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1. Introduction. Fix a positive integer M . For any q ∈ (1,M + 1] and
x ∈ Iq,M := [0,M/(q − 1)] there exists a sequence (xi) = x1x2 . . . with each
xi in {0, 1, . . . ,M} such that

(1.1) x =

∞∑
i=1

xi
qi

=: πq((xi)).

The sequence (xi) is called a q-expansion of x. If no confusion arises the
alphabet is always assumed to be {0, 1, . . . ,M}.

Non-integer base expansions have received a lot of attention since the
pioneering papers of Rényi [35] and Parry [34]. It is well known that for
any q ∈ (1,M + 1) Lebesgue almost every x ∈ Iq,M has a continuum of q-
expansions [36, 12]. Moreover, for any k ∈ N∪{ℵ0} there exist q ∈ (1,M+1]
and x ∈ Iq,M such that x has precisely k different q-expansions (see e.g.
[20, 38]). For more information on non-integer base expansions we refer the
reader to the survey paper [23] and the references therein.

In this paper we focus on unique q-expansions. For q ∈ (1,M + 1] let

Uq := {x ∈ Iq,M : x has a unique q-expansion},

and let Uq = π−1q (Uq) be the set of the corresponding q-expansions. These
sets have been the object of study in many articles and have a very rich
topological structure (see for example [26, 16]). Komornik et al. [24] studied
the Hausdorff dimension of Uq, and showed that the dimension function
D : q 7→ dimH Uq has a devil’s staircase behavior (see also [3]). Moreover,
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they showed that the entropy function

H : (1,M + 1]→ [0, log(M + 1)], q 7→ htop(Uq),

is a devil’s staircase (see Lemma 2.4 below). Recently, Alcaraz Barrera et
al. [1] investigated the dynamical properties of Uq, and determined the max-
imal intervals on which the entropy function H is constant.

Let B be the bifurcation set of the function H defined by

B = {q ∈ (1,M + 1] : H(p) 6= H(q) for any p 6= q}.

Then B is the set of bases where the entropy function H is not locally
constant. Alcaraz Barrera et al. [1] gave a characterization of B and showed
that B has full Hausdorff dimension. In particular, we have

(1.2) B = (qKL,M + 1] \
⋃

[pL, pR],

where qKL is the Komornik–Loreti constant [25] and the union on the right
hand side is countable and pairwise disjoint (see Section 2 below for more
explanation).

From [16] we know that the univoque set Uq has a fractal structure
and might have isolated points. Our first result states that for q ∈ B the
univoque set Uq is dimensionally homogeneous, i.e., the local Hausdorff di-
mension of Uq equals the full dimension of Uq.

Theorem 1. Let q ∈ (qKL,M + 1] \
⋃

(pL, pR]. Then for any open set
V ⊆ R with Uq ∩ V 6= ∅ we have

dimH(Uq ∩ V ) = dimH Uq.

Remark 1.1. (1) By (1.2), B ⊂ (qKL,M + 1] \
⋃

(pL, pR]. So Theo-
rem 1 implies that the univoque set Uq is dimensionally homogeneous for
any q ∈ B.

(2) In Theorem 3.6 we give a complete characterization of the set

{q ∈ (1,M + 1] : Uq is dimensionally homogeneous}.

It turns out that its Lebesgue measure is positive and strictly smaller thanM .

Throughout the paper we use A to denote the topological closure of a set
A ⊂ R. Our second result gives a close relationship between the bifurcation
set B and the univoque sets Uq.

Theorem 2. For any q ∈ B we have

lim
δ→0

dimH(B ∩ (q − δ, q + δ)) = dimH Uq.

Remark 1.2. (1) Since by (1.2) and (2.5) the difference between B and
B is countable, Theorem 2 also holds if we replace B by B.
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(2) Note that dimH Uq > 0 for any q > qKL (see Lemma 2.4 below). As
a consequence of Theorem 2,

q ∈ B \ {qKL} ⇐⇒ lim
δ→0

dimH(B ∩ (q − δ, q + δ)) = dimH Uq > 0.

Recently, Allaart et al. [2, Corollary 3] gave another characterization of B:

q ∈ B \ {qKL} ⇐⇒ lim
δ→0

dimH(U ∩ (q − δ, q + δ)) = dimH Uq > 0,

where U := {q ∈ (1,M + 1] : 1 ∈ Uq}.

It is well-known that Uq has a close connection with the set U = U (M)
of univoque bases q ∈ (1,M + 1] for which 1 has a unique q-expansion with
alphabet {0, 1, . . . ,M}. For example, de Vries and Komornik [16] showed
that Uq is closed if and only if q /∈ U . The set U has many interesting
properties itself. Erdős et al. [19] showed that U is an uncountable set of
zero Lebesgue measure. Daróczy and Kátai [15] proved that the Hausdorff
dimension of U is 1 (see also [24]). Komornik and Loreti [25] showed that
the smallest element of U is qKL. In [26] the same authors studied the
topological properties of U , and showed that U is a Cantor set. Recently,
Kong et al. [29] proved that for any q ∈ U we have

(1.3) dimH(U ∩ (q − δ, q + δ)) > 0 for any δ > 0.

On a different note, Bonanno et al. [10] introduced a set

(1.4) Λ = {x ∈ [0, 1] : Skx ≤ x for all k ≥ 0},

where S is the tent map defined by S : x 7→ min{2x, 2 − 2x}, and showed
that there is a one-to-one correspondence between U (1) and Λ \Q1, where
Q1 is the set of all rationals with odd denominator. This link is based on
work of Allouche and Cosnard [5, 7, 8], who related the set U (1) to kneading
sequences of unimodal maps. Bonanno et al. [10] also explored a relationship
between these sets and the real slice of the boundary of the Mandelbrot set.
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Fig. 1. The asymptotic graph of the function φ(t) = dimH(U ∩ (1, t]) for t ∈ [4, 11.5] with
M = 9 and qKL = qKL(9) ≈ 5.97592.



370 C. Kalle et al.

By using Theorem 2 we investigate the dimensional spectrum of U . Our
next result strengthens the relationship between Uq and U .

Theorem 3. For any t > 1 we have

dimH(U ∩ (1, t]) = max
q≤t

dimH Uq.

Moreover, the function φ(t) := dimH(U ∩ (1, t]) is a devil’s staircase on
(1,∞).

Remark 1.3. (1) In [26] it was shown that U \ U is a countable set.
Hence, Theorem 3 still holds if we replace U by U .

(2) Results from [24] (see Lemma 2.4 below) imply that dimH Uq = 1 if
and only if q = M + 1. In view of Theorem 3, dimH(U ∩ (1, t]) < 1 for any
t < M + 1. This implies that the Hausdorff dimension of U is concentrated
in the neighborhood of M + 1.

As an application of Theorem 3 we investigate the variations of U =U (M)
when M changes. For K ∈ {1, . . . ,M}, let U (K) be the set of bases q ∈
(1,K+1] such that 1 has a unique q-expansion with respect to the alphabet
{0, 1, . . . ,K}. Theorem 4 characterizes the Hausdorff dimensions of U (M)∩
U (K) and U (M) \U (K). Indeed, we prove the following stronger result.

Theorem 4.

(i) Let K ∈ {1, . . . ,M}. Then

dimH

( M⋂
J=K

U (J)
)

= max
q≤K+1

dimH Uq.

(ii) For any positive integer L we have

dimH

(
U (L) \

⋃
J 6=L

U (J)
)

= 1.

Remark 1.4. By the proof of Theorem 4 for K < M , the intersection

M⋂
J=K

U (J) = U (M) ∩ (1,K + 1]

is a proper subset of U (K). This, together with (1.3), implies that for

K < M neither
⋂M
J=K U (J) nor U (M) \

⋂M
J=K U (J) contains isolated

points.

We emphasize that for each q ∈ (1,M + 1] the univoque set Uq is related
to the dynamical system

Tq,j :

[
0,

M

q − 1

]
→
[
0,

M

q − 1

]
, x 7→ qx− j,
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for j ∈ {0, 1, . . . ,M}. On the other hand, the set U contains all parameters
q ∈ (1,M+1] such that 1 has a unique q-expansion, and thus U is related to
infinitely many dynamical systems. A similar set up involving a bifurcation
set for infinitely many dynamical systems is considered by Bonanno et al. [10]
(see also [11]). They consider the bifurcation set of an entropy map for a
family {Tα : [α − 1, α] → [α − 1, α]}α∈[0,1] of maps, called the α-continued
fraction transformations [33], where for each α ∈ [0, 1] the map Tα is defined
by

(1.5) Tα(x) =

{
1/|x| − b1/|x|+ 1− αc if x 6= 0,

0 if x = 0.

Each map Tα has a unique invariant measure µα that is absolutely continu-
ous with respect to the Lebesgue measure. Bonanno et al. showed that the
map

ψ : α 7→ hµα(Tα),

assigning to each α the measure-theoretic entropy hµα(Tα), has countably
many intervals on which it is monotonic. The complement of the union of
these intervals in [0, 1], i.e., the bifurcation set of ψ, denoted by F , has
Lebesgue measure 0 (see [30] and [11]) and Hausdorff dimension 1 (see [10]).
Moreover, in [10] a homeomorphism is found between F and Λ \ {0} from
(1.4), giving also a relation to U (1). In [10], however, no information is
given on the local structure of F . Recently, Dajani and the first author [13]
identified another set E linked to U (1), Λ and F . They investigated the
family of symmetric doubling maps Sγ : [−1, 1]→ [−1, 1] given by

Sγ(x) = 2x− γb2xc,
where bxc denotes the integer part of x, and showed that the set E of
parameters γ ∈ [1, 2] for which Sγ does not have a piecewise smooth invariant
density is homeomorphic to Λ \ {0}. Therefore, the results obtained in this
paper about U (1) can be used to investigate the bifurcation sets E, F and
the set Λ.

