Grn(TpM), and p ∈ M . A complete description of some ϕ ∈ γ∗ would be (p, e, ϕ)
where ϕ ∈ Pe∗ ⊗ C, and e ∈ Grn(TpM), and p ∈ M . See Fig. 8. The same bundle-wise
constructions hold for γ⊥, (X/γ), Fγ , and Fγ∗ from Section 2(c).

M p

Grn(TM) Grn(TpM) e

γ γ(p) Pe⊗ C v

⊃

$

⊃⊃

3

3

$ $

3

Fig. 8. Tautological bundles over Grassmann bundles over manifolds. Vertical arrows are bundle
projections.

Extending (2.26) to write homogeneous complex-algebraic ideals on γ∗e that vary
across e ∈ Grn(TM), one can choose any section (ui) of Fγ∗ to give coordinates, and use
the ring
(3.1) S = C∞(Grn(TM))[u1, . . . , un].

3(a). The contact ideal. For any e ∈ Grn(TM), consider its annihilator subspace
e⊥ ⊂ T ∗pM . There is a corresponding subspace Je ⊂ T ∗e Grn(TM), defined as
(3.2) Je =

〈
ζ ◦$∗ : ζ ∈ e⊥

〉
= e⊥ ◦$∗.

as in Fig. 9. If (za) is a basis of e⊥, then we let θa = za ◦$∗ for each a to define a basis
(θa) of Je.

In the exterior algebra Ω•(Grn(TM)), consider the ideal J that is generated as
〈J, dJ〉 = 〈θa,dθa〉. This is called the contact ideal, and it is the first example of an
EDS as seen in Section 4. Note that, for any (local) section ε : M → Grn(TM), the
contact ideal satisfies the universal reproducing property
(3.3) ε∗(J) = ε∗(ε⊥ ◦$∗) = ε⊥ ◦$∗ ◦ ε∗ = ε⊥.
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Because this property is universal, the subbundle J is a submodule defined globally across
Grn(TM) even if topology forces any particular section ε to be defined locally.

Mp ∈ TpM

Grn(TM)e ∈ Te Grn(TM)

Rr$ $∗

〈(za)〉 = e⊥

〈(θa)〉 = Je

Fig. 9. Contact forms on the Grassmann bundle of M .

If one were to choose local coordinates (xi, ya) for M and local fiber coordinates (P ai )
for Grn(TM) near a particular n-plane e = ker{dya}, then J is the ideal typically written
as

(3.4)
{

0 = θa = dya − P ai dxi,
0 = dθa = −dP ai ∧ dxi,

where the functions P ai depend on ẽ in an open neighborhood of e in Grn(TM).
After reading Section 3(b), compare this coordinate description to your favorite defini-

tion of jet space, J1(Rn,Rr). Also, compare the local fiber coordinates P ai to the tangent
coordinates Ka

i from Section 2(a); when restricting to the fiber over a single basepoint
p ∈M , they are essentially identical. For some highly amusing applications of the contact
system, see [Gro86].

3(b). Immersions and frame bundles. Fix an immersion ι : N →M with dimN=n.
For any x ∈ N with ι(x) = p, the push-forward derivative has image ι∗(TxN), which
is an n-dimensional subspace of TpM ; hence, ι∗(TxN) ∈ Grn(TM). Define the map
ι(1) : N → Grn(TM) by
(3.5) ι(1)(x) = ι∗(TxN) = e ∈ Grn(TM),

and note that ι = $ ◦ ι(1), so ι∗ = $∗ ◦ ι(1)
∗ .

M

Grn(TM)

γ∗

N

γ∗N

$

ι

ι(1)∗

ι(1)

Fig. 10. The dual tautological bundle γ∗ pulls back to form a bundle γ∗N over an immersed
submanifold N .
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It is obvious from the definition that ι(1) is also an immersion. Therefore, we can
use it to pull-back the tautological bundle γ∗ as defined in Sections 2(c) and 3. Let
γ∗N = ι(1)∗γ∗, which has fiber
(3.6) γ∗N,x = γ∗e(p) = Pe∗ ⊗ C = Pι∗(TxN)⊗ C;
that is, γ∗N is identified with PT ∗N ⊗ C via ι∗. See Fig. 10.

The immersion ι(1) is called the prolongation of the immersion ι.
Now, consider the contact forms (θa) = (za ◦ $∗) forms from Section 3(a). For all

x ∈ N and all v ∈ TxN , we have
(3.7) ι(1)∗(θa)(v) = θa(ι(1)

∗ (v)) = za ◦$∗ ◦ ι(1)
∗ (v) = za(ι∗(v)) = 0,

which ultimately gives the following lemma:
3.8. Lemma. If ι : N → M is an immersion for dimN = n, then ι(1)∗(J ) = 0. Con-
versely, if ι′ : N → Grn(TM) is an immersion for dimN = n satisfying ι′∗(J ) = 0 and
such that the image ι′∗(TxN) is transverse to the fiber ker$∗ for all x ∈ N , then there is
some immersion ι : N →M such that ι(1) = ι′.

Moreover, recall that any manifold N of dimension n admits a projective frame bundle
Π : FN → N with fiber
(3.9) FxN = {(ui) : PTxN

∼→ Pn−1} = {bases of PT ∗xN ⊗ C} ∼= PGL(n),
The total space FN admits a tautological15 1-form ω : TFN → Pn−1 defined by ωiu =
ui ◦ Π∗ as in Fig. 11. It is characterized by its universal reproducing property: for any
(local) section η : N → FN :
(3.10) η∗(ωi) = η∗(ηi ◦Π∗) = ηi ◦Π∗ ◦ η∗ = ηi,

or, more succinctly, η∗(ω) = η.

x ∈ N TxN

u ∈ FN TuFN

Pn−1Π Π∗

(ui)

(ωi)

Fig. 11. Tautological form of the frame bundle of a manifold N .

Because this property is universal, the 1-form ω is defined globally across FN even if
topology forces any particular 1-form η to be defined locally.

For any local diffeomorphism f : N → Ñ , there is an induced (covariant) map on the
frame bundles f† : FN → FÑ by f† : (ui) 7→ (ui) ◦ (f∗)−1. Using the universal property,
it is easy to prove this lemma, which shows that diffeomorphisms are characterized by
their preservation of the tautological form on the frame bundle:

15In various references, this 1-form is called the canonical, the Hilbert, and the soldering
1-form.
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3.11. Lemma. If f : N → Ñ is a diffeomorphism, then (f†)∗(ω̃) = ω. Conversely, if
F : FN → FÑ is PGL(n)-equivariant diffeomorphism such that F ∗(ω̃) = ω, then there
exists a unique diffeomorphism f : N → Ñ such that f† = F .

Combining the universal properties of the J and ω, we obtain the following theorem
telling us what information we can transfer from Grn(TM) to an immersed submanifold:

3.12. Theorem. If ι : N →M is a smooth immersion, then

• ι(1)∗(J ) = 0, and
• FN = ι(1)∗(Fγ).

Conversely, if ι′ : N → Grn(TM) is a smooth immersion such that

• ι′∗(J ) = 0, and
• FN = ι′∗(Fγ),

then there exists a smooth immersion ι : N →M such that ι(1) = ι′.

That is, an immersed submanifold satisfies the contact ideal, which is generated differ-
entially by some annihilator 1-forms (θa) spanning γ⊥, and its frame bundle is equipped
with tautological 1-forms (ωi) spanning γ∗.

3.13. Remark. Note the similarity between the universal property of the contact ideal on
the Grassmann bundle and the universal property of the tautological 1-form on the frame
bundle. Exploitation of this interaction as in Theorem 3.12 has a long and interesting
history.

For example, consider the study of a Lie pseudogroup acting on a manifold M . One
option is to differentiate the coordinates of M repeatedly using the contact ideal until
differential syzygies of the Lie pseudogroup action can be found in prolonged local coor-
dinates, which are then converted to a coordinate-free description using the pseudogroup
action. The other option is to work on the frame bundle of M immediately, where any
expression on the tautological 1-form is automatically invariant, then prolong as neces-
sary to reveal the syzygies. The latter is used often when the Lie pseudogroup arises as
equivalence of intrinsic G-structures, and the former is used often when the Lie pseu-
dogroup arises from an extrinsic action on some ambient coordinates. For more on these
fascinating and interconnected ideas, I encourage you to read [Cle17], [Olv95], [Val13],
and [Gar89]—and the collected works of E. Cartan.

4. Exterior differential systems. LetM be a smooth manifold of finite dimension m.
An exterior differential system [EDS] on M consists of an ideal I in the total exterior
algebra Ω•(M) that is differentially closed and finitely generated. Differentially closed
means that dI ⊂ I. Finitely generated means that in each degree d, the d-forms in
the ideal, Id = I ∩ Ωd(M), form a finitely generated C∞(M)-module. We assume that
I0 = 0; otherwise, one would restrict to a subvariety of M defined by those functions.
A solution or integral manifold is an immersed manifold ι : N →M such that ι∗(I) = 0.
Optionally, we sometimes specify an independence condition as an n-form ω ∈ Ωn(M)
that is not allowed to vanish on solutions. When an EDS represents a system of PDEs in
local coordinates x1, . . . , xn, then ω = dx1 ∧ . . .∧dxn, meaning that we seek solutions N
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on which those coordinates are sensible, and ι : N → M is a function that gives the
dependent variables inM (those transverse to ι(N) ⊂M) as functions of the independent
variables in N .

4.1. Remark. Exterior differential systems are defined this way because the term “PDE”
or “system of PDEs” is difficult to pin down with geometric precision. Colloquially, “sys-
tem of PDEs” usually means a finite set of (hopefully, smooth) equations on some local
jet space. In Section 2, we explored the geometry of the bundle Grn(TM); recall that
the contact system J on Grn(TM) provides a coordinate-invariant notion of jet space.
So, a system of PDEs can be thought of as a collection of equations on jet Grn(TM).
Hopefully, those equations are smooth and respect the bundle structure coming from the
contact system (otherwise, derivatives misbehave). By virtue of the Plücker embedding
Grn(TM)→ P∧n (TM), an EDS provides precisely the structure to write an ideal whose
variety is a subvariety (in the bundle sense) of Grn(TM). By taking smooth subvarieties,
we can apply Remark 2.7 and apply our knowledge of tableaux from Part I to study
EDS. Even by this definition, an EDS could be rather wild; however, in many practical
applications, it happens that I is generated by a finite collection of smooth differential
forms of homogeneous degree, so one obtains a smooth algebraic variety in local fiber co-
ordinates of Grn(TM). See [McK18] in this volume for more examples, additional insight,
and historical context.

4(a). Differential ideals and integral elements. To be precise, an integral element
of I at p ∈M is a linear subspace e ⊂ TpM such that ϕ|e = 0 for all ϕ ∈ In. That is, the
n-forms in I provide a collection of functions that cut out a variety, Varn(I) ⊂ Grn(TM).
These functions vary smoothly in M and are homogeneous in the fiber variables.

There is a maximal dimension n for which Varn(I) is locally non-empty, which is
the case of interest. If an independence condition ω is specified, we also require ω|e 6= 0,
which forces Varn(I) to lie in the open subset of Grn(TM) for which that condition holds.
(For example, in the case of the contact system, the condition ω = dx1 ∧ . . . ∧ dxn 6= 0
holds in the same neighborhood where (3.4) makes sense.)

Because In is finitely generated by smooth functions, Sard’s theorem guarantees an
open, dense subset Varon(I) ⊂ Varn(I) defined as the smooth subbundle of Grn(TM)
that is cut out smoothly by smooth functions.

4.2. Definition (Kähler-ordinary). Integral elements in Varon(I) are called Kähler-ordi-
nary.

A single connected component of Varon(I) is denoted by M (1). We allow ourselves to
redefine M so that $ : M (1) →M is a smooth bundle.

Let s denote the dimension of each fiber of the projection M (1) →M , so t = nr− s is
the corresponding codimension of TeM (1)

p in Te Grn(TpM). That is, the projective bundle
A = ker$∗ = TM (1) ⊂ T Grn(TM) is a tableau in the sense of Remark 2.7, as each fiber
Ae = TeM

(1)
p is a linear subspace of Te Grn(TpM). Because M (1) is a smooth manifold,

we have

4.3. Lemma. K ∈ Ae implies arctane(K) ∈M (1).
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That is, we have a well-defined vector bundle A = ker$∗ ⊂ TM (1) over M (1).

4.4. Definition (Kähler-regular). If e is a Kähler-ordinary integral element and the
Cartan characters of each tableau A are constant in an open neighborhood of e, then e
is called Kähler-regular.

That is, the Kähler-regular integral elements form a dense open subset of the Kähler-
ordinary integral elements, which form a dense open subset of the whole variety Varn(I)
of integral elements.

So that we may apply the results of Section 1 without treating the Cartan charac-
ters of Ae as functions of e, we redefine M (1) to be a single connected component of
Kähler-regular integral elements, and we again allow ourselves to redefine M so that
$ : M (1) →M is a smooth bundle.

