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UNCERTAINTY PRODUCT OF

THE SPHERICAL ABEL–POISSON WAVELET

Abstract. The space and momentum variances of the spherical Abel–
Poisson wavelet, as well as the limit of the uncertainty product as ρ → 0,
where ρ is a scale parameter, are computed. The values of these quantities
coincide with a certain accuracy with those of the spherical Poisson wavelet
with 1/2 substituted for the order parameter.

1. Introduction. Just as in physics (Heisenberg’s uncertainty principle),
there exist several uncertainty principles in mathematics. The uncertainty
constant of a function is a measure for the trade-off between spatial and fre-
quency localization. A practical example is a sound with a certain frequency
that should last at least one period in order to be heard at the pitch [1].

The first formulations and proofs of an uncertainty principle for functions
over the two-dimensional sphere appeared in the 1990s in the papers by
Narcowich and Ward [21] and Freeden and Windheuser [7]. A generalization
to higher dimensions was given in [22], though only for rotation-invariant
functions.

In the 2002 paper [9] by Goh and Micchelli, the classical uncertainty
principle for self-adjoint operators A, B,

(1) |〈[A,B]x, x〉| ≤ 2∆x(A) ·∆x(B),

where

[A,B] = AB −BA, ∆x(A) =

(
‖Ax‖2 − |〈Ax, x〉|

2

‖x‖2
x

)1/2

,

was generalized to the case of linear operators with domain and range in
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the same complex Hilbert space. The authors proved that for any nonzero
x ∈ D(AB) ∩ D(BA) ∩ D(A∗) ∩ D(B∗),

(2) |〈[A,B]x, x〉| ≤ ∆x(A) ·∆x(B∗) +∆x(A∗) ·∆x(B).

If each of A and B is normal or symmetric, inequality (2) reduces to (1).
This is a generalization of the classical result since an operator is self-adjoint
if it is simultaneously normal and symmetric.

Relying on the results from [9], Goh and Goodman [8] derived several
uncertainty principles for distinct spaces, among them the following one that
is now regarded as the canonical version of an uncertainty principle on the
sphere [8, Theorem 5.1].

Theorem 1.1. Let F be a nonzero C1-function on the n-dimensional
sphere Sn. Then

(3)[ �

Sn
|f |2 dσ−

|
	
Snx|f(x)|2 dσ(x)|2	

Sn |f |2 dσ

]1/2
·
[ �

Sn
|∇Snf |2 dσ−

|
	
Sn(∇Snf)f̄ dσ|2	
Sn |f |2 dσ

]1/2
≥ n

2
·
|
	
Snx|f(x)|2 dσ(x)|2	

Sn |f |2 dσ
.

The proof is based on the multivariate version of (1) (see [8, Theo-
rem 4.1]):( n∑

j=0

∆x(Aj)
2
)
·
( n∑
j=0

∆x(Bj)
2
)
≥ 1

4

( n∑
j=0

|〈[Aj , Bj ]x, x〉|
)2
,

where the (bounded and self-adjoint) operators Aj and (symmetric) opera-
tors Bj on L2(Sn) are given by

A− jf(x) = xjf(x), Bjf(x) = iDjf(x)− in

2
xjf(x)

for x = (x0, x1, . . . , xn) ∈ Sn.
The results from [21], [7], and [22] are all special cases of Theorem 1.1.
Further papers yield different proofs for (3) (see, e.g., [10]) or its weaker

version

(4)

[ �

Sn
|f |2 dσ −

|
	
Sn x|f(x)|2 dσ(x)|2	

Sn |f |2 dσ

]1/2
·
[ �

Sn
|∇Snf |2 dσ

]1/2
≥ n

2
·
∣∣∣ �
Sn
x|f(x)|2 dσ(x)

∣∣∣
(see [2] together with [3], or [5]). The term ‖∇SnF‖2 in (4) is equal to and
often replaced by

√
〈−∆SnF, F 〉. A slightly modified version of (4) is a

special case of a general result for compact manifolds [23].
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In the recent years, several papers have been published about spherical
uncertainty principles in some special settings, such as for weighted function
spaces [6, 24] or in the Clifford algebra setting [4]. The results from [6, 24],
reduced to the nonweighted case, do not essentially differ from (4).

The present research is devoted to spherical wavelets (for the theory of
wavelet transforms see [12]). If it does not affect other important features of
the wavelet, its uncertainty product should be kept as small as possible so
that the localization of the wavelet transform reflects mostly the localization
of the analyzed signal and not that of the wavelet. Thus, it is important to
compute the uncertainty product of the most popular wavelets in order to
be able to compare them with respect to this feature.