The rest of the paper is arranged in the following way. In Section 2 we fix
the notation and recall some properties of unique q-expansions. Moreover,
we recall from [1] some important properties of the bifurcation set B. In
Section 3 we give the proof of Theorem 1 on the dimensional homogeneity
of Uq. In Section 4 we prove an auxiliary proposition that will be used to
prove Theorem 2 in Section 5. The proof of Theorems 3 and 4 will be given
in Sections 6 and 7, respectively. We end the paper with some remarks.

2. Unique expansions and bifurcation set. In this section we recall
some properties of unique q-expansions and of the bifurcation set B as well.
First we need some terminology from symbolic dynamics [31].
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2.1. Symbolic dynamics. Given a positive integerM , let {0, 1, . . . ,M}∗
denote the set of all finite strings of symbols from {0, 1, . . . ,M}, called
words, together with the empty word denoted by ε. Let {0, 1, . . . ,M}N
be the set of sequences (di) = d1d2 . . . with each di in {0, 1, . . . ,M}. Let
σ be the left shift on {0, 1, . . . ,M}N defined by σ((di)) = (di+1). Then
({0, 1, . . . ,M}N, σ) is the full shift. For a word c = c1 . . . cn ∈ {0, 1, . . . ,M}∗
we denote by ck = (c1 . . . cn)k the k-fold concatenation of c with itself and
by c∞ = (c1 . . . cn)∞ the periodic sequence with period block c. Moreover,
for a word c = c1 . . . cn with cn < M we denote by c+ the word

c+ = c1 . . . cn−1(cn + 1).

Similarly, for a word c = c1 . . . cn with cn > 0 we set c− = c1 . . . cn−1(cn−1).
For a sequence (di) ∈ {0, 1, . . . ,M}N we denote its reflection by

(di) = (M − d1)(M − d2) · · · .
Accordingly, the reflection of a word c = c1 . . . cn is c = (M−c1) · · · (M−cn).

On words and sequences we consider the lexicographical ordering ≺,
defined as follows. For two sequences (ci), (di) ∈ {0, 1, . . . ,M}N we write
(ci) ≺ (di) if there exists n ∈ N such that c1 . . . cn−1 = d1 . . . dn−1 and
cn < dn. Moreover, (ci) 4 (di) if (ci) ≺ (di) or (ci) = (di). Similarly,
(ci) � (di) if (di) ≺ (ci), and (ci) < (di) if (di) 4 (ci). We extend this defini-
tion to words in the following way. For two words ω, ν ∈ {0, 1, . . . ,M}∗ we
write ω ≺ ν if ω0∞ ≺ ν0∞. Accordingly, for a sequence (di) ∈ {0, 1, . . . ,M}N
and a word c = c1 . . . cm we write (di) ≺ c if (di) ≺ c0∞.

Let F ⊆ {0, 1, . . . ,M}∗ and let X = XF ⊆ {0, 1, . . . ,M}N be the set
of those sequences that do not contain any word from F . We call the pair
(X,σ) a subshift. If F is finite, then (X,σ) is called a subshift of finite type.
For n ∈ N∪{0} we denote by Ln(X) the set of words of length n occurring in
sequences of X. In particular, for n = 0 we set L0(X) = {ε}. The language
of (X,σ) is then defined by

L(X) =
∞⋃
n=0

Ln(X).

So, L(X) is the set of all finite words occurring in sequences from X.
For a subshift (X,σ) and a word ω ∈ L(X) let FX(ω) be the follower

set of ω in X defined by

(2.1) FX(ω) := {(di) ∈ X : d1 . . . d|ω| = ω},
where |c| denotes the length of a word c ∈ {0, 1, . . . ,M}∗.

A subshift (X,σ) is called topologically transitive (or simply transitive) if
for any two words ω, ν ∈ L(X) there exists a word γ such that ωγν ∈ L(X).
In other words, in a transitive subshift (X,σ) any two words can be “con-
nected” in L(X).
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The topological entropy htop(X) of a subshift (X,σ) is a quantity that
indicates its complexity. It is defined by

(2.2) htop(X) = lim
n→∞

log #Ln(X)

n
= inf

n≥1

log #Ln(X)

n
,

where #A denotes the cardinality of a set A. Accordingly, we define the
topological entropy of a follower set FX(ω) by changing X to FX(ω) in (2.2)
if the corresponding limit exists. Clearly, if X is a transitive subshift, then
htop(FX(ω)) = htop(X) for any ω ∈ L(X).

2.2. Unique expansions. In this subsection we recall some results
about unique expansions. For more information on this topic we refer the
reader to the survey papers [37, 23] or the book chapter [17]. For q ∈
(1,M + 1], let

α(q) = α1(q)α2(q) . . .

be the quasi-greedy q-expansion of 1 (see [14]), i.e., the lexicographically
largest q-expansion of 1 not ending with a string of zeros. The following
characterization of quasi-greedy expansions was given in [9, Theorem 2.2].

Lemma 2.1. The map q 7→ α(q) is a strictly increasing bijection from
(1,M+1] onto the set of all sequences (ai) ∈ {0, 1, . . . ,M}N not ending with
0∞ and satisfying

an+1an+2 . . . � a1a2 . . . whenever an < M.

Recall from (1.1) the definition of the projection map πq for q ∈ (1,M+1]
mapping {0, 1, . . . ,M}N onto the interval Iq,M = [0,M/(q − 1)]. In general,
πq is not bijective. However, πq is a bijection between Uq = π−1q (Uq) and Uq.
The following lexicographical characterization of Uq, or equivalently Uq, is
essentially due to Parry [34] (see also [9]).

Lemma 2.2. Let q ∈ (1,M + 1]. Then (xi) ∈ Uq if and only if

xn+1xn+2 . . . ≺ α(q) whenever xn < M,

xn+1xn+2 . . . ≺ α(q) whenever xn > 0.

Observe that U = {q ∈ (1,M + 1] : α(q) ∈ Uq}. As a corollary of
Lemma 2.2 we have the following characterizations of U and U .

Lemma 2.3.

(i) q ∈ U \ {M + 1} if and only if the quasi-greedy expansion α(q) satisfies

α(q) ≺ σn(α(q)) ≺ α(q) for any n ≥ 1.

(ii) q ∈ U if and only if the quasi-greedy expansion α(q) satisfies

α(q) ≺ σn(α(q)) 4 α(q) for any n ≥ 1.
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Proof. Part (i) was shown in [18, Theorem 2.5], and (ii) in [18, Theo-
rem 3.9].

In [16] it was shown that (Uq, σ) is not necessarily a subshift. Inspired by
[24] we consider the set Vq of all sequences (xi) ∈ {0, 1, . . . ,M}N satisfying

α(q) 4 σn((xi)) 4 α(q) for all n ≥ 0.

Then (Vq, σ) is a subshift [24, Lemma 2.6]. Furthermore, Lemma 2.1 implies
that the set-valued map q 7→ Vq is increasing, i.e., Vp ⊆ Vq whenever p < q.

Recall that the Komornik–Loreti constant qKL is the smallest element
of U , which is defined in terms of the classical Thue–Morse sequence (τi)

∞
i=0

= 01101001 . . . The latter is defined as follows [6]: τ0 = 0, and if τ0 . . . τ2n−1
has already been defined for some n ≥ 0, then τ2n . . . τ2n+1−1 = τ0 . . . τ2n−1.
Then the Komornik–Loreti constant qKL = qKL(M) ∈ (1,M + 1] is the
unique base satisfying

(2.3) α(qKL) = λ1λ2 . . . ,

where

λi =

{
k + τi − τi−1 if M = 2k,

k + τi if M = 2k + 1,

for each i ≥ 1. We emphasize that the sequence (λi) depends on M . By the
definition of the Thue–Morse sequence (τi)

∞
i=0 it follows that [1]

(2.4) λ2n+1 . . . λ2n+1 = λ1 . . . λ2n
+ for any n ≥ 0.

Recall that a function f : [a, b] → R is called a devil’s staircase (or
a Cantor function) if f is a continuous and non-decreasing function with
f(a) < f(b), and f is locally constant almost everywhere. The next lemma
summarizes some results from [24] on the Hausdorff dimension of Uq.

Lemma 2.4.

(i) For any q ∈ (1,M + 1] we have

dimH Uq =
htop(Vq)

log q
.

(ii) The entropy functionH : q 7→ htop(Vq) is a devil’s staircase in (1,M+1]:

• H is increasing and continuous in (1,M + 1];
• H is locally constant almost everywhere in (1,M + 1];
• H(q) = 0 if and only if 1 < q ≤ qKL. Moreover, H(q) = log(M + 1)

if and only if q = M + 1.

Remark 2.5. (1) Lemma 2.4 implies that the dimensional function
D : q 7→ dimH Uq has a devil’s staircase behavior: (i) D is continuous in
(1,M + 1]; (ii) D′ < 0 almost everywhere in (1,M + 1]; (iii) D(q) = 0 for
any q ∈ (1, qKL] and D(q) = 1 for q = M + 1.
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(2) In [24, Lemma 2.11] it is shown that H is locally constant on the
complement of U , i.e., H ′(q) = 0 for any q ∈ (1,M + 1] \U .

2.3. Bifurcation set. In this subsection we recall some recent results
of [1] on the maximal intervals on which H is locally constant, called entropy
plateaus (or simply plateaus). For the convenience of the reader we adopt
much of the notation from [1]. Let B be the complement of these plateaus.
From Lemma 2.4(ii) we have

B = {q ∈ (1,M + 1] : H(p) 6= H(q) for any p 6= q}.
Note by (1.2) that B is not closed. We have

B = {q ∈ (1,M + 1] : ∀δ > 0,∃p ∈ (q − δ, q + δ) such that H(p) 6= H(q)}.
In [1], B was denoted by E . The following lemma, the first part of which
follows from Remark 2.5(2), was established in [1, Theorem 3].

Lemma 2.6. B ⊂ U , and B is a Cantor set of full Hausdorff dimension.