Such M (1) is called the first prolongation of (M, I), though it is clear from the defi-
nition that there could be multiple first prolongations, depending on which components
of Varn(I) are under consideration.

To generalize the notation and results of Part I to M (1), define the restricted tauto-
logical bundles

V = γ|M(1) = {Pe⊗ C}e∈M(1) ,

V ∗ = γ∗|M(1) = {Pe∗ ⊗ C}e∈M(1) ,

W = (X/γ)|M(1) = {P(TpM/e)⊗ C}e∈M(1) ,

V ⊥ = γ⊥|M(1) = {Pe⊥ ⊗ C}e∈M(1)

(4.5)

Warning! These are now complex projective bundles, not vector spaces as in Section 1!
Sometimes, it is convenient to think of A = ker$∗ ⊂ TM (1) as being a complex projective
bundle, too, in which case we consider it to be a subbundle of the projective bundle
W ⊗ V ∗. Of course, the notation has been developed to be consistent regardless.

An integral manifold of I is an immersion ι : N →M such that ι∗(ϕ) = 0 for all ϕ ∈ I.
(If an independence condition ω is specified, we require that ι∗(ω) 6= 0, too.) When we
are considering a particular Kähler-regular component M (1) ⊂ Varn(I) as above, we say
N is an ordinary integral manifold provided that ι∗(TN) ⊂M (1). All of the observations
from Section 3(b) apply, but ι(1)(N) lies in the submanifold M (1), and ι(1)

∗ (TN) lies in
the subbundle A. The overall goal is to construct all ordinary integral manifolds of (M, I)
through the careful study of the geometry of a Kähler-regular first prolongation M (1).

4(b). Prolongation and Spencer cohomology. Suppose that ι : N → M is an
ordinary integral manifold of I. By Theorem 3.12, the 1-forms θa spanning Je must
vanish for each e ∈ ι(1)(N). The tautological form (ωi) on Fγ pulls back to a nondegen-
erate frame (ηi) on N , since ι(1) is an immersion.

Therefore, if ι(1) : N →M (1) actually exists, we have

ι(1)∗(θa) = 0,

ι(1)∗(dθa) = 0,

ι(1)∗(ω1 ∧ . . . ∧ ωn) = η1 ∧ . . . ∧ ηn 6= 0.

(4.6)
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However, working on the frame bundle of M (1), these forms satisfy a more general equa-
tion, called Cartan’s structure equation:

(4.7) dθa ≡ πai ∧ ωi + 1
2T

a
i,j ω

i ∧ ωj mod {θb}.

The derivative of θa must take this form, because θa and ωi are semi-basic with respect
to the bundle $ : M (1) →M , whereas πai ∈ A is vertical, so dθa cannot involve a totally
vertical 2-form. See discussion of connections and principal bundles in [KN63].

Let us now describe the meaning of each of the terms in (4.7), with respect to the
ordinary integral manifold ι : N →M . Using the dual coframe za ↔ θa for W ↔ V ⊥, we
can see that π = πai (za⊗ωi) lies in A. (Hence, it is called the tableau term.) In particular,
it must be that

(4.8) ι(1)∗(πai ) = P ai,jη
j

for some function P ai,j that must satisfy P ai,jη
i ∧ ηj = 0, so P ai,j = P aj,i. That is, the

homomorphism P lies in the fiber of W ⊗ (V ∗ ⊗ V ∗) over e, as

(4.9) P ∈ A⊗ V ∗ ⊂ (W ⊗ V ∗)⊗ V ∗ = W ⊗ (V ∗ ⊗ V ∗).

Moreover, the existence of an immersion ι(1) : N → M (1) requires that the torsion term
waT

a
i,j ω

i ∧ ωj can be removed in (4.7); otherwise, it cannot be that ι(1)∗ dθa = 0 as
required. That is, it must be possible to rewrite πai 7→πai + Qai,jω

j for Q ∈ A ⊗ V ∗

such that any T ai,j term is absorbed. Note that this absorption of torsion is an algebraic
property of the tableau A. In summary, we have Lemma 4.10.

4.10. Lemma. Let δ : A⊗ V ∗ →W ⊗∧2V ∗ denote the composition of skewing ⊗2V ∗ →
∧2V ∗ and inclusion A→W ⊗ V ∗, and write A(1) = ker δ and H2(A) = coker δ:

(4.11) 0→ A(1) → A⊗ V ∗ δ→W ⊗ ∧2V ∗ → H2(A)→ 0.

For any ordinary integral manifold N , the homomorphism P of (4.8) and (4.9) lies
in A(1), and the pullback of torsion T is zero in H2(A).

Writing δ in a chosen coframe, it is easy to check that

(4.12) dimA(1) ≤ s1 + 2s2 + . . .+ nsn.

The case of equality is considered in Section 5.
The exterior differential system I(1) on M (1) generated as

(4.13) I(1) = 〈θa,dθa〉 = $∗(I) + J

is called the (first) prolongation of (M, I), and we are back where we started at the
beginning of Section 4. We can construct M (2) ⊂ Grn(TM (1)), and repeat the entire
process for E ∈M (2) over e ∈M (1) that was used for e ∈M (1) over p ∈M . Lemma 4.10
essentially says that A(1) is the tableau bundle TM (2) ⊂ T Grn(TM (1)). Thus, we can
constructM (3) over M (2) and re-apply Lemma 4.10, and so on. By the definition of M (1)

and (4.13), we have

4.14. Corollary. Every ordinary integral manifold N of (M (1), I(1)) is also an ordi-
nary integral manifold of (M, I). However, the converse might fail, as the smooth con-
nected locus of M (1) may be a strict subset of Varn(I).
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Overall, we achieve exact sequences that summarize the entire situation of the tangent
spaces of an immersed ordinary integral manifold N of I, I(1), I(2), I(3), . . .

0→ A→W ⊗ ∧1V ∗ → H1(A)→ 0,

0→ A(1) → A⊗ V ∗ δ→W ⊗ ∧2V ∗ → H2(A)→ 0,

0→ A(2) → A(1) ⊗ V ∗ δ→W ⊗ ∧3V ∗ → H3(A)→ 0,
...

0→ A(n−1) → A(n−2) ⊗ V ∗ δ→W ⊗ ∧nV ∗ → Hn(A)→ 0.

(4.15)

The cokernelsH1(A),H2(A), . . . ,Hn(A) are the Spencer cohomology of the tableauA.
Even outside the context of exterior differential systems, they are defined for formal
tableaux A ⊂W ⊗ V ∗ via the exact sequences (4.15) as

(4.16) Hk(A) =
(
A⊗ (⊗k−1V ∗)

)
/
(
W ⊗ ∧kV ∗

)
.

Spencer cohomology detects functional obstructions to the solution of the initial-value
problem on M (k) in the form of torsion; this is explained nicely in [IL03, Section 5.6],
and the reader is urged to read their presentation.

Spencer cohomology was a major focus of the formal study of partial differential
equations and Lie pseudogroups in the mid-20th century; most notably, [Spe62, Qui64,
SS65, GQS66, Gol67, Gar67, Gui68, GK68, GQS70]. As it happens, many of the major
results of that era are easy to re-prove under our regularity assumptions on M (1) and
using the endovolutive notation from Section 1, particularly when using the involutivity
criteria in Section 5 that were detailed in [Smi15]. We demonstrate this in Parts III
and IV.

5. Involutivity of exterior differential systems

5.1. Definition (Cartan’s test). A tableau A is called involutive if equality holds in
equation (4.12),

s1 + 2s2 + . . .+ `s` = dimA(1).

5.2. Definition. A tableau A is called formally integrable if Hk(A) = 0 for all k ≥ 2.

Cartan’s test comes from the following consequence of the Cartan–Kähler theorem.16

5.3. Theorem. Suppose that (M, I) is an analytic exterior differential system, thatM (1)

is a smooth sub-bundle, and that the tableau bundle A of r × n homomorphisms has
constant17 Cartan characters (s1, s2, . . . , s`) over M (1). If A is involutive and formally
integrable, then through any point in M , there is an analytic ordinary integral manifold
ι : N → M . Moreover, such N are parametrized locally by r constants, s1 functions of
one variable, s2 functions of two variables, . . . , s` functions of ` variables.

16See [BCG+90, Chapter III] or [IL03] for more background on the Cartan–Kähler theorem;
it is not our focus here.

17That is, M (1) is Kähler-regular.
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Somewhat confusingly, the situation in Theorem 5.3 is called involutivity of (M, I);
that is, an EDS might fail to be involutive even if its tableau is involutive, because there
may be nonzero torsion in Hk(A), meaning that I fails to be formally integrable. This
means essentially that the ideal I is being studied on the wrong manifold.

For a beautiful interpretation of Cartan’s test that is relevant to the later sections of
this course, read the introduction of [Yan87]. In summary, ordinary integral manifolds
are constructed by decomposing the Cauchy problem into a sequence of steps, each of
which is determined and has solutions using the Cauchy–Kowalevski theorem.

For fixed spaces W and V ∗, involutivity is a closed algebraic condition on tableaux in
W ⊗ V ∗. Because the conditions come from Cartan’s test, which involves W ⊗ ∧2V ∗, it
is not surprising that these conditions are quadratic; however, writing down the precise
ideal is a lengthy argument. Doing so was suggested in [BCG+90, Chapter IV§5] and
accomplished for general tableaux in [Smi15] following the outline in [Yan87].

5.4. Theorem (Involutivity criteria). Suppose a tableau is given in generic bases as in
(1.14). The tableau is involutive if and only if there exists a basis of W such that

(i) Bλi is endovolutive in that basis, and
(ii)

(
Bλl Bµk −Bλk Bµl

)a
b

= 0 for all λ < l < k and λ ≤ µ < k and all a > sl.

This theorem is our main computational tool in Part III.

5(a). Moduli of involutive tableaux. While it seems like a trivial (if lengthy) com-
putation, consider carefully the meaning of Theorem 5.4: We can fix r, n, and Cartan
characters s1, . . . , sn and then write down an explicit ideal in coordinates whose variety is
all of the involutive tableaux with those Cartan characters. Hence, we can use computer
algebra systems such as Macaulay2, Magma, and Sage to decompose and analyze that
ideal using Gröbner basis techniques. With enough computer memory, we can answer the
question “What is the moduli of involutive tableaux?” By virtue of Theorem 5.3, this is
fairly close to answering the question “What is the moduli of involutive PDEs?”.

For example, fix r = n = 3 and (s1, s2, s3) = (3, 2, 0). For some coefficients x0, . . . , x15
in the ring S, an endovolutive tableau must be of the form

(5.5) (πai ) =

α0 α3 x3α0 + x6α1 + x9α2 + x12α3 + x14α4
α1 α4 x4α0 + x7α1 + x10α2 + x13α3 + x15α4
α2 x0α0 + x1α1 + x2α2 x5α0 + x8α1 + x11α2

 ,

or in block form like (1.20),

(5.6) (Bλi ) =



1 0 0
0 1 0
0 0 1

  0 0 0
0 0 0
x0 x1 x2

 x3 x6 x9
x4 x7 x10
x5 x8 x11


0 0 0

0 0 0
0 0 0

 1 0 0
0 1 0
0 0 0

 x12 x14 0
x13 x15 0
0 0 0




.
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Involutivity is an affine quadratic ideal G on C(x0, . . . , x15) generated by the last rows
of B1

2 B1
3−B1

3 B1
2 and B1

2 B2
3−B1

3 B2
2, so:

(5.7) G =



x0x3 + x1x4 + x2x5 − x0x11,

x0x6 + x1x7 + x2x8 − x1x11,

x0x9 + x1x10,

x0x12 + x1x13 − x5,

x0x14 + x1x15 − x8.

The complete primary decomposition of this ideal reveals two components. The maxi-
mal component has dimension 12, and it is described by the fairly boring prime ideal
{x0, x1, x5, x8}. The other component has dimension 11 and its prime ideal is generated
by 27 polynomials. See http://goo.gl/jGTnMU for how to compute this in SageMathCell.

Many of your favorite involutive second-order scalar PDEs in three independent vari-
ables live somewhere in this variety; see (1.15) and Section 6(c). Up to some notion of
equivalence, this is essentially the moduli space of such equations. As seen in Part III,
their characteristic varieties are obtained by combining G with the rank-1 ideal R on
C[x0, . . . , x15, a0, . . . , a4].

However, there is still some ambiguity to be resolved, as it may be that a given
abstract tableau admits several endovolutive bases with apparently distinct coordinate
descriptions.

5(b). Cauchy retractions. Before proceeding to Part III, it is worthwhile to mention
Cauchy retractions, which are much simpler than—and quite distinct from—elements
of the characteristic variety. To confuse matters, many references call these “Cauchy
characteristics.” For any differentially closed ideal I ⊂ Ω•M , the Cauchy retractions are
the vectors that preserve I; that is, g = {v ∈ TM : v I ⊂ I}. Because I is differentially
closed, the annihilator bundle g⊥ ⊂ T ∗M is the smallest Frobenius ideal in Ω•(M) that
contains I. Then, for any integral manifold ι : N → M , the subspaces g ∩ ι(1)(N) form
an integrable distribution; that is, g⊥N is Frobenius as well [Gar67].