In [14] a general class of wavelets

(5) Ψρ(x) =

∞∑
l=0

[ρaqν(l)]ce−ρ
aqν(l) · l + λ

λ
Cλl (cosϑ)

is considered, where ϑ is the first spherical coordinate of x ∈ Sn, a and c are
positive constants, and qν is a polynomial of degree ν, positive and increasing
on (1,∞]. Cλl denotes the Gegenbauer polynomial of order λ = (n− 1)/2 and
degree l. It is shown that the uncertainty product of Ψρ behaves as ρ → 0
like

U(Ψρ) ≤ O(ρa/(2ν)).

In the general case, its increase for ρ → 0 is undesirable. However, there
exist wavelet families constructed according to (5) with bounded uncertainty
product, namely the Poisson wavelets

gmρ =
1

Σn

∞∑
l=0

(ρl)me−ρl · l + λ

λ
Cλl (cosϑ), m ∈ N, Σn =

�

Sn
dσ

(see [16] for the proof), and the Gauss–Weierstrass wavelet on the two-
dimensional sphere

ΨGρ (x) =
∞∑
l=0

2l + 1

4π

√
2ρl(l + 1) e−ρl(l+1)Pl(cosϑ),

Pl being the Legendre polynomials (see [17]).
The Abel–Poisson wavelet

(6) ΨAρ =
1

Σn

∞∑
l=0

√
2ρl e−ρl · l + λ

λ
Cλl (cosϑ),

which is rotation-invariant, completes the list of classical examples. Its un-
certainty product is investigated in the present paper. Since in the Gegen-
bauer series of the Abel–Poisson wavelet the square root of ρl appears,
more sophisticated methods are required than those used in [16] for Poisson
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wavelets. On the other hand, the exponent of the exponential function in (6)
is a multiple of l. This makes the computation easier than in the case of the
Gauss–Weierstrass wavelet [17], and enables investigating the general case
of wavelets over the n-dimensional sphere.

In this paper, the so-called space and momentum variances of the Abel–
Poisson wavelet are computed explicitly and exactly. The uncertainty prod-
uct of a function is the product of the square roots of the variances. In the
case of the Abel–Poisson wavelet, its limit for ρ→ 0 is finite. Up to a certain
order in the series expansion with respect to ρ, the values of the variances
and the uncertainty product coincide with those for Poisson wavelets [16]
with 1/2 substituted for the order parameter m (Poisson wavelets are defined
for m ≥ 1).

The paper is organized as follows. After an introduction of the necessary
notions and statements in Section 2, the main result of the paper, Theo-
rem 3.1, is proven in Section 3.

2. Preliminaries. Let Sn denote the n-dimensional unit sphere in
(n + 1)-dimensional Euclidean space Rn+1 with hyperspherical variables
(ϑ, ϑ2, . . . , ϑn−1, ϕ). Integrable zonal (i.e. rotation-invariant with respect to
the x1-axis) functions on the sphere have the Gegenbauer expansion

f(x) =
∞∑
l=0

f̂(l)Cλl (cosϑ)

with the Gegenbauer coefficients

f̂(l) = c(l, λ)

1�

−1
f(t)Cλl (t)(1− t2)λ−1/2 dt,

where λ is an index related to the space dimension by

λ =
n− 1

2

and c is a constant that depends on l and λ. Cλl , l ∈ N0, are the Gegenbauer
polynomials of order λ ∈ R and degree l ∈ N0.

The space and momentum variances of a C2(Sn)-function f satisfying	
Sn x|f(x)|2 dσ(x) 6= 0 are given by [20]

varS(f) =

( 	
Sn |f(x)|2 dσ(x)∣∣	
Sn x|f(x)|2 dσ(x)

∣∣
)2

− 1,

varM (f) = −
	
Sn ∆

∗f(x) · f̄(x) dσ(x)	
Sn |f(x)|2 dσ(x)

,
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where ∆∗ is the Laplace–Beltrami operator on Sn. The quantity

(7) U(f) =
√

varS(f) ·
√

varM (f)

is called the uncertainty product of f .

Remark. The uncertainty product defined by (7) corresponds to the
uncertainty principle given by (4) (see Theorem 2.2 below).

The uncertainty product of zonal functions may be computed from their
Gegenbauer coefficients [13, Lemma 4.2].

Lemma 2.1. Let f be a zonal square integrable and continuously differ-
entiable function on Sn given by its Gegenbauer expansion

f(x) =
∞∑
l=0

f̂(l) Cλl (cosϑ).

Its space and momentum variances are equal to

varS(f) =

( ∑∞
l=0

λ
l+λ

(
l+2λ−1

l

)
|f̂(l)|2∑∞

l=0

(
l+2λ
l

)λ2|f̂(l) f̂(l+1)+f̂(l)f̂(l+1)|
(l+λ)(l+λ+1)

)2

− 1,(8)

varM (f) =

∑∞
l=1

lλ(l+2λ)
l+λ

(
l+2λ−1

l

)
|f̂(l)|2∑∞

l=0
λ
l+λ

(
l+2λ−1

l

)
|f̂(l)|2

,(9)

whenever the series are convergent.