By Lemma 2.4 it follows that min B = qKL and max B = M + 1. Since
B is a Cantor set, we can write

(2.5) (qKL,M + 1] \B =
⋃

(pL, pR),

where the union is pairwise disjoint and countable. By the definition of
B the intervals [pL, pR] are the plateaus of H. In particular, since H is
increasing, these intervals have the property that H(q) = H(pL) if and only
if q ∈ [pL, pR]. This implies that the bifurcation set B can be rewritten as
in (1.2), i.e.,

B = (qKL,M + 1] \
⋃

[pL, pR].

By (2.5) and (1.2), B \ B is countable. The fact that B does not have
isolated points gives the following lemma (see also [1]).

Lemma 2.7.

(i) For any q∈(qKL,M + 1]\
⋃

(pL, pR] there is a sequence {[pL(n), pR(n)]}
of plateaus such that pL(n)↗ q as n→∞.

(ii) For any q∈ [qKL,M + 1) \
⋃

[pL, pR) there is a sequence {[qL(n), qR(n)]}
of plateaus such that qL(n)↘ q as n→∞.

So, by (2.5), (1.2) and Lemma 2.7, B\B is a countable and dense subset
of B. In particular, the set of left endpoints of all plateaus of H is dense
in B.

In [1] more detailed information on the structure of the plateaus of H is
given. Before stating the necessary details, we have to recall some notation
from [1]. Let V be the set of sequences (ai) ∈ {0, 1, . . . ,M}N satisfying

(ai) 4 σn((ai)) 4 (ai) for all n ≥ 0.
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In [1, Lemma 3.3] it is proved that the subshift (Vq, σ) is not transitive for
any q ∈ (qKL, qT ), where qT ∈ (1,M + 1) ∩B is the unique base such that

(2.6) α(qT ) =

{
(k + 1)k∞ if M = 2k,

(k + 1)((k + 1)k)∞ if M = 2k + 1.

The plateaus of H are characterized separately for the cases

(A) q ∈ [qT ,M + 1] and (B) q ∈ (qKL, qT ).

(A) First we recall from [1] the following definition.

Definition 2.8. A sequence (ai) ∈ V is called irreducible if

a1 . . . aj(a1 . . . aj
+)∞ ≺ (ai) whenever (a1 . . . a

−
j )∞ ∈ V.

Lemma 2.9. Let [pL, pR] ⊂ [qT ,M + 1] be a plateau of H.

(i) There exists a word a1 . . . am ∈ L(VpL) such that

α(pL) = (a1 . . . am)∞ is irreducible, α(pR) = a1 . . . a
+
m(a1 . . . am)∞.

(ii) (VpL , σ) is a transitive subshift of finite type.
(iii) There exists a periodic sequence ν∞ ∈ VpL such that for any word

η ∈ L(VpL) we can find a large integer N and a word ω satisfying

α1(pL) . . . αN (pL) ≺ σj(ηων∞) ≺ α1(pL) . . . αN (pL) for any j ≥ 0.

Proof. (i) follows from [1, Proposition 5.2], and (ii) from [1, Lemma
5.1(1)].

For (iii) we take

ν =

{
k if M = 2k,

(k + 1)k if M = 2k + 1.

Since pL ≥ qT , by Lemma 2.1 we have α(pL) < α(qT ). Then (2.6) gives

α1(pL)α2(pL) 4 α1(qT )α2(qT ) ≺ σj(ν∞) ≺ α1(qT )α2(qT )(2.7)

4 α1(pL)α2(pL)

for all j ≥ 0. By (i), α(pL) is irreducible. By [1, proof of Proposition 3.17] for
any η ∈ L(VpL) there exist a large integer N ≥ 2 and a word ω satisfying

α1(pL) . . . αN (pL)≺σj(ηων∞)≺α1(pL) . . . αN (pL) for any 0≤j< |η|+ |ω|.
This together with (2.7) proves (iii).

(B) Now we consider plateaus of H in (qKL, qT ). Let (λi) be the quasi-
greedy qKL-expansion of 1 as given in (2.3). Note that (λi) depends on M .
For n ≥ 1 let

(2.8) ξ(n) =

{
λ1 . . . λ2n−1(λ1 . . . λ2n−1

+)∞ if M = 2k,

λ1 . . . λ2n(λ1 . . . λ2n
+)∞ if M = 2k + 1.



Bifurcation set of unique expansions 377

Then ξ(1) = α(qT ), and ξ(n) is strictly decreasing to (λi) = α(qKL) as
n → ∞. Moreover, [1, Lemma 4.2] implies that ξ(n) ∈ V for all n ≥ 1. We
recall from [1] the following definition.

Definition 2.10. A sequence (ai) ∈ V is said to be ∗-irreducible if there
exists n ∈ N such that ξ(n+ 1) 4 (ai) ≺ ξ(n), and

a1 . . . aj(a1 . . . aj
+)∞ ≺ (ai)

whenever

(a1 . . . a
−
j )∞ ∈ V and j >

{
2n if M = 2k,

2n+1 if M = 2k + 1.

Lemma 2.11. Let [pL, pR] ⊆ (qKL, qT ) be a plateau of H.

(i) There exists a word a1 . . . am ∈ L(VpL) such that

α(pL) = (a1 . . . am)∞ is ∗-irreducible and α(pR) = a1 . . . a
+
m(a1 . . . am)∞.

(ii) (VpL , σ) is a subshift of finite type, and it contains a unique transitive
subshift (XpL , σ) of finite type satisfying htop(XpL) = htop(VpL).

(iii) There exists a periodic sequence ν∞ ∈ XpL such that for any word
η ∈ L(VpL) we can find a large integer N and a word ω satisfying

α1(pL) . . . αN (pL) ≺ σj(ηων∞) ≺ α1(pL) . . . αN (pL) for any j ≥ 0.

Proof. (i) follows from [1, Proposition 5.11], and (ii) from [1, Lemma 5.9].
Thus it remains to prove (iii).

By (i) we know that α(pL) is a ∗-irreducible sequence. Hence there exists
n ∈ N such that ξ(n+ 1) 4 α(pL) ≺ ξ(n). By (i) and (2.8), α(pL) is purely
periodic, while ξ(n+ 1) is eventually periodic. Thus α(pL) � ξ(n+ 1). Let

ν =

{
λ1 . . . λ

−
2n if M = 2k,

λ1 . . . λ
−
2n+1 if M = 2k + 1.

Then by the proof of [1, Lemma 5.9] we have ν∞ ∈ XpL . Observe by (2.4)
and (2.8) that ξ(n+ 1) = ν+(ν)∞ ∈ V. By using α(pL) � ξ(n+ 1) it follows
that there exists a large integer N such that

α1(pL) . . . αN (pL) ≺ σj(ν∞) ≺ α1(pL) . . . αN (pL) for any j ≥ 0.

The remaining part of (iii) follows from [1, proof of Lemma 5.8].

Finally, the following characterization of B was established in [1, Theo-
rem 3].

Lemma 2.12.

B = {q ∈ (qKL,M + 1] : α(q) is irreducible or ∗-irreducible}.
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3. Dimensional homogeneity of Uq. In this section we will prove
Theorem 1. In fact, we prove the following equivalent statement.

Theorem 3.1. Let q ∈ (1, qKL] ∪ ((qKL,M + 1] \
⋃

(pL, pR]). Then for
any x ∈ Uq we have

dimH(Uq ∩ (x− δ, x+ δ)) = dimH Uq for any δ > 0.

We first explain why Theorem 3.1 is equivalent to Theorem 1. Clearly,
Theorem 1 implies Theorem 3.1. Conversely, take q ∈ B. Let V ⊆ R be an
open set with Uq ∩ V 6= ∅. Then there exist x ∈ Uq ∩ V and δ > 0 such that

Uq ∩ V ⊃ Uq ∩ (x− δ, x+ δ).

From Theorem 3.1 it follows that dimH(Uq ∩ V ) ≥ dimH Uq, which gives
Theorem 1.

Note that for q ∈ (1, qKL] the statement of Theorem 3.1 follows immedi-
ately from the fact that dimH Uq = 0. For q ∈ (qKL,M + 1] recall that Vq

is the set of sequences (xi) ∈ {0, 1, . . . ,M}N satisfying

α(q) 4 σn((xi)) 4 α(q) for all n ≥ 0.

Accordingly, let

Vq := {πq((xi)) : (xi) ∈ Vq},

where πq is the projection map defined in (1.1). For A ⊂ R and r ∈ R we
denote rA := {r · a : a ∈ A} and r +A := {r + a : a ∈ A}.

The following relationship between Uq and Vq follows from Lemma 2.2
and the definition of Vq.

Lemma 3.2. Let q ∈ (qKL,M+1]. Then Uq is a countable union of affine
copies of Vq up to a countable set, i.e.,

Uq ∪N =

{
0,

M

q − 1

}
∪
M−1⋃
c1=1

(
c1
q

+
Vq
q

)
∪
∞⋃
m=2

M⋃
cm=1

(
cm
qm

+
Vq
qm

)

∪
∞⋃
m=2

M−1⋃
cm=0

(m−1∑
i=1

M

qi
+
cm
qm

+
Vq
qm

)
,

where the set N is at most countable.

Proof. For q ∈ (qKL,M+1] let Wq be the set of sequences (xi) satisfying

α(q) ≺ σn((xi)) ≺ α(q) for any n ≥ 0,

and let Wq = πq(Wq). Then Vq \Wq is at most countable [16]. From [24,
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Lemma 2.5] it follows that

Uq =

{
0,

M

q − 1

}
∪
M−1⋃
c1=1

(
c1
q

+
Wq

q

)
∪
∞⋃
m=2

M⋃
cm=1

(
cm
qm

+
Wq

qm

)

∪
∞⋃
m=2

M−1⋃
cm=0

(m−1∑
i=1

M

qi
+
cm
qm

+
Wq

qm

)
.

This establishes the lemma since Wq ⊆ Vq and Vq \Wq is at most count-
able.

It immediately follows from Lemma 3.2 that

dimH Uq = dimH Vq for any q ∈ (qKL,M + 1].

Hence, it suffices to prove Theorem 3.1 with Vq in place of Uq. We first prove
it for q being the left endpoint of an entropy plateau.