Because g⊥ is a Frobenius system—a system of ODEs—it is common to redefine
(M, I) so that it is free of Cauchy retractions before proceeding to study its integral
manifolds. The distinction between g⊥ and the characteristic variety Ξ is explored further
in [Smi14].

Part III. Characteristic and rank-one varieties

Thank you for taking the time to read the enormous amount of background in Parts I
and II. We are ready to define and deconstruct a fascinating mathematical object that
lies at the heart of PDE theory.

Here we stand: We have an exterior differential system I onM . Perhaps this EDS arose
from a system of PDEs on M and is equipped with an independence condition ω. The
EDS yields a smooth Kähler-regular subbundleM (1) ⊂ Grn(TM), where any e ∈M (1) is
an integral element of the original EDS. As a manifold in its own right, M (1) is equipped

http://goo.gl/jGTnMU
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with tautological bundles V , V ∗, W , and A from (4.5). Moreover, A is a subbundle of
W ⊗ V ∗, so it is a tableau bundle. Its symbol σ gives a short-exact sequence of bundles,

(5.8) 0→ A→W ⊗ V ∗ σ→ H1(A)→ 0.

An integral manifold is an immersion ι : N → M such that ι∗(TxN) ∈ M
(1)
ι(x) for all

x ∈ N . Let ι(1) : N →M (1) denote the map x 7→ e = ι∗(TxN).
As you read this part, compare it to [IL03, Section 4.6] and [BCG+90, Chapter V].

The reader will note that we do not assume that I is a linear Pfaffian system, nor do we
build a prolonged EDS I(1) using the contact system. Instead we are working with the
tautological bundles per Remark 3.13.

6. The characteristic variety. The original motivation for the characteristic variety is
to see where the initial-value problem becomes ambiguous. That is, given an initial condi-
tion for our PDE on a local submanifold of dimension n−1, when would the n-dimensional
solutions for that initial condition fail to be unique? We express this condition in terms
of integral elements.

6(a). Via polar extension. For an integral element e′ ∈ Varn−1(I), we consider its
space18 of integral extensions, called the polar space,

(6.1) H(e′) = {v : e = e′ + 〈v〉 ∈ Varn(I)} ⊂ TM

and the polar equations comprise its annihilator,

(6.2) H⊥(e′) = {e′ ϕ : ϕ ∈ In} ⊂ T ∗M.

The polar rank is r(e′) = dimH(e′) − dim e′ − 1. If r(e′) = −1, then e′ admits no
extensions. If r(e′) = 0, then e′ admits a unique extension to some e ∈ Varn(I).

The case of interest is r(e′) > 0, meaning that e′ admits many extensions, so the initial-
value problem from e′ to e = e′ + 〈v〉 is ambiguous. For any e ∈ M (1), we can identify
a hyperplane e′ ∈ Grn−1(e) with ξ ∈ Pe∗ via e′ = ker ξ. Because e ∈ M (1) ⊂ Grn(TM)
where n is the maximal dimension of integral elements of I, the function r cannot be
positive on an open set of Pe∗, so the case r(e′) > 0 is a closed condition. Moreover,
the function r : Pe∗ → N is the rank of a linear system of equations, so it defines
a Zariski-closed projective algebraic variety. We choose to study that algebraic variety
projectively over C. Hence, the typical definition of the characteristic variety of e is

(6.3) Ξe = {ξ ∈ Pe∗ ⊗ C : r(ξ⊥) > 0} ⊂ V ∗e .

This initial definition is refined in Section 6(b) to produce a scheme. To study properly
the ambiguity of the initial-value problem, we want to assign a multiplicity to each ξ ∈ Ξe
and decompose Ξ into irreducible components based on the structure of the space H(ξ⊥).

18The polar space is a vector space thanks to the assumption that In is a finitely-generated
C∞(M)-module, because that assumption implies that the polar equations over p ∈ M are a
linear subspace of T ∗pM .
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6(b). Via rank-one incidence. For both computational and theoretical purposes, it
would be convenient to tie the polar space H(e′) to the geometry of the tableau Ae of an
extension e of e′. The discussion of polar pairs in Section 2(b) links these two objects, to
provide another interpretation of the initial-value problem that is much more convenient
than (6.3).

Fix e ∈M (1), and suppose that both e and ẽ are integral extensions of e′ = ker ξ for
some ξ ∈ e∗. By the definition of H(e′), it must be that ẽ lies in Varn(I) ∩ Pol1(e), but
we do not know whether ẽ lies in the particular maximal smooth component of Varn(I)
that we callM (1). However, the results of Section 2(b) guarantee that ẽ is detected by Ae
even if ẽ is not in M (1), in the following way.

6.4. Lemma. Fix e ∈ M (1), and suppose that both e and ẽ are integral extensions of
e′ = ker ξ for some ξ ∈ e∗. Let w be such that ẽ = e′+ 〈w〉. Then w⊗ ξ ∈ Ae, and there is
an open 1-parameter family of integral extensions of e′ near e in M (1) that also represent
[w ⊗ ξ].

Proof. Because ẽ ∈ Pol1(e), Lemma 2.12 yields a particular line [K] of rank-1 homo-
morphisms in (TpM/e)⊗ e∗ representing ẽ. Because H(e′) is a vector space19 such that
w ∈ H(e′) and w 6∈ e, the rank-1 projective homomorphism [K] takes the form of [w⊗ ξ]
for some w ∈ H(e′)/e.

By Lemma 2.15, there is a continuous one-parameter family of other polar pairs eτ of e,
with eτ ∩ e = e′, converging to ẽ, all of which share the rank-1 projective homomorphism
[w ⊗ ξ].

That is, as a line of rank-1 homomorphisms, [w ⊗ ξ] is contained in (H(e′)/e) ⊗ e∗,
as a subspace of (TpM/e)⊗ e∗. Applying arctane, this implies that eτ ⊂ H(e′) for all τ .
By the definition of H(e′), this means eτ ∈ Varn(I) for all τ . But, the eτ follow a
continuous curve, and e0 = e lies in the open subset M (1). Therefore, all eτ for an open
set of sufficiently small τ . Differentiating, we see that the line [w⊗ ξ] is contained in the
tangent space of the fiber of M (1) at e, namely Ae.

On the other hand, for fixed e and ξ, there are various distinct ẽ corresponding to
linearly independent w. With Fig. 6 in mind, it is easy to see that

(6.5) dimP{w ∈ TpM/e : w ⊗ ξ ∈ Ae} = r(ξ⊥).

Recall the rank-1 ideal R from Section 1. Here it applies to vector bundles. As a set,
the rank-1 subvariety of the tableau is

(6.6) C = A ∩Var R = A ∩ {w ⊗ ξ : w ∈W, ξ ∈ V ∗}.

As a set, the characteristic variety Ξ is the projection of C to V ∗. More precisely, Ξ is the
scheme20 defined by the characteristic ideal M on V ∗ that is obtained from the rank-1
ideal R on A ⊂ W ⊗ V ∗ in the following way: For any ξ ∈ V ∗, define σξ : W → H1 by
σξ(w) = σ(w ⊗ ξ). Note that dim kerσξ = r(ξ⊥) by (6.5) and (6.6), but this does not

19Here we see again why it is helpful for an EDS to be finitely generated.
20We must study Ξ along with its various components and multiplicities, so it is better to

think of it as a scheme than as a simple-minded variety.
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account for multiplicity within C itself. Then the scheme C is the incidence correspon-
dence21 of Ξ for the symbol map σξ. See Fig. 12.

C

Gr•(W ) Ξ kerσξ

{w ⊗ ξ}

ξ

Fig. 12. The rank-1 variety C is the incidence correspondence for the characteristic variety Ξ,
but the scheme multiplicities in Ξ should be obtained as in (7.14).

This interpretation is amazing. Suddenly, two completely elementary ideas from Sec-
tion 1—tableaux of matrices and rank-1 matrices—come together to give a concise de-
scription of the most subtle structure in PDE theory.

However, the scheme components and multiplicities are still not obvious from Fig. 12;
they must be obtained by examining the degree of the equations defining kerσξ. The
powerful third interpretation in Section 7 provides this detail. But first an example.

6(c). Example: the wave equation. Consider the PDE f11 + f22 = f33. To do this,
we consider the manifold M = R3+1+3+5 ⊆ R13 = J2(R3,R) with coordinates x1, x2, x3,
f , p1, p2, p3, p11, p12, p13, p22, p23. Consider the exterior differential system generated
by

θ0 = du− p1 dx1 − p2 dx2 − p3 dx3,

θ1 = dp1 − p11 dx1 − p12 dx2 − p13 dx3,

θ2 = dp2 − p12 dx1 − p22 dx2 − p23 dx3,

θ3 = dp3 − p13 dx1 − p23 dx2 − (p11 + p22) dx3.

(6.7)

Let ωi = dxi for i = 1, 2, 3, so the derivatives are computed as

(6.8) d


θ0

θ1

θ2

θ3

 ≡


0 0 0
π1

1 π1
2 π1

3
π2

1 π2
2 π2

3
π3

1 π3
2 π3

3

 ∧
ω1

ω2

ω3

 mod {θ0, θ1, θ2, θ3}

where π1
2 = π2

1 , π1
3 = π3

1 , π2
3 = π3

2 , and π3
3 = π1

1 + π2
2 .

By changing bases, this tableau is equivalent to an endovolutive one of the form

(6.9) (πai ) =

α0 α3 α4
α1 α4 α2 + α3
α2 α0 α1


21 For more background on the utility of incidence correspondences in algebraic geometry, see

the 2013 Columbia Eilenberg lecture series by Joe Harris, [Har13]. A YouTube link is in the
bibliography.
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or in block form

(6.10) (Bλi ) =



1 0 0
0 1 0
0 0 1

 0 0 0
0 0 0
1 0 0

 0 0 0
0 0 1
0 1 0


0 0 0

0 0 0
0 0 0

 1 0 0
0 1 0
0 0 0

 0 1 0
1 0 0
0 0 0




Note that the third row of both B1

2 B1
3−B1

3 B1
2 and B1

2 B2
3−B1

3 B2
2 are zero, so the tableau

is involutive by Theorem 5.4.
The rank-1 condition is

0 = α0α4 − α1α3,

0 = α0α0 − α2α3,

0 = α0α1 − α2α4,

0 = α1α1 − α2α2 − α2α3,

0 = α3α1 − α0α4,

0 = α3α2 + α3α3 − α4α4,

0 = α4α1 − α0α2 − α0α3.

(6.11)

After a simple change of basis, this becomes the example (1.2)–(1.4), seen throughout
the earlier sections.

7. Guillemin normal form and eigenvalues. In this section, we reinterpret C and Ξ
as properties of the endomorphisms Bλi . This section is the key to all of the more advanced
results that follow. Our main computation tool is the structure of an endovolutive tableau
discussed in Section 1(c), where W and V and A are now bundles over M (1).

The incidence correspondence of Fig. 12 is rephrased in Lemma 7.1.

7.1. Lemma. If ξ ∈ Ξ, v ∈ V , and w ∈ kerσξ ⊂W , then

(7.2) B(ξ)(v)w = ξ(v)w.

In particular, w is an eigenvector of B(ξ)(v) for all v.

Proof. Fix generic bases (ui) and (za) and (ui), so that ξ = ξiu
i and w = waza and

v = viui. Set π = w ⊗ ξ ∈ C ⊂ A, so πai = waξi for all a, i, and this π must satisfy the
symbol relations (1.10). In particular, waξi = Ba,λi,b w

bξλ for a > si. Therefore

B(ξ)(v)w =
∑
a≤si

ξiv
iwaza +

∑
a>si

Ba,λi,b w
bξλv

iza

=
∑
a≤si

ξiv
iwaza +

∑
a>si

ξiv
iwaza =

∑
a,i

ξiv
iwaza = ξ(v)w.

(7.3)

(Here we see the utility of including the first summand in equation (1.14).)

Recalling the decomposition (1.17) and (1.18), Lemma 7.4 provides a sort of converse
of Lemma 7.1.



INVOLUTIVE TABLEAUX 89

7.4. Lemma. Suppose that A is an endovolutive tableau. Fix ϕ ∈ Y ⊥ ∼= U∗ and suppose
that w ∈ W−(ϕ) is an eigenvector of B(ϕ)(v) for every v ∈ V . Then there is a ξ ∈ Ξ
over ϕ ∈ Y ⊥ such that w ∈W1(ϕ), so w ⊗ ξ ∈ A.
Proof. For each v ∈ V , let ξ(v) denote the eigenvalue corresponding to v, so that ξ(v)w =
B(ϕ)(v)w. Because B(ϕ)(v)w is linear in v, so is ξ(v). Then ξ = ξiu

i ∈ V ∗. Therefore,
B(ϕ)(·)w = w ⊗ ξ. In particular, the rank-1 condition implies that

(7.5)
∑
λ≤µ

ϕλ Bλµ w = ξµw =
∑
λ≤µ

ξλ Bλµ w, ∀µ ≤ `.