Lemma 3.3. Let [pL, pR] ⊂ (qKL,M+1) be a plateau of H. Then for any
x ∈ VpL we have

dimH(VpL ∩ (x− δ, x+ δ)) = dimH VpL for any δ > 0.

Proof. Obviously, dimH(VpL ∩ (x− δ, x+ δ)) ≤ dimH VpL . So, it suffices
to the prove the reverse inequality.

Fix δ > 0 and x ∈ VpL . Suppose that (xi) ∈ VpL is a pL-expansion of x.
Then there exists a large integer N such that

(3.1) πpL(FVpL
(x1 . . . xN )) ⊆ VpL ∩ (x− δ, x+ δ),

where the follower set FVpL
(x1 . . . xN ) = {(yi) ∈VpL : y1 . . . yN =x1 . . . xN}

is as defined in (2.1). We split the proof into two cases.

Case I: [pL, pR] ⊂ [qT ,M + 1]. Then by Lemma 2.9(ii), (VpL , σ) is a
transitive subshift of finite type. This implies that

htop(FVpL
(x1 . . . xN )) = htop(VpL).

Then, by (3.1), Lemma 2.4(i) and Lemma 3.2,

dimH(VpL ∩ (x− δ, x+ δ)) ≥ dimH πpL(FVpL
(x1 . . . xN ))

=
htop(FVpL

(x1 . . . xN ))

log pL

=
htop(VpL)

log pL
= dimH UpL = dimH VpL .

Case II: [pL, pR] ⊂ (qKL, qT ). Then by Lemma 2.11(ii), (VpL , σ) is a
subshift of finite type that contains a unique transitive subshift of finite
type XpL such that

(3.2) htop(XpL) = htop(VpL).
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Furthermore, by Lemma 2.11(iii) there exist a sequence ν∞ ∈ XpL and a
word ω such that

(3.3) x1 . . . xNων
∞ ∈ FVpL

(x1 . . . xN ).

From [31, Proposition 2.1.7] there exists m ≥ 0 such that (VpL , σ) is an
m-step subshift of finite type. By (3.3) we have x1 . . . xNων

m ∈ L(VpL).
Then by [31, Theorem 2.1.8] for any sequence (di) ∈ FXpL (νm) ⊆ FVpL

(νm)
we have x1 . . . xNωd1d2 . . . ∈ FVpL

(x1 . . . xN ). In other words,

{x1 . . . xNωd1d2 . . . : (di) ∈ FXpL (νm)} ⊆ FVpL
(x1 . . . xN ).

Therefore, by (3.1),

(3.4) dimH(VpL ∩ (x− δ, x+ δ)) ≥ dimH πpL(FVpL
(x1 . . . xN ))

≥ dimH πpL(FXpL (νm)) = dimH πpL(XpL),

where the last equality holds by the transitivity of (XpL , σ). Observe that
πpL(XpL) is a graph-directed set satisfying the open set condition [32]. Hence

(3.5) dimH πpL(XpL) =
htop(XpL)

log pL
.

By (3.2), (3.4), (3.5) and Lemma 2.4(i) we conclude that

dimH(VpL ∩ (x− δ, x+ δ)) ≥ dimH πpL(XpL)

=
htop(XpL)

log pL
=
htop(VpL)

log pL
= dimH UpL = dimH VpL .

Now we consider q ∈ B. We need the following lemma.

Lemma 3.4. Let q ∈ (qKL,M + 1] and x1 . . . xN ∈ L(Vq). Let {pn} ⊂
(1,M + 1] be a sequence such that α(pn) ∈ V for each n ≥ 1, and pn ↗ q
as n→∞. Then

x1 . . . xN ∈ L(Vpn) for all sufficiently large n.

Proof. Since x1 . . . xN ∈ L(Vq), we have

α1(q) . . . αN−i(q) 4 xi+1 . . . xN 4 α1(q) . . . αN−i(q) for any 0 ≤ i < N.

Let s ∈ {0, 1, . . . , N − 1} be the smallest integer such that

(3.6)

xs+1 . . . xN = α1(q) . . . αN−s(q) or xs+1 . . . xN = α1(q) . . . αN−s(q).

If there is no s ∈ {0, 1, . . . , N − 1} for which (3.6) holds, then we set s = N .
By our choice of s,

(3.7)

α1(q) . . . αN−i(q) ≺ xi+1 . . . xN ≺ α1(q) . . . αN−i(q) for all 0 ≤ i < s.
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In terms of (3.6) we may assume by symmetry that

(3.8) xs+1 . . . xN = α1(q) . . . αN−s(q).

Since pn ↗ q as n→∞, by Lemma 2.1 there exists K ∈ N such that

α1(pn) . . . αN (pn) = α1(q) . . . αN (q) for any n ≥ K.

As α(pn) ∈ V for any n ≥ 1, it follows from (3.7) and (3.8) that

x1 . . . xNαN−s+1(pn)αN−s+2(pn) . . . = x1 . . . xsα1(pn)α2(pn) . . . ∈ Vpn

for any n ≥ K. So, x1 . . . xN ∈ L(Vpn) for all n ≥ K.

Lemma 3.5. Let q ∈ B. Then for any x ∈ Vq we have

dimH(Vq ∩ (x− δ, x+ δ)) = dimH Vq for any δ > 0.

Proof. Take q ∈ B. Since B ⊂ (qKL,M+1]\
⋃

(pL, pR], by Lemma 2.7(i)
there exists a sequence {[pL(n), pR(n)]}∞n=1 of plateaus such that pL(n)↗ q
as n→∞.

Now we fix δ > 0 and x ∈ Vq. Suppose (xi) ∈ Vq is a q-expansion of x.
Then there exists a large integer N such that

(3.9) πq(FVq(x1 . . . xN )) ⊆ Vq ∩ (x− δ, x+ δ).

By Lemmas 2.9(i) and 2.11(i) we have α(pL(n)) ∈ V for all n ≥ 1. Then
applying Lemma 3.4 to {pL(n)} gives a large integer K such that

x1 . . . xN ∈ L(VpL(n)) for all n ≥ K.

Since VpL(n) ⊂ Vq for any n ≥ 1, it follows from (3.9) that

(3.10) πq(FVpL(n)
(x1 . . . xN )) ⊂ Vq ∩ (x− δ, x+ δ) for all n ≥ K.

By (3.10) and the proof of Lemma 3.3 we see that for any n ≥ K,

dimH(Vq ∩ (x− δ, x+ δ)) ≥ dimH πq(FVpL(n)
(x1 . . . xN )) ≥

htop(VpL(n))

log q
.

Letting n→∞ we have pL(n)↗ q, and then we conclude by the continuity
of q 7→ htop(Vq) (see Lemma 2.4(ii)) that

dimH(Vq ∩ (x− δ, x+ δ)) ≥ htop(Vq)

log q
= dimH Uq = dimH Vq.

Proof of Theorem 3.1. Take q ∈ (1, qKL] ∪ ((qKL,M + 1] \
⋃

(pL, pR]). If
q ∈ (1, qKL], then the result follows from dimH Uq = 0 (see Lemma 2.4).

Assume q ∈ (qKL,M + 1] \
⋃

(pL, pR] where the union is taken over
all plateaus [pL, pR] of H. Take x ∈ Uq. If x /∈ {0,M/(q − 1)}, then by
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Lemma 3.2, x belongs to an affine copy of Vq. Since the Hausdorff dimension
is invariant under affine transformations [21], the statement follows from
Lemmas 3.3 and 3.5.

So, it remains to consider x = 0 and x = M/(q − 1). By symmetry we
may assume x = 0. Take δ > 0. Then by Lemma 3.2 there exists a sufficiently
large integer m such that

1

qm
+
Vq
qm
⊆ (Uq ∪N ) ∩ (−δ, δ),

where N is at most countable. This proves the statement for x = 0.

To end this section we strengthen Theorem 3.1 and give a complete
characterization of the set

{q ∈ (1,M + 1] : Uq is dimensionally homogeneous}.

Let [pL, pR] ⊂ (qKL,M + 1] be a plateau of H. Note that pL ∈ B \B ⊂
U \ U . Then by [16, Theorem 1.7] there exists a largest p̂L ∈ (pL, pR)
such that the set-valued map q 7→ Vq is constant in [pL, p̂L). Furthermore,
for q = p̂L no sequence in Vp̂L \ VpL is contained in Up̂L . Then by the
same argument as in the proof of Lemma 3.3 it follows that Theorem 3.1
also holds for any q ∈ [pL, p̂L]. Clearly, Uq is dimensionally homogeneous
for q ≤ qKL. So, the univoque set Uq is dimensionally homogeneous for any
q ∈ (1, qKL] ∪ ((qKL,M + 1] \

⋃
(p̂L, pR]). This, combined with some recent

progress obtained by Allaart et al. [2], implies the following.

Theorem 3.6.

(i) If M = 1 or M is even, then Uq is dimensionally homogeneous if, and
only if, q ∈ (1, qKL] ∪ ((qKL,M + 1] \

⋃
(p̂L, pR]).

(ii) If M = 2k+1 ≥ 3, then Uq is dimensionally homogeneous if, and only if,

q ∈ (1, qKL]∪((qKL,M+1]\
⋃

(p̂L, pR]) or q = (k + 3 +
√
k2 + 6k + 1)/2.

Proof. By Theorem 3.1 and the above arguments, Uq is dimensionally
homogeneous for any q ∈ (1, qKL]∪ ((qKL,M +1]\

⋃
(p̂L, pR]). Thus to prove

the sufficiency it remains to prove the dimensional homogeneity of Uq for

q = (k + 3 +
√
k2 + 6k + 1)/2 =: q? with M = 2k + 1 ≥ 3. Note that q? is

the right endpoint of the entropy plateau generated by k + 1, i.e., [p?, q?] is
an entropy plateau with α(p?) = (k+ 1)∞ and α(q?) = (k+ 2)k∞. Then by
[2, Corollary 3.10],

(3.11) htop(Vq? \Vp?) = htop(Vp?) = log 2,

where the second equality follows from Vp? = {k, k+1}N. Furthermore, any
sequence in Vq? \Vp? eventually ends in a transitive subshift (X,σ) of finite
type with states {k − 1, k, k + 1, k + 2} and adjacency matrix
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(3.12) A =


0 0 1 1

1 1 0 0

0 0 1 1

1 1 0 0

 .

Observe that htop(X) = log 2. Using (3.11) and a similar argument to the
proof of Lemma 3.3 we find that Uq? is dimensionally homogeneous.

Now we prove the necessity. Without loss of generality we assume that
M = 1 or M is even. Let [pL, pR] ⊂ (qKL,M + 1] be an entropy plateau
generated by a1 . . . am, and let p̂L ∈ (pL, pR) be the largest point such
that the map q 7→ Vq is constant in [pL, p̂L). In fact, we have α(p̂L) =

(a1 . . . a
+
ma1 . . . a

+
m)∞ (see [16]). Take q ∈ (p̂L, pR]. Then Wq \ VpL 6= ∅,

where Wq is the set of sequences (xi) satisfying

α(q) ≺ σn((xi)) ≺ α(q) for any n ≥ 0.

Furthermore, any sequence in Wq \VpL must end in the subshift (Y, σ) of fi-

nite type with states {a1 . . . a+m, a1 . . . am, a1 . . . am, a1 . . . a+m} and adjacency
matrix A defined in (3.12). In particular,

(3.13) htop(Y ) =
log 2

m
= htop(VpR \VpL) < htop(VpL),

where the inequality follows from [2, Corollary 3.10]. Observe that Wq ⊆ Uq.
Therefore, by (3.13) and the same argument as in the proof of Lemma 3.3,
for any x ∈ πq(Wq \VpL) ⊂ Uq there exists δ > 0 such that

dimH(Uq ∩ (x− δ, x+ δ)) ≤ htop(Y )

log q
<
htop(VpL)

log q
= dimH Uq.

4. Auxiliary proposition. In this section we prove an auxiliary propo-
sition that will be used to prove Theorem 2 in the next section.

Proposition 4.1. Let q ∈ B \{M + 1}. Then for any ε > 0 there exists
δ > 0 such that

(1−ε) dimH πq(Bδ(q)) ≤ dimH(B∩(q−δ, q+δ)) ≤ (1+ε) dimH πq+δ(Bδ(q)),

where

Bδ(q) := {α(p) : p ∈ B ∩ (q − δ, q + δ)}.

The proof is based on the following lemma on the behavior of the Haus-
dorff dimension under Hölder continuous maps [21].

Lemma 4.2. Let f : (X, ρ1) → (Y, ρ2) be a Hölder map between metric
spaces, i.e., there exist constants C, λ > 0 such that

ρ2(f(x), f(y)) ≤ Cρ1(x, y)λ
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for any x, y ∈ X with ρ1(x, y) ≤ c (here c is a small constant). Then
dimH f(X) ≤ 1

λ dimH X.

First we prove the second inequality in Proposition 4.1.

Lemma 4.3. Let q ∈ B \ {M + 1}. Then for any ε > 0 there exists δ > 0
such that

dimH(B ∩ (q − δ, q + δ)) ≤ (1 + ε) dimH πq+δ(Bδ(q)).

Proof. Fix ε > 0 and q ∈ B \ {M + 1}. Then there exists δ > 0 such
that

(4.1) q − δ > 1, q + δ < M + 1 and
log(q + δ)

log(q − δ)
≤ 1 + ε.

Since B ⊆ U , Lemmas 2.1 and 2.3(ii) imply that for each p ∈ B∩(q−δ, q+δ)
we have

α(q + δ) ≺ α(p) ≺ σi(α(p)) 4 α(p) ≺ α(q + δ) for all i ≥ 0.

So, by Lemma 2.2, α(p) ∈ Uq+δ for any p ∈ B ∩ (q − δ, q + δ). Hence the
map

g : B ∩ (q − δ, q + δ)→ πq+δ(Bδ(q)), p 7→ πq+δ(α(p)),

is bijective. By Lemma 4.2 it suffices to prove that there exists a constant
C > 0 such that∣∣πq+δ(α(p2))− πq+δ(α(p1))

∣∣ ≥ C|p2 − p1|1+ε
for any p1, p2 ∈ B ∩ (q − δ, q + δ).

Take p1, p2 ∈ B ∩ (q − δ, q + δ) with p1 < p2. Then by Lemma 2.1 we
have α(p1) ≺ α(p2). So, there exists n ≥ 1 such that

α1(p1) . . . αn−1(p1) = α1(p2) . . . αn−1(p2) and αn(p1) < αn(p2).

Then

0 < p2 − p1 =

∞∑
i=1

αi(p2)

pi−12

−
∞∑
i=1

αi(p1)

pi−11

(4.2)

≤
n−1∑
i=1

(
αi(p2)

pi−12

− αi(p1)

pi−11

)
+
∞∑
i=n

αi(p2)

pi−12

≤ p2−n2 ,

where the last inequality follows from the property of the quasi-greedy ex-
pansion α(p2) that

∑∞
i=1 αk+i(p2)/p

i
2 ≤ 1 for any k ≥ 1.

On the other hand, by (4.1) we have α(p2) 4 α(q+δ) ≺ α(M+1) = M∞.
Then there exists a large integer N (depending on q + δ) such that

(4.3) α1(p2) . . . αN (p2) 4MN−1(M − 1).

Note that p2 ∈ B ⊆ U . Then by Lemma 2.3(ii) and (4.3),

αm+1(p2)αm+2(p2) . . . � α(p2) < 0N−110∞ for any m ≥ 1.



Bifurcation set of unique expansions 385

This implies that

πq+δ(α(p2))− πq+δ(α(p1)) =

∞∑
i=1

αi(p2)− αi(p1)
(q + δ)i

=
αn(p2)− αn(p1)

(q + δ)n
− 1

(q + δ)n

∞∑
i=1

αn+i(p1)

(q + δ)i
+

∞∑
i=n+1

αi(p2)

(q + δ)i

≥ 1

(q + δ)n
− 1

(q + δ)n

∞∑
i=1

αn+i(p1)

pi1
+

∞∑
i=n+1

αi(p2)

(q + δ)i

≥
∞∑

i=n+1

αi(p2)

(q + δ)i
≥ 1

(q + δ)n+N
,

where the second inequality follows from the same property of the quasi-
greedy expansion α(p1) that was used before.

Therefore, by (4.1) and (4.2),

πq+δ(α(p2))− πq+δ(α(p1)) ≥ ((q + δ)−
n+N
1+ε )1+ε ≥ ((q − δ)−n−N )1+ε

≥ (q − δ)−N(1+ε)(p−n2 )1+ε ≥ C(p2 − p1)1+ε,

where C = (q − δ)−N(1+ε)(q + δ)−2(1+ε).

Now we prove the first inequality of Proposition 4.1.

Lemma 4.4. Let q ∈ B \ {M + 1}. Then for any ε > 0 there exists δ > 0
such that

dimH(B ∩ (q − δ, q + δ)) ≥ (1− ε) dimH πq(Bδ(q)).

Proof. The proof is similar to that of Lemma 4.3. Fix ε > 0 and take
q ∈ B \ {M + 1}. Then there exists δ > 0 such that

(4.4) q − δ > 1, q + δ < M + 1 and
log(q + δ)

log q
≤ 1

1− ε
.

Take p1, p2 ∈ B ∩ (q − δ, q + δ) with p1 < p2. Then by Lemma 2.1 we
have α(p1) ≺ α(p2), and therefore there exists a smallest integer n ≥ 1 such
that αn(p1) < αn(p2). This implies that

(4.5)

|πq(α(p2))− πq(α(p1))| =
∣∣∣∣ ∞∑
i=1

αi(p2)− αi(p1)
qi

∣∣∣∣ ≤ ∞∑
i=n

M

qi
=

Mq

q − 1
q−n.

On the other hand, observe that q+δ < M+1. Then α(p2) 4 α(q+δ) ≺
α(M + 1) = M∞. So, there exists N ≥ 1 such that

α1(p2) . . . αN (p2) 4MN−1(M − 1).
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Since p2 ∈ B ⊆ U , Lemma 2.3(ii) gives

1 =
∞∑
i=1

αi(p2)

pi2
>

n∑
i=1

αi(p2)

pi2
+

1

pn+N2

,

which implies that

1

pn+N2

< 1−
n∑
i=1

αi(p2)

pi2
=
∞∑
i=1

αi(p1)

pi1
−

n∑
i=1

αi(p2)

pi2
(4.6)

≤
n∑
i=1

(
αi(p2)

pi1
− αi(p2)

pi2

)

≤
∞∑
i=1

(
M

pi1
− M

pi2

)
=

M

(p1 − 1)(p2 − 1)
(p2 − p1).

Here the second inequality holds since

α1(p1) . . . αn−1(p1) = α1(p2) . . . αn−1(p2),

αn(p1) < αn(p2) and
∞∑
i=1

αn+i(p1)/p
i
1 ≤ 1.

Therefore, by (4.4)–(4.6) we conclude that

|πq(α(p2))− πq(α(p1))| ≤
MqN+1

q − 1
(q−

n+N
1−ε )1−ε

≤ MqN+1

q − 1
(q + δ)−(n+N)(1−ε)

≤ MqN+1

q − 1
p
−(n+N)(1−ε)
2 < C(p2 − p1)1−ε,

where

C =
M2−εqN+1

(q − 1)(q − δ − 1)2(1−ε)
.

By Lemma 2.1 the map p 7→ α(p) is bijective from B ∩ (q − δ, q + δ) onto
Bδ(q). Hence, the lemma follows by letting f = πq ◦ α in Lemma 4.2.

Proof of Proposition 4.1. Combine Lemmas 4.3 and 4.4.

5. Local dimension of B. In this section we will prove Theorem 2,
which states that for any q ∈ B we have

lim
δ→0

dimH(B ∩ (q − δ, q + δ)) = dimH Uq.