This is the same expression as in (1.22), so by comparing recursively over µ = 1, 2, . . . , `,
we see that ξλ = ϕλ for all λ, so w ∈W1(ϕ) ⊂W−(ϕ).

Lemma 7.4 deserves a warning: There may be multiple ξ over the same ϕ, for per-
haps there are different eigenvectors w ∈W−(ϕ) admitting different sequences of eigen-
values ξ%, for % > `, associated to the same ϕ. Moreover, it is not (yet) clear that a mutual
eigenvector w exists for every such ϕ.

But overall it is clear that there is some relationship between the eigenvalues of Bλi
and the characteristic variety of an endovolutive tableau A. This relationship is made
precise for involutive tableau using a result from [Gui68].
7.6. Theorem (Guillemin normal form). Suppose that A is involutive. For every ϕ ∈ Y ⊥
and v ∈ V , the restricted homomorphism B(ϕ)(v)|W1(ϕ) is an endomorphism of W1(ϕ).
Moreover, for all v, ṽ ∈ V ,
(7.7)

[
B(ϕ)(v),B(ϕ)(ṽ)

]∣∣
W1(ϕ) = 0.

Compare Theorem 7.6 to Lemma 4.1 in [Gui68] and Proposition 6.3 in Chapter VIII
of [BCG+90]. Theorem 7.6 is known as Guillemin normal form because it implies that
the family of homomorphisms B(ϕ)(·) can be placed in simultaneous Jordan normal form
on W1(ϕ). It is the “normal form” alluded to in Section 1(b). We defer the proof of
Theorem 7.6 to Section 9 so we may first see its important consequences.
7.8. Corollary. If A is involutive, then for each ϕ ∈ Y ⊥, there exists some w satisfying
the hypotheses of Lemma 7.4. That is, the projection map Ξ→ Y ⊥ is onto. In particular,
if A is nontrivial and involutive, then Ξ is nonempty.
Proof. Because we are working over C, the commutativity condition (7.7) guarantees
that common eigenvectors exist for the commutative algebra {B(ϕ)(v) : v ∈ V }.
7.9. Lemma. Suppose that A is an involutive tableau. Then the map of projective varieties
induced by Ξ→ Y ⊥ is a finite branched cover. In particular, both Ξ̂ and Y ⊥ have affine
fiber dimension `.
Proof. Fix ϕ ∈ Y ⊥. The set of ξ over ϕ is nonempty by Corollary 7.8. If it were true that
the set of ξ projecting to a particular ϕ were infinite, then the parameter ξi would take
infinitely many values in some expression of the form

(7.10) det
(∑

λ

ϕλ Bλi −ξiI
)

= 0.

But, the matrix
∑
λ ϕλ Bλi ∈ End(W−

1 ) can have at most s1 eigenvalues.
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Here we arrive at an easy22 proof of the main theorem regarding the structure of Ξ.
7.11. Theorem. If A is involutive, then dim Ξ = `− 1 and deg Ξ = s`.
Proof. We work in endovolutive coordinates. From Lemma 7.9, we already know that
dim Ξ = `− 1.

Fix a generic point ξ ∈ Ξ over ϕ ∈ Y ⊥. Let C ξ = (kerσξ) ⊗ ξ denote the fiber over
ξ in C . To understand the scheme Ξ, we must determine the degree of the condition
defining C ξ. Note that C ξ must be a subvariety of W1(ϕ) ⊗ ξ, and W1(ϕ) is a linear
subspace of W , so the degree of Ξ is the degree of some condition on W1(ϕ).

By Lemma 7.1 and (6.6), the condition that C ξ is nontrivial is precisely the condition
that

(7.12) det
(∑

λ

ξλ Bλi −ξiI
)

= 0, ∀i.

Since we may restrict our attention to W1(ϕ) ⊗ ξ, the condition (7.12) for i ≤ ` is
automatic by (1.23). Hence, only these terms contribute to the non-linear part of the
ideal:

(7.13) det
(∑

λ

ξλ Bλ% −ξ%I
)

= 0, ∀% > `.

So, without coordinates, the defining equations of C ξ are

(7.14) det
(
B(ξ)(v)− ξ(v)I

)
= 0, ∀v ∈ Y.

For a particular v, this is the characteristic polynomial of B(ξ)(v) as an endomorphism
of W1(ϕ). By involutivity and Theorem 7.6, all B(ξ)(v) for v ∈ Y admit the same Jordan-
block form, so they admit the same factorization type for their respective characteristic
polynomials. That means it suffices to consider a single v. By definition, the characteristic
polynomial of B(ξ)(v)|W1(ϕ) has degree dim W1(ϕ) at generic ϕ. Therefore, deg Ξ = s`
follows from Lemma 1.25.

Theorems 7.6 and 7.11 provide a powerful interpretation of the form of an involutive
tableau seen in Theorem 5.4 and Fig. 3; the first ` columns represent a projection of Ξ,
as in Lemma 7.9, and the rank-1 incidence correspondence in Fig. 12 is precisely the
eigenvector condition on the appropriate subspaces. It is peculiar and interesting that
these results were discovered in the opposite order historically, as explored in Section 9.

The proof of Theorem 7.11—in particular equation (7.14)—gives a precise under-
standing of Ξ as a scheme. Specifically, the characteristic scheme (in the sense of PDE) is
merely a scheme of characteristic equations (in the sense of linear algebra)! The compo-
nents of Ξ correspond to the various Jordan blocks apparent in (7.14). The multiplicity of

22It is easy in the sense that we have the explicit polynomials of M in hand, and they are
recognizable as the familiar eigenvector equations. The reader should compare (7.14) to the
descriptions provided in [BCG+90] and [IL03]. Both references defer their decomposition of Ξ
to the abstract Grothendieck–Riemann–Roch theorem. Hence, neither reference indicates how
to compute the scheme by hand for general tableaux. While details are given in [BCG+90] in
the simple case of rectangular tableaux, a complete description is achieved here because of the
normal form provided by Theorem 5.4.



INVOLUTIVE TABLEAUX 91

each component is the dimension of that generalized eigenspace. The sheets of the finite
branched cover Ξ → Y ⊥ come from different generalized eigenspaces where the first `
eigenvalues match. See Section 8 for how to compute this.

8. Examples

8(a). Zero-dimensional examples. Consider some cases of involutive tableaux with
(s1, s2, s3) = (4, 0, 0).

(8.1) (πai ) =


π1

1 π1
2 π1

3

π2
1 π2

2 π2
3

π3
1 π3

2 π3
3

π4
1 π4

2 π4
3

 .

Or, in endovolutive block form:
(8.2) (Bλi ) =

[
I4 B1

2 B1
3
]
.

The characteristic ideal M will have degree s` = 4 and projective dimension ` − 1 = 0.
That is, Ξ will be 4 points, counted with multiplicity. The involutivity condition is 0 =
B1

2 B1
3−B1

3 B1
2 (all rows); that is, the matrices commute. Thus the matrices B1

2 and B1
3

must have compatible Jordan-block forms; they span a commutative algebra. In these
examples, we will use four shades to emphasize the distinct generalized eigenspaces.

One possibility is that the matrices are diagonal with distinct Jordan blocks:

(8.3) A =



α1 c1α1 d1α1

α2 c2α2 d2α2

α3 c3α3 d3α3

α4 c4α4 d4α4

 : αa ∈ C

 .

In this case, the rank-1 variety is

(8.4) C =



1
0
0
0

⊗[1 : c1 : d1],


0
1
0
0

⊗[1 : c2 : d2],


0
0
1
0

⊗[1 : c3 : d3],


0
0
0
1

⊗[1 : c4 : d4]

 .

Each point ξ ∈ Ξ has multiplicity 1.
Another possibility is that they are diagonal, but there is a two-dimensional eigenspace.

(8.5) A =



α1 c1α1 d1α1

α2 c1α2 d1α2

α3 c3α3 d3α3

α4 c4α4 d4α4

 : αa ∈ C

 .

In this case, the rank-1 cone is

(8.6) C =



*
*
0
0

⊗ [1 : c1 : d1],


0
0
1
0

⊗ [1 : c3 : d3],


0
0
0
1

⊗ [1 : c4 : d4]

 .



92 A. D. SMITH

One point ξ ∈ Ξ has multiplicity 2; in particular, the fiber kerσξ for ξ = [1 : c1 : d1] should
be seen as a P1. This is reflected clearly in (7.14), because ξ = [ξ1 : ξ2 : ξ3] = [1 : c1 : d1]
is a root of degree 2 for any v:

0 = det
(
ξ1(v2 B1

2 +v3 B1
3)− (ξ2v

2 + ξ3v3)I
)

=

∣∣∣∣∣∣∣∣∣v
2


c1−c1 0 0 0

0 c1−c1 0 0
0 0 c3−c1 0
0 0 0 c4−c1

+ v3


d1−d1 0 0 0

0 d1−d1 0 0
0 0 d3−d1 0
0 0 0 d4−d1


∣∣∣∣∣∣∣∣∣

= v2(c1 − c1)2(c3 − c1)(c4 − c1) + v3(d1 − d1)2(d3 − d1)(d4 − d1).

(8.7)

Another possibility is that there is a 2× 2 block:

(8.8) A =



α1 c1α1 + α2 d1α1 + α2

α2 c1α2 d1α2

α3 c3α3 d3α3

α4 c4α4 d4α4

 : αa ∈ C

 .

In this case, the rank-1 cone is

(8.9) C =



1
0
0
0

⊗ [1 : c1 : d1],


0
0
1
0

⊗ [1 : c3 : d3],


0
0
0
1

⊗ [1 : c4 : d4]

 .

Note that the fiber of C over Ξ has dimension 1 in each case; however, the first point
has multiplicity 2. We see that the dimension of the fiber is insufficient to measure the
multiplicity of the scheme Ξ, because the incidence correspondence involves the ideal R.
We can see this because of the structure of the rank-1 matrices: the upper 2× 2 minors
vanish if and only if α2α2 = 0, so the fiber kerσξ for ξ = [1 : c1 : d1] should be seen as a
P0 of degree 2. This is reflected clearly in (7.14), because ξ = [ξ1 : ξ2 : ξ3] = [1 : c1 : d1]
is a root of degree 2 for any v:

0 = det
(
ξ1(v2 B1

2 +v3 B1
3)− (ξ2v

2 + ξ3v3)I
)

=

∣∣∣∣∣∣∣∣∣v
2


c1−c1 1 0 0

0 c1−c1 0 0
0 0 c3−c1 0
0 0 0 c4−c1

+ v3


d1−d1 1 0 0

0 d1−d1 0 0
0 0 d3−d1 0
0 0 0 d4−d1


∣∣∣∣∣∣∣∣∣

= v2(c1 − c1)2(c3 − c1)(c4 − c1) + v3(d1 − d1)2(d3 − d1)(d4 − d1).

(8.10)

Finally, consider the case where both types of multiplicity occur. For example,

(8.11) A =



α1 c1α1 + α2 d1α1 + α2

α2 c1α2 d1α2

α3 c1α3 d1α3

α4 c4α4 d4α4

 : αa ∈ C

 .
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In this case, the rank-1 cone is

(8.12) C =



*
0
*
0

⊗ [1 : c1 : d1],


0
0
0
1

⊗ [1 : c4 : d4]

 .

The scheme structure of Ξ is apparent here. The point ξ = [1 : c1 : d1] appears in two
components, which correspond to the factorization of

0 = det
(
ξ1(v2 B1

2 +v3 B1
3)− (ξ2v

2 + ξ3v3)I
)

=

∣∣∣∣∣∣∣∣∣v
2


c1−c1 1 0 0

0 c1−c1 0 0
0 0 c1−c1 0
0 0 0 c4−c1

+ v3


d1−d1 1 0 0

0 d1−d1 0 0
0 0 d1−d1 0
0 0 0 d4−d1


∣∣∣∣∣∣∣∣∣

= v2(c1 − c1)2(c1 − c1)(c4 − c1) + v3(d1 − d1)2(d1 − d1)(d4 − d1).

(8.13)

From the perspective of C , these components correspond to the rank-1 matrices

(8.14)


α1 c1α1 d1α1

0 0 0
α3 c1α3 d1α3

0 0 0

 .

The fiber should be seen as two components, a P1 and a P0. Overall, this point has
multiplicity 3.
8.15. Remark. For readers interested in hydrodynamic integrability criteria, take a
moment to compute the secant varieties Seck(C ) and Seck(Ξ), k = 2, 3, in each of these
cases. The secant variety is all linear combinations of k points from the given variety.
One can consider both the embedded secant variety within A and V ∗, respectively, as
well as the Grassmannian secant variety within Grk(A) and Grk(V ∗), respectively. Note
that hyperbolic systems of conservation laws have s1 = n and take the non-degenerate
diagonal form of the first example, over R.

8(b). One-dimensional examples. Consider an involutive tableau with (s1, s2, s3) =
(2, 1, 0).

(8.16) (πai ) =
(
π1

1 π1
2 π1

3

π2
1 π2

2 π2
3

)
.

Or, in endovolutive block form,

(8.17) (Bλi ) =


(

1 0
0 1

) (
0 0
x0 x1

) (
x2 x3
x4 x5

)
(

0 0
0 0

) (
1 0
0 0

) (
x6 0
0 0

)
 .