First we prove the upper bound.
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Proposition 5.1. For any q ∈ B we have

lim
δ→0

dimH(B ∩ (q − δ, q + δ)) ≤ dimH Uq.

Proof. Take q ∈ B. By Lemma 2.4 and Proposition 4.1 it follows that
for any ε > 0 there exists a δ > 0 such that

dimH Uq+δ ≤ dimH Uq + ε,

dimH(B ∩ (q − δ, q + δ)) ≤ (1 + ε) dimH πq+δ(Bδ(q)),
(5.1)

where Bδ(q) = {α(p) : p ∈ (q − δ, q + δ) ∩B}.
Since B ⊆ U , Lemmas 2.1 and 2.3(ii) show that any sequence α(p) ∈

Bδ(q) satisfies

α(q + δ) ≺ α(p) ≺ σn(α(p)) 4 α(p) ≺ α(q + δ) for all n ≥ 0.

By Lemma 2.2 this implies Bδ(q) ⊆ Uq+δ. Therefore, by (5.1),

dimH(B ∩ (q − δ, q + δ)) ≤ (1 + ε) dimH πq+δ(Bδ(q))

≤ (1 + ε) dimH Uq+δ ≤ (1 + ε)(dimH Uq + ε).

Since ε > 0 was arbitrary, this completes the proof.

The proof of the lower bound of Theorem 2 is tedious. We will prove it
in several steps. First we need the following lemma.

Lemma 5.2. Let [pL, pR] ⊆ (qKL,M + 1) be a plateau of H such that
α(pL) = (α1 . . . αm)∞ with period m. Then

αi+1 . . . αm ≺ α1 . . . αm−i for all 0 < i < m,

αi+1 . . . αmα1 . . . αi � α1 . . . αm for all 0 ≤ i < m.

Proof. Since (α1 . . . αm)∞ is the quasi-greedy pL-expansion of 1 with
period m, the greedy pL-expansion of 1 is α1 . . . α

+
m0∞. So, by [18, Pro-

postion 2.2], we have σn(α1 . . . α
+
m0∞) ≺ α1 . . . α

+
m0∞ for any n ≥ 1. This

implies

αi+1 . . . αm ≺ αi+1 . . . α
+
m 4 α1 . . . αm−i for any 0 < i < m.

Lemma 2.6 states that pL ∈ B ⊂ U . Then by Lemma 2.3(ii),

(αi+1 . . . αmα1 . . . αi)
∞ = σi((α1 . . . αm)∞) � (α1 . . . αm)∞

for any 0 ≤ i < m. This implies that

αi+1 . . . αmα1 . . . αi � α1 . . . αm for any 0 ≤ i < m.

Let [pL, pR] ⊂ (qKL,M + 1) be a plateau of H. For any N ≥ 1 let
(WpL,N , σ) be a subshift of finite type in {0, 1, . . . ,M}N with the set of
forbidden blocks c1 . . . cN satisfying

c1 . . . cN 4 α1(pL) . . . αN (pL) or c1 . . . cN < α1(pL) . . . αN (pL).
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Then any sequence (xi) ∈WpL,N satisfies

α1(pL) . . . αN (pL) ≺ σn((xi)) ≺ α1(pL) . . . αN (pL) for all n ≥ 0.

If αN (pL)>0, then WpL,N is indeed the set of sequences (xi)∈{0, 1, . . . ,M}N
satisfying

(α1(pL) . . . αN (pL)
+

)∞ 4 σn((xi)) 4 (α1(pL) . . . αN (pL)−)∞

for all n ≥ 0. By the definition of WpL,N this gives

WpL,1 ⊆WpL,2 ⊆ · · · ⊆ VpL .

We emphasize that WpL,1 can be an empty set, and the inclusions above
are not necessarily strict.

Observe that (VpL , σ) is a subshift of finite type with positive topological
entropy. The following asymptotic result was proved in [24, Proposition 2.8].

Lemma 5.3. Let [pL, pR] ⊆ [qT ,M + 1] be a plateau of H. Then

lim
N→∞

htop(WpL,N ) = htop(VpL).

Recall from (2.8) that

ξ(n) = λ1 . . . λ2n−1(λ1 . . . λ2n−1
+)∞ if M = 2k,

ξ(n) = λ1 . . . λ2n(λ1 . . . λ2n
+)∞ if M = 2k + 1.

Note that the sequence (λi) in the definition of ξ(n) depends on M . In the
following lemma we show that the entropy of (WpL,N , σ) is equal to the
entropy of the follower set FWpL,N

(ν) for all sufficiently large integers N ,

where ν is the word defined in Lemma 2.9(iii) or Lemma 2.11(iii).

Lemma 5.4.

(i) Let [pL, pR] ⊂ [qT ,M + 1] be a plateau of H, and let

ν =

{
k if M = 2k,

(k + 1)k if M = 2k + 1.

Then for all sufficiently large integers N we have

htop(FWpL,N
(ν`)) = htop(WpL,N ) for any ` ≥ 1.

(ii) Let [pL, pR] ⊂ (qKL, qT ) be a plateau of H with ξ(n+1) 4 α(pL) ≺ ξ(n).
Set

ν =

{
λ1 . . . λ

−
2n if M = 2k,

λ1 . . . λ
−
2n+1 if M = 2k + 1.

Then for all sufficiently large integers N we have

htop(FWpL,N
(ν`)) = htop(WpL,N ) for any ` ≥ 1.
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Proof. Take ` ≥ 1. First we prove (i). By Lemma 2.9(iii) there exists
a large integer N ≥ 2 such that ν` ∈ L(WpL,N ). Since (WpL,N , σ) is a
subshift of finite type, to prove (i) it suffices to show that for any word
ρ ∈ L(WpL,N ) there exists a word γ of uniformly bounded length for which
ν`γρ ∈ L(WpL,N ).

Take ρ = ρ1 . . . ρm ∈ L(WpL,N ). If M = 2k, then ν = k. Since α(pL) <
α(qT ) = (k + 1)k∞, we have

α1(pL) ≤ k − 1 < ν < k + 1 ≤ α1(pL).

So, ν`γρ ∈ L(WpL,N ) by taking γ = ε the empty word. Similarly, if M =
2k+ 1 then ν = (k+ 1)k. Observe that α(pL) < α(qT ) = (k+ 1)((k+ 1)k)∞.
This implies that ν`γρ ∈ L(WpL,N ) by taking γ = ε if ρ1 ≥ k + 1, and
γ = k + 1 if ρ1 ≤ k.

Now we turn to the proof of (ii). We only give the proof for M =
2k, since the proof for M = 2k + 1 is similar. Then ν = λ1 . . . λ

−
2n . By

Lemma 2.11(iii) there exists a large integer N ≥ 2n+1 such that ν∞ =
(λ1 . . . λ

−
2n)∞ ∈WpL,N . Since htop(VpL) > 0, by Lemma 5.3 we can choose

N sufficiently large such that htop(WpL,N ) > 0. Since WpL,N is a subshift of
finite type, there exists a transitive subshift of finite type XN ⊂WpL,N for
which htop(XN ) = htop(WpL,N ) [31, Theorem 4.4.4]. We claim that either
λ1 . . . λ2n or λ1 . . . λ2n belongs to L(XN ).

From (2.8) and (2.4) it follows that

ξ(n) = λ1 . . . λ2n−1(λ1 . . . λ2n−1
+)∞ = λ1 . . . λ2n(λ1 . . . λ2n−1

+)∞.

Then the assumption ξ(n+ 1) 4 α(pL) ≺ ξ(n) gives

(5.2) α1(pL) . . . α2n(pL) = λ1 . . . λ2n = α1(qKL) . . . α2n(qKL).

Suppose λ1 . . . λ2n and λ1 . . . λ2n do not belong to L(XN ). Then by (5.2),

XN ⊂WpL,2n = WqKL,2n ⊂ VqKL .

So, by Lemma 2.4 it follows that XN has zero topological entropy, contra-
dicting htop(XN ) = htop(WpL,N ) > 0.

By the claim, to finish the proof of (ii) it suffices to show that for any
word ρ ∈ L(XN ) with a prefix λ1 . . . λ2n or λ1 . . . λ2n there exists a word γ of
uniformly bounded length such that ν`γρ ∈ L(WpL,N ). In [27, Lemma 4.2]
(see also [1, Lemma 4.2]) it was shown that for any n ≥ 1 we have

λ1 . . . λ2n−i ≺ λi+1 . . . λ2n 4 λ1 . . . λ2n−i for any 0 ≤ i < 2n.

This implies that for any 0 ≤ i < 2n we have

(5.3) λi+1 . . . λ
−
2n ≺ λ1 . . . λ2n−i and λi+1 . . . λ

−
2nλ1 . . . λi � λ1 . . . λ2n .

Observe that

ν = λ1 . . . λ
−
2n = λ1 . . . λ2n−1λ1 . . . λ2n−1 .
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Then from (5.2) and (5.3) it follows that if λ1 . . . λ2n is a prefix of ρ, then
ν`γρ ∈ L(WpL,N ) by taking γ = ε the empty word, and if λ1 . . . λ2n is a
prefix of ρ then ν`γρ ∈ L(WpL,N ) by taking γ = λ1 . . . λ2n−1 .

In the following lemma we prove the lower bound of Theorem 2 for
q ∈ [qT ,M + 1] being the left endpoint of an entropy plateau.

Lemma 5.5. Let [pL, pR] ⊆ [qT ,M + 1] be a plateau of H. Then for any
δ > 0 we have

dimH(B ∩ (pL − δ, pL + δ)) ≥ dimH UpL .
Proof. Lemma 2.9(i) shows that α(pL) = (αi) = (α1 . . . αm)∞ is an

irreducible sequence, where m is the minimal period of α(pL). Thus, there
exists a large integer N1 > m such that

(5.4)

α1 · · ·αj(α1 . . . αj
+)∞ ≺ α1 . . . αN1 if (α1 . . . α

−
j )∞ ∈ V and 1 ≤ j ≤ m.

Let ν be the word defined in Lemma 5.4(i). Then by Lemma 2.9(iii) there
exist a large integer N > N1 and a word ω such that

(5.5) α1 . . . αN ≺ σn(α1 . . . αmων
∞) ≺ α1 . . . αN for any n ≥ 0.

Observe that (WpL,N , σ) is an N -step subshift of finite type, and (5.5) shows
that α1 . . . αmων

N ∈ L(WpL,N ). Then from [31, Theorem 2.1.8] it follows
that for any sequence (di) ∈ FWpL,N

(νN ) we have α1 . . . αmωd1d2 . . . ∈
FWpL,N

(α1 . . . αm). In other words,

{α1 . . . αmωd1d2 . . . : (di) ∈ FWpL,N
(νN )} ⊆ FWpL,N

(α1 . . . αm) ⊆WpL,N .

So,

htop(FWpL,N
(νN )) ≤ htop(FWpL,N

(α1 . . . αm)) ≤ htop(WpL,N ).

Therefore, by Lemma 5.4(i) we obtain

(5.6) htop(FWpL,N
(α1 . . . αm)) = htop(WpL,N ).

Let ΛN be the set of sequences (ai) ∈ {0, 1, . . . ,M}∞ satisfying

a1 . . . amN = (α1 . . . αm)N and amN+1amN+2 . . . ∈ FWpL,N
(α1 . . . αm).

Fix δ > 0. We claim that

ΛN ⊆ Bδ(pL) = {α(q) : q ∈ B ∩ (pL − δ, pL + δ)}
for all sufficiently large integers N > N1.

Clearly, when N increases, the length of the common prefix of sequences
in ΛN grows, and it coincides with a prefix of α(pL) = (α1 . . . αm)∞. So, by
Lemmas 2.1 and 2.12 it suffices to show that for all N > N1 any sequence
(ai) ∈ ΛN is irreducible.
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Take N > N1 and (ai) ∈ ΛN . First we claim that

(5.7) α1 . . . αN ≺ σn((ai)) ≺ α1 . . . αN for any n ≥ 1.

Indeed, a1 . . . amN =(α1 . . . αm)N and amN+1amN+2 . . .∈FWpL,N
(α1 . . . αm).

Since N > N1 > m, (5.7) follows directly from Lemma 5.2.
Note that a1 . . . aN = α1 . . . αN by the definition of ΛN . From (5.7) it

follows that (ai) ∈ V. So, by Definition 2.8 it remains to prove that

(5.8) a1 . . . aj(a1 . . . aj
+)∞ ≺ (ai) whenever (a1 . . . a

−
j )∞ ∈ V.

We split the proof of (5.8) into the following three cases.

• For 1 ≤ j ≤ m, (5.8) follows from (5.4).
• For m < j ≤ N , let j = j1m+ r1 with j1 ≥ 1 and r1 ∈ {1, . . . ,m}. Since

(α1 . . . α
−
j )∞ = ((α1 . . . αm)j1α1 . . . α

−
r1)∞ ∈ V, we have

αr1+1 . . . αmα1 . . . αr1 � αr1+1 . . . αmα1 . . . α
−
r1 < α1 . . . αm.

This implies that

a1 . . . aj(a1 . . . aj
+)∞ = (α1 . . . αm)j1α1 . . . αr1α1 . . . αm . . .

≺ (α1 . . . αm)j1α1 . . . αr1αr1+1 . . . αmα1 . . . αr10∞ 4 (ai).

• For j > N , by (5.7),

(a1 . . . aj
+)∞ = (α1 . . . αNaN+1 . . . aj

+)∞ ≺ aj+1aj+2 . . . ,

which implies that (5.8) also holds in this case.

Therefore, (ai) is an irreducible sequence, and thus (ai) ∈ Bδ(pL). So, we
have ΛN ⊆ Bδ(pL) for all N > N1.

Note that πpL(ΛN ) is a scaling copy of πpL(FWpL,N
(α1 . . . αm)) which

is related to a graph-directed set satisfying the open set condition [24,
Lemma 3.2]. By Proposition 4.1 and (5.6), for any ε > 0 there exists δ > 0
such that

dimH(B ∩ (pL − δ, pL + δ)) ≥ (1− ε) dimH πpL(Bδ(pL))

≥ (1− ε) dimH πpL(ΛN )

= (1− ε)
htop(FWpL,N

(α1 . . . αm))

log pL

= (1− ε)
htop(WpL,N )

log pL
for all sufficiently large integers N > N1. Letting N → ∞ we conclude by
Lemmas 5.3 and 2.4 that

dimH(B ∩ (pL − δ, pL + δ)) ≥ (1− ε)htop(VpL)

log pL
= (1− ε) dimH UpL .

Since ε > 0 was taken arbitrarily, this establishes the lemma.
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Now we prove the lower bound of Theorem 2 for q ∈ (qKL, qT ) being the
left endpoint of an entropy plateau.

Lemma 5.6. Let [pL, pR] ⊂ (qKL, qT ) be a plateau of H. Then for any
δ > 0 we have

dimH B ∩ (pL − δ, pL + δ) ≥ dimH UpL .
Proof. The proof is similar to that of Lemma 5.5. We only give the proof

for M = 2k, since the proof for M = 2k + 1 is similar.
By Lemma 2.11(i) it follows that α(pL) = (αi) = (α1 . . . αm)∞ is a

∗-irreducible sequence, where m is the minimal period of α(pL). Thus there
exists n ≥ 1 such that ξ(n + 1) 4 α(pL) ≺ ξ(n), where ξ(n) = λ1 . . . λ2n−1

(λ1 . . . λ2n−1
+)∞. By (2.4) this implies that m > 2n. Since α(pL) = (αi) is

periodic while ξ(n + 1) is eventually periodic, we have ξ(n + 1) ≺ α(pL)
≺ ξ(n). So there exists a large integer N0 such that

(5.9) ξ(n+ 1) ≺ α1 . . . αN0 ≺ ξ(n).

Since α(pL) = (αi) is ∗-irreducible, by Definition 2.10 there exists an integer
N1 > N0 such that

(5.10)

α1 . . . αj(α1 . . . αj
+)∞ ≺ α1 . . . αN1 if (α1 . . . α

−
j )∞ ∈ V and 2n < j ≤ m.

Let ν = λ1 . . . λ
−
2n be the word defined as in Lemma 5.4(ii). Then by

Lemma 2.11(iii) there exist a large integer N ≥ N1 and a word ω such that

(5.11) α1 . . . αN ≺ σj(α1 . . . αmων
∞) ≺ α1 . . . αN for any j ≥ 0.

Observe that (WpL,N , σ) is an N -step subshift of finite type, and by (5.11)
we have α1 . . . αmων

N ∈ L(WpL,N ). Then [31, Theorem 2.1.8] shows that
for any (di) ∈ FWpL,N

(νN ) we have α1 . . . αmωd1d2 . . . ∈ FWpL,N
(α1 . . . αm).

This implies

{α1 . . . αmωd1d2 . . . : (di) ∈ FWpL,N
(νN )} ⊆ FWpL,N

(α1 . . . αm) ⊆WpL,N .

So, by Lemma 5.4(ii) we obtain

(5.12) htop(FWpL,N
(α1 . . . αm)) = htop(WpL,N ).

Let ∆N be the set of sequences (ai) satisfying

a1 . . . amN = (α1 . . . αm)N and amN+1amN+2 . . . ∈ FWpL,N
(α1 . . . αm).

Fix δ > 0. Then we claim that

∆N ⊂ Bδ(pL) = {α(q) : q ∈ B ∩ (pL − δ, pL + δ)}
for all sufficiently large N > N1. Observe that the common prefix of se-
quences in ∆N has length at least m(N +1) and it coincides with a prefix of
α(pL) = (α1 . . . αm)∞. So, by Lemmas 2.1 and 2.12 it suffices to show that
for all N > N1 any sequence in ∆N is ∗-irreducible.
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Take N > N1 sufficiently large and (ai) ∈ ∆N . Then by (5.9) we have
ξ(n+1) ≺ (ai) ≺ ξ(n). Furthermore, by Lemma 5.2 and the definition of ∆N ,

(5.13) a1 . . . aN ≺ σj((ai)) ≺ a1 . . . aN for any j ≥ 1.

This implies that (ai) ∈ V. Furthermore, by (5.10), (5.13) and arguments
similar to those in the proof of Lemma 5.5 we can prove that

a1 . . . aj(a1 . . . aj
+)∞ ≺ (ai)

whenever j > 2n and (a1 . . . a
−
j )∞ ∈ V. Therefore, by Definition 2.10 the se-

quence (ai) is ∗-irreducible, and then ∆N ⊂ Bδ(pL) for all N > N1, proving
the claim.

Hence, by Proposition 4.1 and (5.12), for any ε > 0 there exists δ > 0
such that

dimH(B ∩ (pL − δ, pL + δ)) ≥ (1− ε) dimH πpL(Bδ(pL))

≥ (1− ε) dimH πpL(∆N )

= (1− ε)
htop(FWpL,N

(α1 . . . αm))

log pL

= (1− ε)
htop(WpL,N )

log pL
for all sufficiently large N > N1. Letting N →∞ we obtain, by Lemmas 5.3
and 2.4,

dimH(B ∩ (pL − δ, pL + δ)) ≥ (1− ε)htop(VpL)

log pL
= (1− ε) dimH UpL .

Since ε > 0 was arbitrary, we complete the proof by letting ε→ 0.

Proof of Theorem 2. Take q ∈ B and δ > 0. By Lemma 2.7 there exists
a sequence {[pL(n), pR(n)]} of plateaus such that pL(n) converges to q as
n→∞. By Lemmas 5.5 and 5.6,

dimH(B ∩ (q − δ, q + δ)) ≥ dimH UpL(n)
for all sufficiently large n. Letting n→∞ and using Lemma 2.4 we obtain

(5.14) dimH(B ∩ (q − δ, q + δ)) ≥ dimH Uq.
Now, the theorem follows from Proposition 5.1.