The characteristic ideal M will have degree s` = 1 and projective dimension ` − 1 = 1.
That is, Ξ will be a single curve.
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For the sake of concreteness, let us assume that the coefficients are:

(8.18) (Bλi ) =


(

1 0
0 1

) (
0 0
1
9 0

) (
5 0
1 5

)
(

0 0
0 0

) (
1 0
0 0

) (
9 0
0 0

)
 ,

so that

(8.19) (πai ) =
(
α0 α2 5α0 + 9α2
α1

1
9α0 α0 + 5α1

)
.

The rank-1 ideal is just α0α0−9α1α2 = 0. Write a generic element of C as [α0 : α1 : α2] =
[3τ : 1 : τ2], like so:

(8.20)
(

3τ τ2 15τ + 9τ2

1 1
3τ 5 + 3τ

)
.

Thus, a generic element of ξ is of the form ξ = [3 : τ : 15 + 9τ ] with fiber
[
3τ
1

]
.

By using (7.14), the characteristic scheme of ξ = [3 : ξ2 : ξ3] is generated by 0 =
det
(
ξ1v

3 B1
3 +ξ2v

3 B2
3−ξ3v

3I2
)
, restricted to the space W1(ξ) ⊂W , which is one-dimen-

sional. Write τ for ξ2; so we are trying to find ξ = [3 : τ : ξ3] over ϕ = [3 : τ : 0] as

in Lemma 7.4. The space W1(ϕ) is the space spanned by
[
3τ
1

]
. Hence, the single linear

sheet of the characteristic variety over [3 : τ : 0] is given by [3 : τ : 15 + 9τ ].

8(c). One-dimensional exercise. Now is the time go back and re-read the example
(1.4) and see how it fits into Sections 6(c) and 5(a). The wave-equation example offers
a single P1 whose fiber is also a P1. By choosing appropriate coefficients, you should be
able to produce examples with (s1, s2, s3) = (3, 2, 0) with various other components and
multiplicities.

In principle, you can choose any Cartan characters, and choose coefficients subject to
Theorem 5.4 to build examples in this way. See the Sage code at https://bitbucket.
org/curieux/symbol_sage, which can generate and analyze any such example (given
sufficient memory).

9. Results of Guillemin and Quillen. As in the analogy Section 1(b), normal forms
often reveal shortcuts to other advanced ideas.

Guillemin’s proof of Theorem 7.6 made use of two results derived from Quillen’s thesis
[Qui64]. In this section, we see how these results become easier by using Theorem 5.4.
(Note that Theorem 5.4 and Theorem 7.6 are not equivalent. Theorem 5.4 is strictly
stronger; it is easy to construct endovolutive tableaux that satisfy the conclusion of (7.7)
but are not involutive. See [Smi15].)

Recall the Spencer cohomology groups from Section 4(b). For any ϕ ∈ V ∗, wedging
by ϕ gives a map W ⊗∧kV ∗ →W ⊗∧k+1V ∗. This induces a map on the quotient spaces,
Hk(A)→ Hk+1(A).

https://bitbucket.org/curieux/symbol_sage
https://bitbucket.org/curieux/symbol_sage
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9.1. Theorem (Quillen’s Exactness Theorem). Suppose A is an involutive tableau, and
that ϕ 6∈ ΞA. Then the sequence of maps by ∧ϕ,

0→ A→ H1(A)→ H2(A)→ . . .→ Hn(A)→ 0,
is exact.

In [Qui64], this theorem is proven using enormous commutative diagrams. In our
context, with Theorem 5.4 in hand, we can prove an easy version of Quillen’s result, in
the form of Lemma 9.3. Lemma 9.3 is a consequence of Corollary 9.2, which for us is an
easy corollary of Theorem 5.4. This corollary is called Theorem A in [Gui68], where it
was proved using a large diagram chase using Quillen’s exactness theorem, Theorem 9.1.

9.2. Corollary (Quillen, Guillemin). Consider the subspace U = 〈u1, . . . , u`〉 ⊂ V for
a generic basis (ui) of V , as in (1.17). If A is involutive, then A|U is involutive, and the
natural map between prolongations A(1) → (A|U )(1) is bijective.

Proof. The first part is an immediate consequence of Theorem 5.4, as the quadratic
condition still holds if the range of indices λ, µ, i, j is truncated at ` (or greater). In
particular, the generators (πaλ)a≤sλ of A are preserved.

The second part is similarly immediate, using the proof of Theorem 5.4 given in
[Smi15]: the contact relation πaµ = Zaµ,iu

i for a ≤ sλ gives coordinates Zaµ,i to the prolon-
gation A(1) ⊂ A⊗ V ∗, and the s1 + 2s2 + . . .+ `s` independent generators are precisely
those Zaµ,λ with a ≤ sµ and λ ≤ µ ≤ `. Since they involve no indices i > `, these
generators remain independent when the range of indices is truncated at `.

Now we come to our simplified version of Theorem 9.1. Compare Lemma 9.3 to the
exact sequence (3.4)2 in [Gui68].

9.3. Lemma. Recall that U⊥ is a complement to Y ⊥ ⊂ V ∗, so that V ∗ = Y ⊥ ⊕ U⊥ as
in (1.17) and (1.18). For A involutive, the sequence

0→W ⊗ S2U⊥ → H1 ⊗ U⊥ δ→ H2

is exact.

Proof. This proof is just an explicit description of the maps in a basis and an application
of Corollary 9.2. Let (ui) be a basis for V ∗ such that (uλ) is a basis for Y ⊥ and (u%) is a
basis for U⊥, using the index convention (1.8) from Section 1.

The sequence makes sense because we can split the Spencer sequence (4.15) as
W ⊗ V ∗ = A⊕H1 by identifying the space H1 with {

∑
a>si

πai (za ⊗ ui)} ⊂ W ⊗ V ∗,
which is the space spanned by the unshaded entries in Fig. 1. With this identification,
two elements

∑
a>si

πai (za⊗ui) and
∑
a>si

π̂ai (za⊗ui) of W ⊗V ∗ are equivalent in H1 if
and only if πai − π̂ai =

∑
b≤sλ B

a,λ
i,b z

b
i for some {zai : a ≤ si}, the shaded entries in Fig. 1.

In other words, the projection W ⊗ V ∗ → H1 is defined by (1.10), and the projection
W⊗V ∗ → A is defined by the projection onto the shaded generator components in Fig. 1,
those πaλ with a ≤ sλ.

Since s% = 0 for all % > `, the inclusion W ⊗ U⊥ ⊂ W ⊗ V ∗ is an inclusion
W ⊗ U⊥ ⊂ H1. Hence, the inclusion is understood as
(9.4) W ⊗ S2U⊥ ⊂ (W ⊗ U⊥)⊗ U⊥ ⊂ H1 ⊗ U⊥.
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An element of H1 ⊗ U⊥ is written in W ⊗ V ∗ ⊗ U⊥ as
(9.5) P =

∑
a>sλ

P aλ,ς(za ⊗ uλ ⊗ uς) +
∑
a>0

P a%,ς(za ⊗ u% ⊗ uς).

The image δ(H1 ⊗ U⊥) in H2 is
(9.6) δ(H1 ⊗ V ∗) ⊂ δ(W ⊗ V ∗ ⊗ V ∗) ⊂W ⊗ ∧2V ∗,

so δP ∈W ⊗ ∧2V ∗ is of the form

(9.7) δP =
∑
a>sλ

P aλ,ς(za ⊗ uλ ∧ uς) +
∑
a>0

1
2
(
P a%,ς − P aς,%

)
(za ⊗ u% ∧ uς).

Recall that H2 = W⊗∧2V ∗

δσ(A⊗V ∗) . So, δP ≡ 0 in H2 if and only if there is some T ∈ A⊗V ∗

such that δσ(T ) = δ(P ) in W ⊗∧2V ∗. Looking at (9.7), it is apparent that such T must
have δσ(T |U ) = 0, as δ(P ) has no Y ⊥ ∧ Y ⊥ terms. By involutivity and Corollary 9.2, we
consider the involutive tableau
(9.8) 0→ A|U →W ⊗ Y ⊥ σ|U→ H1

U → 0
with prolongation

(9.9) 0→ (A|U )(1) → A|U ⊗ Y ⊥
δσ|U→ W ⊗ ∧2Y ⊥ → H2

U → 0.
Therefore, T |U ∈ A|U ⊗ Y ⊥ lies in the kernel of δσ|U , so T |U ∈ (A|U )(1). Therefore,
Corollary 9.2 tells us T ∈ A(1). That is, δ(P ) ≡ 0 ∈ H2 if and only if δ(P ) = δσ(T ) = 0.

Therefore, δ(P ) ≡ 0 ∈ H2 if and only if P aλ,ς = 0 and P a%,ς = P aς,% on these index
ranges. This occurs if and only if P = P a%,ς(za ⊗ u% ⊗ uς), meaning P ∈W ⊗ S2U⊥.

We are ready to prove Theorem 7.6. The structure of the proof is identical to the
original proof in [Gui68].
Proof of Theorem 7.6. Suppose that w ∈W1(ϕ), so that π = B(ϕ)(·)w = w ⊗ ϕ+ J for
some J ∈W ⊗U⊥ with J% = Ja% za ∈W−(ϕ) for all %. First, we must show that the span
of the columns J% of J lies in W1(ϕ).

Consider the element −J⊗ϕ = −Ja%ϕλ(za⊗uλ⊗u%) ∈ H1⊗U⊥. Because z⊗ϕ+J ∈ A,
it must be that z⊗ϕ⊗ϕ ∈W ⊗ V ∗ ⊗ V ∗ represents the same point in H1 ⊗U⊥. So, we
can compute
(9.10) −Ja%ϕλ(za ⊗ uλ ∧ u%) ≡ z ⊗ ϕ ∧ ϕ = 0 ∈ H2.

By Corollary 9.2, there exists Q = Qa%,ς(za⊗uς⊗u%) ∈W⊗S2U⊥ such that −J⊗ϕ−Q ∈
A ⊗ U⊥. That is, writing Q% = Qa%,ς(za ⊗ uς) ∈ W ⊗ Y ⊥, we have J% ⊗ ϕ + Q% ∈ A for
all %, meaning J% ∈ W1(ϕ) for all %. Therefore, for any v ∈ V , we have B(ϕ)(v)z =
ϕ(v)z + J(v) ∈W1(ϕ).

Now, mapping again, B(ϕ)(·)J% = J%⊗ϕ+Q%, so B(ϕ)(uς)J% = Q%,ς , which is already
known to be symmetric in %, ς. Therefore,

B(ϕ)(ṽ) B(ϕ)(v)z = B(ϕ)(ṽ)(ϕ(v)z + J(v))
= ϕ(v) B(ϕ)(ṽ)z + u%(v) B(ϕ)(ṽ)J%
= ϕ(v)(ϕ(ṽ)z + J(ṽ)) + u%(v)

(
ϕ(ṽ)J% +Q%(ṽ)

)
= ϕ(v)ϕ(ṽ)z + ϕ(v)J(ṽ) + ϕ(ṽ)J(v) +Q(v, ṽ).

(9.11)

This is symmetric in v, ṽ, giving the commutativity condition (7.7)
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It is interesting to see the inversion of logic that happened here. In the original liter-
ature, the overall implications are

9.1→ 9.3→ 9.2→ 7.6.

But, the arguments here give the overall implications

5.4→ 9.2→ 9.3→ 7.6.

However, we can write a shorter proof of Theorem 7.6 that relies Theorem 5.4 more
directly, avoiding the general results of Quillen. For motivation, consider the following
trivial corollary of Theorem 5.4 that is obtained by setting λ = µ.

9.12. Corollary. Suppose an involutive tableau is given in a generic, endovolutive basis
as in (1.14), so that Theorem 5.4 holds. Then B(uλ)(v) is an endomorphism of W−(uλ)
such that for all v, ṽ ∈ Y ,

[B(uλ)(v),B(uλ)(ṽ)] = 0.

Alternate Proof of Theorem 7.6. Fix ϕ ∈ Y ⊥, and suppose that w ∈ W1(ϕ). We must
verify that all maps B(ϕ)(v) preserve W1(ϕ) and that they commute. Note that the
definition of W1(ϕ) in equation (1.24) depends on the choice of subspace Y ⊥ but not on
its basis, so we may verify these conditions using any basis we like.

First a trivial case: if it happens that ϕ ∈ Ξ ∩ Y ⊥, then B(ϕ)(v)w = ϕ(v)w ∈W1(ϕ)
is a rescaling, and it is immediate that [B(ϕ)(v),B(ϕ)(ṽ)] = 0.

Otherwise, we have ϕ 6∈ Ξ. Then we may choose a generic basis of V ∗ in which
ϕ = u1. Moreover, we may use that basis to construct an endovolutive basis of W .
By Corollary 9.12, it suffices to prove in this basis that W1(u1) is preserved by every
B(u1)(v). Write B(ϕ)(·)w = w ⊗ u1 + J , and examine (1.22) on a column J% of J . For
each µ = 1, . . . , `, we must verify

(9.13) 0 =
(
B1
µ−δ1

µI
)
J% =

(
B1
µ−δ1

µI
)

B1
% w =

(
B1
µ B1

%−δ1
µ B1

%

)
w.

If µ = 1, then this is immediate, since B1
1 = Is1 .

If µ 6= 1, then we are verifying 0 = (B1
µ B1

%−0)w. Note that B1
µ w = 0, since B(ϕ)(·)w =

w ⊗ ϕ+ J = w ⊗ u1 + J . Moreover, by Theorem 5.4, we have

(9.14) 0 =
(
B1
µ B1

%−B1
% B1

µ

)a
b
wb =

(
B1
µ B1

%

)a
b
wb

for a > sµ. Therefore, B1
µ B1

% lies in W−(µ). On the other hand, note that the output of B1
µ

lies in W+
µ by the construction of the maps Bλµ from the reduced symbol in Section 1(c).

Combining these, we see that B1
µ B1

% w lies in W−
µ ∩W+

µ = 0.
Hence, the space W1(ϕ) is preserved by B(ϕ)(v) for all v. By Corollary 9.12, they

commute.

On the theoretical side, it would be interesting to see how many of the hard classical
theorems in the subject can be re-proven with elementary techniques. Specifically, the
proof of Lemma 9.3 suggests an elementary proof of Quillen’s exactness theorem. The
other hard theorem is the integrability of the characteristic variety, and a proof of that
theorem using Guillemin’s original formulation is the subject of [GQS70]. That result was
applied immediately to study primitive Lie pseudogroups.
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10. Prolongation. How does the characteristic scheme change under prolongation? The
short answer is that it does not! This does not depend on endovolutivity or involutivity.

Recall that A(1) is a tableau within A⊗V ∗. An element of A(1) is P ∈ A⊗V ∗. Using
any bases for V,W,A, we may write P as P ai,jza ⊗ ui ⊗ uj , with the additional condition
that P ai,j = P aj,i from (4.9). Let C (1) denote the rank-1 elements of A(1), and let Ξ(1)

denote its projection to V ∗, as in Section 6(b).

10.1. Theorem. If π ⊗ ξ ∈ C (1), then π = w ⊗ ξ ∈ C for some w ∈ kerσξ. Conversely,
if w ⊗ ξ ∈ C , then (w ⊗ ξ)⊗ ξ ∈ C (1). In particular, Ξ ∼= Ξ(1) as schemes.

Proof. Suppose that π ⊗ ξ ∈ C (1) for some π ∈ A and ξ ∈ V ∗. That is, P ∈ A(1) and
P = π ⊗ ξ, so P ai,j = πai ξj , and πai ξj = πaj ξi for all a, i, j.

Let λ be the minimum index such that ξλ 6= 0. Then πaλξi = πai ξλ, so column i of (πai )
is a multiple—namely ξi/ξλ—of column λ for all i. Therefore, (πai ) is rank-1, and there
is some w with π = w ⊗ ξ. The converse is immediate.

10.2. Remark. Theorem 10.1 is used sometimes as a method for computing the charac-
teristic variety, as follows: Given a tableau (πai ) whose entries might depend on e ∈M (1),
consider (ξi) 7→ (πai ξj − πaj ξi) as a map V ∗ → W ⊗ ∧2V ∗; that is, a map from Cn to
Cr(

n
2). For a general point in ξ ∈ V ∗, this map has rank at least 1. Its rank falls to 0 if

and only if ξ ∈ Ξ. But, this method is inefficient. If you have (πai ) in hand and want to
compute 2× 2 minors of something, you would save ink by computing the 2× 2 minors
of (πai ) itself to find C .

11. Characteristic sheaf. For a single endomorphism, the characteristic polynomial
and the Jordan block decomposition of generalized eigenspaces together reveal all of the
information that is independent of coordinates.

The ultimate conclusion of the preceding sections is that, for an abstract tableau A,
the characteristic sheaf M knows the dimensions n, r, (s1, . . . , sn), as well as all of the
dimensions and relationships among the mutual eigenspaces of the various symbol maps.
The rank-1 cone C knows the algebraic relationships among the sequences of eigenvalues
(which we call ξ), and it also knows on which subspaces the symbol maps commute and
on which fail to commute. In summary, M and C together know everything about an
abstract tableau A that is independent of coordinates.23 Moreover, they are invariant
under prolongation!

If the abstract tableau A is a smooth projective bundle, then this applies to involutive
Kähler-regular exterior differential systems in the smooth category.

If this formal perspective is appealing, then one might as well dispense with tableaux,
symbols, Grassmann bundles, and differential ideals, and instead study the sheaf M

directly, with modern algebraic tools such as [Eis05]. Consider M as an ideal in

C∞(M (1))[u1, . . . , un],

23We revealed this fact using special bases, but as with traditional Jordan normal form, there
is an abstract structure independent of basis that is easiest to see by building an adapted basis.
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and consider its free resolution. The Hilbert syzygy theorem states that there is a fi-
nite free resolution that is characterized by its Hilbert polynomial hM (d). Of course,
Theorem 7.11 is reading the leading term of hM (d)!

One might ask how the involutivity of A can be detected as an algebraic property
of M . The answer is tied to Castelnuovo–Mumford regularity, which measures the growth
of the Hilbert polynomial. This computation is equivalent to the Cartan characters in
Cartan’s test!

While it is not necessarily a useful computational tool versus differential forms or
tableaux, this perspective allows a broader view of the techniques in PDE analysis, and it
suggests that future progress in the field will emphasize on invariant algebraic techniques.

For more on this perspective, see [Mal03], [BCG+90, Chapter VIII], and the notes by
Mark Green from the 2013 conference New Directions in Exterior Differential Systems
in Estes Park, Colorado, which are based on the perspective in [CGG09].

Part IV. Eikonal systems

In Part III, we studied the characteristic scheme defined over M (1) ⊂ Grn(TM).
In this part, we turn our attention to the characteristic scheme as pulled back to an
integral manifold ι : N → M . This is where the meaning of Ξ as “directions with an
ambiguous initial value problem” has clear implications for the internal structure of solu-
tions of a differential equation, as the eikonal system yields intrinsic foliations of integral
manifolds N .

12. General eikonal systems. First, let us consider the general notion of “eikonal
equations” of a projective variety, without specific regard to the characteristic variety.

Consider a smooth manifold N of dimension n. Here are three ways to produce
a smooth local hypersurface H ⊂ N .

(i) The implicit function theorem says that a smooth hypersurface H ⊂ N is defined
locally by a smooth function f : N → R, where TxH = ker df for all x ∈ H.

(ii) By the Frobenius theorem, this is equivalent to having a local smooth section ϕ of
T ∗N = Ω1(N) such that dϕ ≡ 0 mod ϕ, for then ϕ is a rescaling of some df .

(iii) We can also look at the Frobenius theorem from the perspective of Cartan–Kähler
theory24, as in Theorem 5.3. To make a local function f : N → R or a local section ϕ
of T ∗N , consider the jet space J1(N,R), which is isomorphic to the bundle T ∗N×R.
Jet space is an open neighborhood (or local linearization) of Grn(N × R) equipped
with local coordinates (xi, pi, y) = (x1, . . . , xn, p1, . . . , pn, y) and a contact system J
generated by Υ = dy− pi dxi and dΥ, as in Section 3(a). In these local coordinates,
set the independence condition ω = dx1 ∧ . . .∧dxn 6= 0. Any n-dimensional integral
manifold of the exterior differential system (T ∗N×R,J ,ω) corresponds to a function
y = f(x1, . . . , xn) with pi = ∂f

∂xi , so we may take ϕ = df = ∂f
∂xi dxi. It is easy to

24Although Theorem 5.3 applies as stated only in the analytic category, it can be extended to
the smooth category in this case. This sort of extension is explored in Section 14.
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see that this exterior differential system has no torsion and has a Kähler-regular
tableau with Cartan characters s1 = s2 = . . . = sn = 1. That is, integral manifolds
are parametrized by 1 function of n variables (hardly a surprise).

Now, consider a projective subbundle ΣN ⊂ PT ∗N , meaning it is defined smoothly
by homogeneous functions in the local fiber variables (pi) of T ∗N . We want a test that
tells us whether there exist hypersurfaces H for which df ∈ ΣN everywhere. Specifically,
we want a theorem like the following.

12.1. Theorem. Suppose that the eikonal system (defined below) of ΣN is involutive.
Then for any smooth point [ϕ] ∈ (ΣN )x, there is a smooth hypersurface H ⊂ N such that
(TxH)⊥ = [ϕ] and such that (Tx̃H)⊥ lies in the smooth locus of (ΣN )x̃ for all x̃ ∈ H.

Because the hypersurface H and the 1-form ϕ are not chosen a priori, this condition
is difficult to interpret using the above formulations (i) and (ii) of hypersurfaces; however,
the third formulation on T ∗N × R is well-suited to this theorem. Consider the inclusion
ψ : Σ̂N × R → J1(N,R). (Recall that ˆ indicates the affine de-projectivization of a
projective variety, resulting in a cone.) The eikonal system of ΣN is the exterior differential
system E (ΣN ) = ψ∗(J ) on Σ̂N × R; that is, E (ΣN ) is generated by ψ∗(Υ) and ψ∗(dΥ)
and has independence condition dx1 ∧ . . . ∧ dxn 6= 0. An integral manifold of E (ΣN )
corresponds to a hypersurface in N whose tangent space in annihilated by a section
of Σ̂N .

We do not prove involutivity of E(ΣN ) in any significant case here; it is typically
extremely deep and difficult, and references are provided below. However, the situation
in Theorem 12.1 has several interesting consequences and interpretations.

12.2. Corollary. Suppose that the eikonal system of ΣN is involutive. Let `−1 denote
the projective fiber dimension of ΣN . The hypersurfaces guaranteed by Theorem 12.1
depend on ` functions of one variable.

Proof. Fix [ϕ] ∈ (ΣN )x. We work locally25 near ϕ, so we may assume N is open, con-
nected, and simply connected, and that T ∗N = N × Rn. Because Σ̂N is smooth with
affine fiber dimension ` in T ∗N , we may choose local coordinates (q1, . . . , qn) on each
fiber of T ∗N near ϕ such that Σ̂N is defined by q`+1 = . . . = qn = 0 near ϕ.

For each λ = 1, . . . , `, let σλ ∈ (ΣN )x denote the lines of 1-forms specified as

(0, . . . , 0, qλ, 0, . . . 0),

nonzero in the λ slot, in these coordinates. By Theorem 12.1, there is a local hypersurface
Hλ ⊂ N and a corresponding local function xλ such that dxλ ∼ σλ. Complete x1, . . . , x`

to a local coordinate system (xi) on N , and let pi be the canonical Darboux coordinates
(that is, roughly corresponding to ∂y

∂xi ) on the fiber of T ∗N . Note that pi(dx`) = δλi by
construction, so Σ̂N is defined by p`+1 = . . . = pn = 0. (Note that the open neighborhood
of T ∗N around ϕ may have shrunk during this process, which is why this is microlocal.)

25In fact, we work microlocally in the bundle. Microlocally means that we are working over a
contractible neighborhood of the base space with a local trivialization of the bundle, and also
within a neighborhood in the fiber.
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Therefore, the contact system on T ∗N × R is generated in a neighborhood of ϕ by
Υ = dy − pi dxi, which pulls back to Σ̂N × R as

ψ∗(Υ) = dy − pλ dxλ.

The corresponding tableau is the space of 1× ` matrices with entries dpλ for λ = 1, . . . , `,
so it has s1 = s2 = . . . = s` = 1.

This is an interesting proof, using all three perspectives of hypersurfaces. The implicit
function theorem on the fiber provides local coordinates on the base by involutivity.
Then, the Frobenius theorem on the base produces contact coordinates on the fiber that
are compatible with the original fiber coordinates. It is easy to adapt this proof to the
following corollary, which is useful for constructing coordinates in some situations, as in
[Smi14].

12.3. Corollary. For any ΣN , let 〈ΣN 〉 denote its linear span, which is itself a pro-
jective subbundle of PT ∗N . If E (ΣN ) is involutive, then E (〈ΣN 〉) is involutive.

We will now examine several interpretations of the eikonal system that tie together
various branches of geometry. Compare Sections 12(a), 12(b), and 13 to [BCG+90,
V§3(vi)].

12(a). As Lagrangian geometry. The R term in T ∗N × R plays little role for the
eikonal system E(ΣN ). It is there merely to make obvious the relationship between the
eikonal equations and hypersurfaces.