6. Dimensional spectrum of U . Recall that U is the set of univoque
bases q ∈ (1,M +1] for which 1 has a unique q-expansion. In this section we
will use Theorem 2 to prove Theorem 3 for the dimensional spectrum of U ,
which states that

dimH(U ∩ (1, t]) = max
q≤t

dimH Uq for all t > 1.

We focus on t ∈ (qKL,M+1), since by Lemma 2.4 the other cases are trivial.
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Since the proof of Lemma 4.3 above only uses properties of U instead
of B, the proof also gives the following lemma.

Lemma 6.1. Let q ∈ U \ {M + 1}. Then for any ε > 0 there exists a
δ > 0 such that

dimH(U ∩ (q − δ, q + δ)) ≤ (1 + ε) dimH πq+δ(Uδ(q)),

where Uδ(q) = {α(p) : p ∈ U ∩ (q − δ, q + δ)}.
To prove Theorem 3 we first consider the upper bound.

Lemma 6.2. For any t ∈ (qKL,M + 1) we have

dimH(U ∩ (1, t]) ≤ max
q≤t

dimH Uq.

Proof. Fix ε > 0 and take t ∈ (qKL,M + 1). Then it suffices to prove

(6.1) dimH(U ∩ (1, t]) ≤ (1 + ε)
(

max
q≤t

dimH Uq + ε
)
.

By Lemmas 2.4 and 6.1 for each q ∈ U ∩ (1, t] there exists a sufficiently
small δ = δ(q, ε) > 0 such that

dimH Uq+δ ≤ dimH Uq + ε,

dimH(U ∩ (q − δ, q + δ)) ≤ (1 + ε) dimH πq+δ(Uδ(q)).
(6.2)

Observe that {(q−δ, q+δ) : q ∈ U ∩(1, t]} is an open cover of U ∩(1, t], and
that U ∩ (1, t] = U ∩ [qKL, t] is a compact set. Hence, there exist q1, . . . , qN
in U ∩ (1, t] such that

(6.3) U ∩ (1, t] ⊆
N⋃
i=1

(
U ∩ (qi − δi, qi + δi)

)
,

where δi = δ(qi, ε) for 1 ≤ i ≤ N .
Note by Lemmas 2.2 and 2.3 that for each i ∈ {1, . . . , N} we have

πqi+δi(Uδi(qi)) = πqi+δi({α(p) : p ∈ U ∩ (qi − δi, qi + δi)}) ⊆ Uqi+δi .
Then by (6.2) and (6.3),

dimH(U ∩ (1, t]) ≤ dimH

( N⋃
i=1

(
U ∩ (qi − δi, qi + δi)

))
= max

1≤i≤N
dimH(U ∩ (qi − δi, qi + δi))

≤ (1 + ε) max
1≤i≤N

dimH πqi+δi(Uδi(qi))

≤ (1 + ε) max
1≤i≤N

dimH Uqi+δi
≤ (1 + ε) max

1≤i≤N
(dimH Uqi + ε)

≤ (1 + ε)
(

max
q≤t

dimH Uq + ε
)
.

The next lemma gives the lower bound of Theorem 3.
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Lemma 6.3. For any t ∈ (qKL,M + 1) we have

dimH(U ∩ (1, t]) ≥ max
q≤t

dimH Uq.

Proof. Take t ∈ (qKL,M + 1). By Lemma 2.4 the dimension function
D : q 7→ dimH Uq is continuous, so there exists q∗ ∈ [qKL, t] such that

dimH Uq∗ = max
q≤t

dimH Uq.

Since the entropy function H is locally constant on the complement of B,
it follows by Lemma 2.4 that

q∗ ∈ (qKL, t] \
⋃

(pL, pR] ⊆ (qKL, t] ∩B.

If q∗ ∈ (qKL, t) ∩B, then the lemma follows from B ⊂ U and Theorem 2.
If q∗ = t, then by Lemma 2.7(i) there exists a sequence {[pL(n), pR(n)]}
of plateaus such that pL(n) ∈ (qKL, t) ∩ B and pL(n) ↗ q∗ as n → ∞.
Therefore, by Lemma 2.4 and Theorem 2 we also have

dimH(U ∩ (1, t]) ≥ dimH(B ∩ (qKL, t]) ≥ dimH UpL(n) → dimH Uq∗
as n→∞. This establishes the lemma.

Proof of Theorem 3. For 1 < t ≤ qKL we have U ∩ (1, t] ⊆ {qKL} and
thus by Lemma 2.4(i) it follows that

dimH(U ∩ (1, t]) = 0 = max
q≤t

dimH Uq.

For t ≥ M + 1 we have U = U ∩ (1, t] and the result also follows from
Lemma 2.4. For the remaining t the result follows from Lemmas 6.2 and 6.3,
since U \U is countable.

Lemma 2.4 shows that the dimension function D : q 7→ dimH Uq has a
devil’s staircase behavior (see also Remark 2.5(1)). This implies that φ(t) :=
maxq≤t dimH Uq is a devil’s staircase in (1,∞): (i) φ is non-decreasing and
continuous in (1,∞); (ii) φ is locally constant almost everywhere in (1,∞);
and (iii) φ(qKL) = 0, and φ(t) > 0 for any t > qKL.

7. Variations of U (M). For any K ∈ {0, 1, . . . ,M}, let U (K) denote
the set of bases q > 1 such that 1 has a unique q-expansion over the alphabet
{0, 1, . . . ,K}. Then U (K) ⊂ (1,K + 1]. In this section we investigate the

Hausdorff dimension of
⋂M
J=K U (J), and prove Theorem 4. Note that qKL =

qKL(M) is the smallest element of U (M), and K + 1 is the largest element
of U (K). So, if K + 1 < qKL then U (M) ∩ U (K) = ∅. Therefore, in the
following we assume K ∈ [qKL − 1,M ].

Lemma 7.1. Let K ∈ [qKL − 1,M ] be an integer. Then for each q ∈
U (M) ∩ (1,K + 1] the unique expansion α(q) = (αi(q)) satisfies

M −K ≤ αi(q) ≤ K for any i ≥ 1.
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Proof. Clearly, the lemma holds if K = M . So we assume K < M . Take
q ∈ U (M) ∩ (1,K + 1] ⊆ [qKL,K + 1]. Then

α(qKL) � α(q) � α(K + 1) = K∞.

This, together with α1(qKL) ≥M − α1(qKL), implies that

M −K ≤ α1(qKL) ≤ α1(q) ≤ K.
Since M > K and q ∈ U (M), it follows from Lemma 2.3(i) that

M −K ≤M − α1(q) ≤ αi(q) ≤ α1(q) ≤ K for any i ≥ 1.

Lemma 7.2. Let K ∈ [qKL − 1,M ] be an integer. Then

U (M) ∩U (K) = (1,K + 1] ∩U (M).

Proof. Since U (K) ⊆ (1,K + 1], it suffices to prove that U (M) ∩
(1,K + 1] ⊆ U (K). Take q ∈ U (M) ∩ (1,K + 1]. By Lemma 2.3, α(q) =
(αi(q)) satisfies

(7.1) (K−αi(q)) � (M−αi(q)) ≺ αi+1(q)αi+2(q) · · · ≺ α(q) for all i ≥ 1.

Lemma 7.1 yields 0 ≤ αi(q) ≤ K for all i ≥ 1. Hence, by (7.1) and Lemma
2.3 we conclude that q ∈ U (K).

Proof of Theorem 4. First we prove (i). Clearly, if K < qKL − 1 then⋂M
J=K U (J) = ∅, and therefore (i) holds by Lemma 2.4(i). If qKL − 1 ≤

K ≤M , then by repeatedly using Lemma 7.2 we conclude that
M⋂
J=K

U (J) =
(
U (M) ∩U (M − 1)

)
∩
M−2⋂
J=K

U (J)

= (1,M ] ∩U (M) ∩
M−2⋂
J=K

U (J)

= (1,M ] ∩
(
U (M) ∩U (M − 2)

)
∩
M−3⋂
J=K

U (J)

= (1,M − 1] ∩U (M) ∩
M−3⋂
J=K

U (J) = · · ·

= (1,K + 1] ∩U (M).

Therefore, by Theorem 3 we have established (i).

As for (ii), we observe that for any L ≥ 1,

(7.2) U (L) =
(
U (L) \

⋃
J 6=L

U (J)
)
∪
⋃
J 6=L

(U (L) ∩U (J)).

From (i) and Lemma 2.4(i) it follows that dimH(U (L)∩U (J)) < 1 for any
J 6= L. Furthermore, by Lemma 2.6 we have dimH U (L) = 1 (see also [24,
Theorem 1.6]). Therefore, (ii) immediately follows from (7.2).
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8. Final remarks. It was shown in Theorem 3 that the function φ(t) =
dimH(U ∩ (1, t]) is a devil’s staircase in (1,∞) (see Figure 1 for the sketch
plot of φ). Then a natural question is to ask about the presence and position
of plateaus for φ, i.e., maximal intervals on which φ is constant. By Lemma
2.4(i) and Theorem 3 it follows that φ(t) = 0 if and only if t ≤ qKL, and
φ(t) = 1 if and only if t ≥ M + 1. Hence, the first plateau of φ is (1, qKL],
and the last is [M + 1,∞).

Since φ(t) = maxq≤t dimH Uq, an interval [qL, qR] is a plateau of φ if and
only if

dimH Up < dimH UqL for any p < qL,

dimH Uq ≤ dimH UqL for any qL ≤ q ≤ qR,
dimH Ur > dimH UqL for any r > qR.

By Lemma 2.4 for each plateau [qL, qR] of φ we have dimH UqL = dimH UqR .

Question 1. Can we describe the plateaus of φ in (qKL,M + 1)?

Theorem 3 tells us that the set U gets heavier towards the right, but
does not say anything about the local weight.

Question 2. What is the local dimension dimH(U ∩ [t1, t2]) for t2 >
t1 > 1?

Added in proof (April 2019). Question 2 has recently been solved by Allaart and
the second author [4, Theorem 4].
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