Instead, consider the symplectic manifold T ∗N with symplectic 2-form dΥ, which
is expressed in local coordinates as dΥ = −dpi ∧ dxi according to Darboux’s theorem.
The Lagrangian Grassmannian LG(N) is the bundle over T ∗N whose fiber is all the
Legendrian n-planes

(12.4) LGϕ(N) = {e ∈ Grn(TϕT ∗N) : dΥ|e = 0}, ∀ϕ ∈ T ∗N

Each fiber is isomorphic to the homogeneous space LG(n, 2n), which is the variety of
n-planes in R[x1, . . . , xn, p1, . . . , pn] on which dpi ∧ dxi = 0. If we consider a plane e ∈
LG(n, 2n) for which dx1 ∧ . . . ∧ dxn 6= 0, then dpi = Pi,j(e) dxi on e with Pi,j = Pj,i.
Hence, the non-vertical open neighborhood of LG(n, 2n) is identified with the space of
symmetric n× n matrices, Sym2(Rn).

Suppose the de-projectivized affine subvariety Σ̂N ⊂ T ∗N is defined smoothly by
homogeneous functions in the local fiber variables (pi) of T ∗N . From this perspective,
the eikonal system E(ΣN ) is measuring the intersection of Grn(TϕΣN ) with LGϕ(N) for
all ϕ ∈ ΣN .

12.5. Corollary. The eikonal system E(ΣN ) is involutive if and only if there are local
coordinates of T ∗N near ϕ ∈ Σ̂N in which the non-vertical open set in Grn(TΣN )∩LG(N)
is described as the n×n symmetric matrices Pi,j(e) that vanish outside the upper-left `×`
part.

Proof. If the eikonal system E (ΣN ) is involutive, then we may construct coordinates as
in Corollary 12.2 such that the de-projectivized affine variety Σ̂N is defined by p% = 0
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for all % > `, so TϕΣ̂N is defined by dp% = 0 for all % > `. In such coordinates, the open
neighborhood of the Lagrangian Grassmannian takes the block form

(12.6)
(

dpλ
dp%

)∣∣∣∣
e

=
(
Pλ,µ(e) Pλ,ς(e)
P%,µ(e) P%,ς(e)

)(
dxµ
dxς

)∣∣∣∣
e

, such that Pi,j = Pj,i,

using our index convention (1.8) from Section 1. The condition e ∈ TΣN implies dp% = 0,
so the lower blocks are zero. The matrix is symmetric, so the upper-right block is zero.

Conversely, suppose such coordinates exist. Then T Σ̂N satisfies the closed 1-forms
dp% = 0, and the dimensions match, so ΣN satisfies p% = constant. Since the equations
defining ΣN are homogeneous, it must be p% = 0. Using these coordinates for T ∗N × R
and J yields ψ∗(Υ) = dy − pλ dxλ, as in Corollary 12.2, which is involutive with the
correct Cartan characters and gives the desired hypersurfaces in Theorem 12.1.

Compare this to Proposition 3.22 in [BCG+90, Chapter V]. For more symplectic and
Lagrangian geometry, see [Bry95].

12(b). As Poisson brackets. If T ∗N describes the state of a physical system, a func-
tion F : T ∗N → R is called an observable [SW86]. The Poisson bracket of observables is
the operation given in local coordinates by

(12.7) {F,G} =
∑
i

(
∂F

∂pi

∂G

∂xi
− ∂G

∂pi

∂F

∂xi

)
=
∑
i

dF ∧ dG
(
∂

∂pi
,
∂

∂xi

)
.

The Poisson bracket plays a fundamental role in Hamiltonian mechanics and the rela-
tionship between symmetries and conservation laws in physics. This is because (12.7) is
a Lie bracket on C∞(T ∗N). (See [Bry95] for details.)

Suppose that O is some subspace of C∞(T ∗N), so that O is a nonempty set of smooth
observables that is closed under linear combinations. Suppose also that {F,G} ∈ O for all
F,G ∈ O. Then, O is a Lie subalgebra of C∞(T ∗N) with respect to the Poisson bracket.

Because ΣN ⊂ PT ∗N is a projective variety in each fiber, the de-projectivized affine
subvariety Σ̂N ⊂ T ∗N is defined smoothly by observables that take the form of homoge-
neous functions in the local fiber variables (pi) of T ∗N . For convenience, let us make the
additional assumption that the homogeneous functions are algebraic of degree d in (pi),
so that Σ̂N is defined smoothly near ϕ ∈ Σ̂N for ϕ 6= 0 by a set of equations in multi-index
form

(12.8) 0 = F %(x, p) =
∑
|I|=d

f%,I(x)pI , for % = `+ 1, . . . , n.

12.9. Corollary. Let O denote the module in S = C∞(N)[p1, . . . , pn] generated by
(12.8). The eikonal system E(ΣN ) is involutive if and only if {O,O} ⊂ O. That is,
E(ΣN ) is involutive if and only if the module O is a Lie algebra with respect to the
Poisson bracket.

A proof—which does not depend on the polynomial form (12.8)—can be derived from
Corollary 12.5 along with the observation that the Poisson bracket can be defined in a
coordinate-free way as the operator such that

(12.10) {F,G} (dΥ)∧n = ndF ∧ dG ∧ (dΥ)∧(n−1).
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Equations of the form (12.8) appear in analysis as systems of homogeneous first-order
PDEs on u : Rn → R of the form

(12.11) 0 = F %(x, u,∇u) =
∑
|I|=d

f%,I(x) ∂u
∂xI

, for % = `+ 1, . . . , n.

A famous example is the n − ` = 1 characteristic equation for the wave equation of
Section 6(c):
(12.12) 0 = −(ut)2 + c2((ux)2 + (uy)2).
This is generalized to any involutive EDS in Section 13.

13. Involutivity of the characteristic variety. We would like to apply the entire
discussion from Section 12 to the case where ΣN is a characteristic variety, but first we
must establish that Ξ is well-defined in PT ∗N .

Suppose that ι : N → M is a connected integral manifold of an involutive exterior
differential system (M, I), and that ι(1)(N) lies in M (1), a smooth and Kähler-regular
component of Varn(I), as in Section 4.

Fix x ∈ N , and suppose ι(x) = p ∈ M and ι(1)(x) = e ∈ M (1). For ξ ∈ Ξe ⊂ V ∗e ,
we can consider the pullback ι(1)∗(ξ) ∈ PT ∗xN ⊗ C. In a basis (ηi) of T ∗xN , we can
write a representative as ξ = ξiη

i for coefficients ξi ∈ C. As a bundle over N , we have
ι(1)∗(ξ) = ξiη

i ∈ PT ∗N ⊗ C = γ∗N . In this sense, we can pull back the characteristic
variety—as a set—to N .

More precisely, recall that Ξ has degree s` and affine fiber dimension `, but it is a
scheme defined by the characteristic sheaf M . For any local section (ui) of the coframe
bundle Fγ∗ →M (1), we can write the characteristic sheaf M as a homogeneous ideal in
the module C∞(M (1))[u1, . . . , un]. At each e = ι(1)(x) ⊂M (1), the coframe (ui) is just a
complex basis of e. Therefore, we obtain a basis for TxN of the form ηi =

(
ι
(1)
∗
)−1(ui).

That is, in some neighborhood of x, the section (ηi) of F∗N is well-defined. Moreover
the stalks of the sheaf C∞(M (1)) can be pulled back, as ι(1)∗(f) is well-defined for any
f defined in a neighborhood of e. Therefore, we can pull back both the coefficients and
the coordinates to define the homogeneous ideal MN in C∞(N)[η1, . . . , ηn]. Let ΞN ⊂
PT ∗N ⊗ C be the scheme defined by MN .

Now, the entire discussion from Section 12 applies where ΣN is any particular com-
ponent of ΞN . We focus our attention on the maximal smooth locus ΞoN of ΞN . We know
additionally that ΞN takes the polynomial form (12.8) as derived from (7.14), so it has
degree s` and fiber dimension `− 1 at smooth points, as a complex projective variety.
13.1. Theorem (Guillemin–Quillen–Sternberg). Suppose that N is an ordinary inte-
gral manifold of an involutive exterior differential system I with character ` and Cartan
integer s`. The eikonal system of the smooth locus of the (complex) characteristic vari-
ety, E (ΞoN ), is involutive. At smooth points in ΞN , the characteristic hypersurfaces are
parametrized by one function of ` variables.

Note that our definition of ΞN is the complex characteristic variety.26 Theorem 13.1

26Recall that, in the complex case, the distinction between elliptic and hyperbolic second-order
PDEs does not occur, because there is only one nondegenerate signature.
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is called the “integrability of characteristics.” Cartan demonstrated several examples of
this phenomenon in [Car11]. The proof appears in [GQS70], where a major step is the
application of Theorem 7.6. Hence, this result appears to rely in an essential way on all
three facets of the characteristic variety seen in Part III.

The converse of Theorem 13.1 is not true; it is easy to write down non-involutive
exterior differential systems for which E (ΞN ) is involutive.

However, in [Gab81], Ofer Gabber proved a more general form of Theorem 13.1 that
was conjectured in [GQS70] and that removes practically all of the technical assumptions.
Phrased as Theorem 13.2, Gabber’s theorem recalls the ideas of Section 12(b).

13.2. Theorem (Gabber). Let S be a filtered ring whose graded ring gr(S) is a Noethe-
rian commutative algebra over Q. Let M be a gr(S)-ideal that is finitely generated as an
S-module. Then {

√
M,
√
M} ⊂

√
M .

In our context, Gabber’s theorem applies to the case where S = C∞(N)[p1, . . . , pn],
the ring of polynomials in local fiber variables of T ∗N , filtered by degree. Then, gr(S) is
the ring of homogeneous polynomials, graded by degree, which admits a Poisson structure
like (12.7). The gr(S)-ideal M is the characteristic sheaf MN , which by (7.14) is defined
by homogeneous polynomials if the original exterior differential system is involutive. By
Hilbert’s Nullstellensatz, the radical ideal

√
M defines the generic component ΞoN . Thus,

the conclusion {
√
M,
√
M} ⊂

√
M invokes Corollary 12.9 to say that the eikonal system

E (ΞoN ) is involutive.
From the general discussion of eikonal systems surrounding Theorem 12.1, the inter-

pretation of these theorems is apparent, in the form of Corollary 13.3.

13.3. Corollary. Suppose that N is an ordinary integral manifold of an involutive
exterior differential system I with character ` and Cartan integer s`. Then N admits a
local—possibly complex—coordinate system (x1, . . . xn) such that dx1, . . . ,dx` ∈ ΞN .

In [Smi14], the linear span of the characteristic variety, 〈ΞN 〉 is studied in comparison
to the Cauchy retraction space g⊥N = ι∗(g), where g⊥ is the maximum Frobenius system
within I, as in Section 5(b).

Suppose that the affine fiber dimension of 〈ΞN 〉 is L and that the affine fiber dimension
of g⊥N is ν. These spaces are nested, so ` ≤ L ≤ ν ≤ n.

13.4. Corollary. Suppose that N is an ordinary integral manifold of an involutive
exterior differential system I with character ` and Cartan integer s`. Then N admits
a local—possibly complex—coordinate system (x1, . . . , xn) such that dx1, . . . ,dx` ∈ ΞN ,
such that dx`+1, . . . ,dxL ∈ 〈ΞN 〉, and such that dxL+1, . . . ,dxν ∈ g⊥N .

Corollary 13.4 is a simple result, but its proof relies on building a coframe of N in
which the nilpotent parts of the commuting symbol maps Bλi are identified clearly; that
is, it depends in an essential way on Theorems 13.1 and 5.4. The key point is that it
reinforces the following remark.

13.5. Remark (General dogma of the characteristic variety). An exterior differential sys-
tem (M, I) is a geometric object over M , meaning that its key properties are coordinate-
invariant. On each Kähler-regular component M (1), knowing this geometry is equiv-
alent to knowing the characteristic scheme and rank-1 variety over M (1), which are
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prolongation-invariant. Moreover, the geometry of an EDS imposes a geometry on its
solutions, ι : N →M , and this imposition is also dictated by the characteristic scheme
and rank-1 variety. Therefore, exterior differential systems can be classified up to coordi-
nate equivalence as “parametrized families of manifolds N with associated characteristic
geometry.”

Remark 13.5 is not a theorem; it is an attitude.
To make this remark robust for a general exterior differential system, the scheme

separating Varn(I) into its components M (1)—each component smooth with its own
fixed Cartan characters over some subvariety of M—would have to be studied, and very
little progress has been made at that level of abstraction. Nonetheless, whenever some
property of PDEs is encountered, Remark 13.5 urges us to ask “is this property really
invariant, or an artifact of my coordinates?” which is best answered by asking “can this
property be reinterpreted using the characteristic scheme?” Sections 14 and 15 discuss
progress of this type.

14. Yang’s hyperbolicity criterion. One of the great frustrations of the Cartan–
Kähler theorem is that it relies on the Cauchy–Kowalevski theorem, so it applies only
in the analytic category. One can see its dramatic failure in the smooth category in
[Lew57]. However, this frustration has been escaped in some special cases by exploiting
the structure27 of Ξ. For example
(i) ODE systems. Suppose that (M, I) is involutive over C∞ and that Ξ = ∅. Then

` = 0, so the tableau A is the trivial (irrelevant) subspace of W ⊗V ∗. The prolonged
system I(1) on M (1) is Frobenius, and M (1) is merely a copy of M whose fiber is
the unique element of an integrable distribution. That integrable distribution is the
Cauchy retraction space g of I as in Section 5(b), so it must have been that I = g⊥.
The flow-box theorem foliates M by solutions in the smooth category. (Actually, in
the Lipschitz category, by standard ODE theory!) If N is a leaf of this foliation, then
removing Cauchy retractions on the original exterior differential system (M, I) yields
the exterior differential system (N, 0).

(ii) Empty systems. Suppose that (M, I) is involutive over C∞ and that Ξ = V ∗ with
(s1, s2, . . . , sn) = (r, r, . . . , r). Then, the tableau A is the total space W ⊗V ∗. There-
fore, M (1) is an open domain in Grn(TM), so I = 0, and there is no condition what-
soever28 on integral manifolds ι : N →M ; however, the prolongation ι(1) : N →M (1)

would have to satisfy the contact ideal, forcing some regularity on N . We studied
this EDS in Section 2.
A less trivial special case is presented in [Yan87], which is the subject of this section.29

27If we take the broadest possible interpretation of Remark 13.5 to heart, then any possible
escape from analyticity ought to arise from the structure of Ξ. However, the reader is cautioned
again that a dogma is not a theorem.

28The most extreme and amusing exploitations of the flexibility of Grn(TM) come from the
homotopy principle [Gro86, EM02].

29As it happens, the attempt to understand [Yan87] in the context of [BCG+90, Chapter VIII]
was the inspiration for computing the details shown in [Smi15] and the entire approach of these
notes.
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A tableau A ⊂ W ⊗ V ∗ is called determined if s1 = s2 = . . . = sn−1 = r and sn = 0.
That is, s = (n− 1)r, so t = r, and H1(A) ∼= W . Cartan’s test shows that a determined
tableau is always involutive, so we may assume that A is written in endovolutive form as
in Theorem 5.4. The only nontrivial symbol endomorphisms in (1.20) are Bλλ = Ir×r and
Bλn for λ = 1, . . . , n− 1, like this:

(14.1) (Bλi ) =


Ir 0 0 . . . 0 B1

n

Ir 0 . . . 0 B2
n

. . .
...

...
Ir 0 Bn−2

n

Ir Bn−1
n

 .
The quadratic involutivity condition is trivial, which is why Cartan’s test passes auto-
matically.

14.2. Lemma. Suppose A is determined and written in endovolutive bases. Identify
H1(A) with W , and use our endovolutive basis of W for both. Then for any ϕ ∈ V ∗,
the symbol map σϕ : w 7→ σ(w ⊗ ϕ) from Section 6(b) is

(14.3) σϕ =
(
ϕλ Bλn−ϕnI

)
.

Then

(14.4) kerσϕ = ker
(
ϕλ Bλn−ϕnI

)
,

and the characteristic ideal M is generated by

(14.5) detσϕ = det
(
ϕλ Bλn−ϕnI

)
.

In particular, ξ ∈ Ξ if and only if ξn is an eigenvalue of ξλ Bλn.

Proof. The first two equations are immediate from our block form. From Part III, we
know that w⊗ ξ ∈ A if and only if B(ξ)(v)w = ξ(v)w for all v. Therefore, we compute in
our endovolutive basis

ξ(v)w = B(ξ)(v)w = ξλv
i Bλi (w)

= (ξλvλ)w + ξλv
n Bλn w = (ξ(v)− ξnvn)w + ξλv

n Bλn w.
(14.6)

That is, ξnw = ξλ Bλn w.

14.7. Corollary. Consider a determined tableau as in Lemma 14.2. Fix an integral
element e. Suppose that e′ is a real hyperplane in e such that (e′)⊥ ⊗ C = ϕ ∈ V ∗ and
ϕ 6∈ Ξ. Then σϕ : W → H1(A) is an isomorphism.

Proof. By Lemma 14.2, we have kerσϕ 6= 0 if and only if ϕ ∈ Ξ.

14.8. Definition. Suppose e′ is a real hyperplane in e corresponding to the real covector
ϕ = (e′)⊥ ∈ Pe∗. The real hyperplane is called space-like if the following conditions hold.

(i) ϕ⊗ C 6∈ Ξe.
(ii) For any η ∈ Pe∗, there is a real basis of W in which (σϕ)−1(ση) : W → W is real

and diagonal.
(iii) The above choice of basis is a smooth function of [η] ∈ e∗/ϕ = (e′)∗.
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A determined tableau A ⊂ W ⊗ V ∗ is called determined hyperbolic if V admits a (real)
space-like hyperplane.

Here is a simple example using our notation from Lemma 14.2. Fix n = 3. To meet
the first condition, suppose that ϕ = 1u1 + 0u2 + 0u3 is not in Ξ. Then σϕ = B1

3, and
0 is not an eigenvalue of σϕ, which of course implies that σϕ = B1

3 is invertible. Say η =
0u1 + 1u2 + τu3, so that ση = B2

3−τIr. The second condition is that (B1
3)−1(B2

3−τIr) is
diagonalizable using some change-of-basis gτ . The third condition is that gτ is continuous
in the projective variable τ . Suppose moreover that we take our basis such that the basis-
change at τ = 0 is g0 = I. Then we have the condition that (B1

3)−1 B2
3 is a diagonal

matrix, D. This puts restrictions on the possible forms of these matrices. For example,
ker B2

3 = kerD and im B2
3 ⊂ im B1

3.

14.9. Definition. A tableau A ⊂ W ⊗ V ∗ is called hyperbolic if V admits a flag given
by a basis (u1, . . . , un) of V ∗ such that each of the sequential initial value problems from〈
ui, . . . , un

〉⊥ to
〈
ui+1, . . . , un

〉⊥ has a hyperbolic determined tableau.

14.10. Theorem (Yang). Theorem 5.3 applies in the smooth category, if A is hyperbolic.

The proof proceeds by replacing the Cauchy–Kowalevski initial-value problem with
the Cauchy initial-value problem for determined first-order quasilinear hyperbolic PDEs.
See [Yan87] and Appendix A of [Kam89] for more details.

Clearly the definition of hyperbolic depends on the geometry of Ξ and the symbol
maps Bλi ; however, to the author’s knowledge no one has succeeded in writing down the
explicit criteria on Bλi or C or Ξ for general hyperbolicity. Hence, Yang’s condition is
not yet available to computer algebra systems. If that can be accomplished, it means we
can identify a subvariety of the moduli of involutive tableaux—as in Section 5(a)—that
admit solutions in the smooth category.

One well-understood special case is when ` = 1, so Ξe contains s1 real points (with
multiplicity). If the number of distinct points is sufficiently large (greater than n), then
this is the situation for hyperbolic systems of conservation laws, as in [Tsa91]. The eikonal
system is rigid, so each solution is foliated by s1 characteristic hypersurfaces. Multiplicity
corresponds to nilpotent pieces of the generalized eigenspaces of the symbol endomor-
phisms B1

i . See again Section 8.

15. Open problems and future directions. Our perspective here has been simple-
minded—focusing on matrices and their computable properties—to gain intuition of Ξ
and E (Ξ) as rapidly as possible. The articles [Smi15] and [Smi14] are founded on this
perspective, but reveal additional detail in the structures discussed here. For more mod-
ern and sophisticated treatment, please see [Mal03], [KL07], and [CGG09]. Additionally,
Chapters V–VIII of [BCG+90] contain significantly more results than we have summa-
rized here.

To conclude, here are some interesting questions which—to the author’s present
knowledge—are open subjects that represent the major theoretical gaps in the subject of
exterior differential systems. They are worth serious consideration as research projects,
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and offer great opportunities for collaboration between analysts, differential geometers,
algebraic geometers, and scientific programmers.

(i) Variety of involutive tableaux. For given r, n, and Cartan characters (s1, . . . , s`),
what is the variety of involutive tableaux (with fixed coefficients)? Can we compute
its dimension or degree or Hilbert polynomial? Section 5(a) demonstrates a first
step toward understanding the variety of involutive tableaux, as Theorem 5.4 gives
the ideal in certain bases. However, to answer the question completely, one would
need to examine how the coefficients in (5.6) vary under arbitrary changes of basis
in V ∗ and W .

(ii) Special hyperbolic integrability criteria. Solution techniques (such as Lax pairs, in-
verse scattering, hydrodynamic reduction, and Bäcklund transformations) play a
key rôle in the analysis of wave-like PDEs, especially those coming from physics and
geometry. Given that these techniques are coordinate-invariant, Remark 13.5 sug-
gests that they should all be expressible as algebraic conditions on M . Expressing
those conditions in an abstract way over Ξ and M (1) would allow more systematic
geometric approach to many of the ad hoc methods in the analysis of PDEs.30

(iii) Elliptic systems. Consider the classical results regarding elliptic regularity of quasi-
linear elliptic operators. This is another form of “special integrability criteria.” How
far can the notion of elliptic regularity be extended to general exterior differential
systems? Certainly the conditions of involutivity, 〈Ξ〉 = V ∗, and ΞR = ∅ are nec-
essary, and one can directly translate the classical theorems to an EDS written
specifically to describe a quasilinear second-order elliptic operator in local coor-
dinates, but what other technical assumptions can be dropped? Some discussion
appears in [BCG+90, Chapter X§3].

(iv) Moduli of involutive tableaux. Refining the first problem in light of the second and
third problems, can we identify invariant sub-varieties of the variety of involutive
tableaux? Dogma 13.5 indicates that we should be able to identify subvarieties,
such as hyperbolic tableaux, elliptic tableaux, systems satisfying special integrabil-
ity conditions, and so on. What does it mean when these sub-varieties intersect?
Lewy showed that there are involutive PDEs with no solution in the smooth cate-
gory [Lew57], which cannot happen in the analytic category. Where do the Lewy
examples fall in this variety? Are there other subvarieties that have not been ob-
served in classical equations? If there is any organizing geometry behind the “nearly
impenetrable jungle” of involutive PDEs, this is where we should look.

(v) Weakness of involutivity of characteristics. Note that Theorem 13.2 does not regard
the involutivity of an exterior differential system in any direct way; the assumption
of involutivity of I enters Theorem 13.2 only because we know that MN is an
ideal of homogeneous polynomials from (7.14). Thus, we expect that the condition
“ΞN is the characteristic scheme of an exterior differential system I, and E (ΞN )

30Indeed, the central theme of the conference for which these notes were prepared was to ex-
press Ferapontov’s notion of hydrodynamic integrability in terms of algebro-geometric structures
in the Lagrangian Grassmannian. The notion of hydrodynamic integrability is tied completely
to the secant variety of C .
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is involutive” is much weaker than “ΞN is the characteristic scheme of an exterior
differential system I, and I is involutive.” The gap between these two statements is
extremely important to explore, as it goes to the heart of the question about how
involutivity leads to solutions of the initial-value problem for a system of PDEs.
To put this a different way, can we construct an embedded variety ΞN ⊂ PT ∗N
that is involutive, but for which there is no involutive exterior differential system
for which Ξ is the characteristic variety?

(vi) Global integrability of the characteristic variety. If A is involutive, then the sys-
tem E (ΞoN ) is involutive on an ordinary integral manifold, N . However, it is not
clear whether Ξo is involutive as a bundle over M (1) itself in any reasonable way
that considers all N simultaneously. That is, consider the EDS on M (1) generated
by I(1) + 〈ξ〉 for some section ξ of Ξo ⊂ V ∗ ⊂ PTM (1) ⊗ C. Under what circum-
stances is this involutive? Can Gabber’s theorem 13.2 be adopted to this case? This
has theoretical implications for special integrability conditions (above), because it
would allow one to count special solutions among all solutions from M (1) directly.
Additionally, given its algebraic nature, can Gabber’s theorem provide solutions
for certain types of PDEs with low regularity, bypassing the Lewy examples with
various additional conditions?

(vii) Prolongation theorems. Does prolongation always uncover solutions of an exterior
differential system, if we remove the regularity assumptions on M (1) and consider
the many components of the scheme Varn(Varn(· · · (I) · · · ))? As experts are well
aware, this is has been the key open question in the subject for most of a century.
(See [BCG+90, Chapter VI].) In the context of this monograph, the question is
related to whether the block form of involutive tableau (1.20) and the involutivity
conditions of Theorem 5.4 can be extended from M (1) to non-smooth points in
Varn(I)? Because of the interaction of Guillemin normal form and involutivity
with Spencer cohomology as in Section 9, such an extension of the endovolutive
block form could be helpful in an effort to construct (or prove the non-existence
of) counterexamples.

(viii) Representation theory of Lie pseudogroups. Lie pseudogroups are subgroups of
the diffeomorphism pseudogroup whose trajectories are the solutions of involutive
PDEs. See [Olv09]. Just as Jordan form (in the guise of the Levi decomposition)
is the key first step toward understanding the representation of Lie groups, it is
reasonable to expect that the endovolutive block-form (1.20) and Theorem 5.4 can
serve as the foundation of a representation theory of Lie pseudogroups. Any results
regarding the “moduli of involutive tableaux” can be applied to Lie pseudogroups
with those tableaux. Indeed, the first application of Theorem 13.1 was the classifi-
cation of the primitive Lie pseudogroups [GQS66].
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