This lemma corrects [13, formula (26)]. In order to compute the space
variance of a function, one should take the absolute value of the expression

(10) f̂(l) f̂(l + 1) + f̂(l) f̂(l + 1)

instead of (10). In [13], there is a mistake in the formula defining the space
variance at the beginning of Section 4, where the numerator is a vector and
not the norm of the vector.

According to the spherical uncertainty principle, the uncertainty product
of a spherical function is bounded from below by n/2.

Theorem 2.2. For f ∈ L2(Sn) ∩ C1(Sn), U(f) ≥ n/2.

3. The uncertainty product of the Abel–Poisson wavelet. Recall
that the Abel–Poisson wavelet is given by (6):

ΨAρ (x) =
1

Σn

∞∑
l=0

√
2ρl e−ρl · l + λ

λ
Cλl (cosϑ),

where x = (ϑ, ϑ2, . . . , ϑn−1, ϕ) in hyperspherical coordinates. Formally, it is
a Poisson wavelet of order 1/2. Similarly to the case of Poisson wavelets [16],
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its uncertainty product is bounded in the limit ρ → 0, as the following
theorem states.

Theorem 3.1. The uncertainty product of the Abel–Poisson wavelet sat-
isfies

(11) lim
ρ→0

U(ΨAρ ) =
1

2

√
(n+ 1)(n+ 2)(n2 − 3n+ 3)

n(n− 1)
.

Its space and momentum variances domain are given by

(12) varS(ΨAρ )

= {ρn + 2[2(n− 1)(1− e−2ρ)nκ(ρ)ρ2 − (4n2 − 6n+ 3)ρn] e2ρ

− [4(n− 1)(1− e−2ρ)nκ(ρ)ρ2 + (4n− 5)ρn]e4ρ}−2

· {16 (n− 1)2[n− 1 + (n+ 1) e2ρ]2ρ2ne2ρ} − 1,

where κ is a bounded function, and

(13) varM (ΨAρ ) =
n(n+ 1)[n+ (n+ 3)e2ρ + e4ρ]e2ρ

[n− 1 + (n+ 1)e2ρ](e2ρ − 1)2
.

Proof. Substituting

Ψ̂Aρ (l) =
λ+ l

λ

√
2ρl e−ρl

into the expressions (8) and (9) we obtain

varS(ΨAρ ) =

( ∑∞
l=1

l+λ
λ

(
l+2λ−1

l

)
le−2ρl∑∞

l=1

(
l+2λ
l

)
· 2
√
l(l + 1) e−ρ(2l+1)

)2

− 1,

varM (ΨAρ ) =

∑∞
l=1

l(l+λ)(l+2λ)
λ

(
l+2λ−1

l

)
le−2ρl∑∞

l=1
l+λ
λ

(
l+2λ−1

l

)
le−2ρl

.

Set

Sn,m(ρ) =

∞∑
l=1

(
l + 2λ− 1

l

)
lme−2ρl.

Then

varS(ΨAρ ) =

[
eρ ·A(ρ)

B(ρ)

]2
− 1,(14)

varM (ΨAρ ) =
C(ρ)

A(ρ)
(15)

with

A(ρ) =
1

λ
Sn,2(ρ) + Sn,1(ρ),(16)

C(ρ) =
1

λ
Sn,4(ρ) + 3Sn,3(ρ) + 2λSn,2(ρ),(17)
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and

B(ρ) =
∞∑
l=0

l + 2λ

λ

(
l + 2λ− 1

l

)√
l(l + 1) e−2ρl.

In order to estimate B(ρ) by Sn,m(ρ) note that for l ∈ N,

l +
1

2
− 1

8l
≤
√
l(l + 1) ≤ l +

1

2
− 1

8l
+

1

16l2
.

Thus,
l + 2λ

λ

√
l(l + 1) ≥ l2

λ
+

(
1

2λ
+ 2

)
l +

(
1− 1

8λ

)
− 1

4l

and
l + 2λ

λ

√
l(l + 1) ≤ l

λ

(
l +

1

2
− 1

8l
+

1

16l2

)
+ 2

(
l +

1

2λ

)
=
l2

λ
+

(
1

2λ
+ 2

)
l +

(
1− 1

8λ

)
+

1

16λl
.

Consequently,

(18) B(ρ) =
1

λ
Sn,2(ρ) +

(
1

2λ
+ 2

)
Sn,1(ρ) +

(
1− 1

8λ

)
Sn,0(ρ) +R(ρ)

with

|R(ρ)| ≤ 1

4
· Sn,−1(ρ).

It can be proven by induction on n = 2λ+ 1 that

(19) Sn,0(ρ) =
1

(1− e−2ρ)n−1
− 1.

The values of Sn,1, Sn,2, Sn,3, and Sn,4 are obtained from (19) by the recur-
rence relation

(20) Sn,m+1(ρ) = −1

2
S′n,m(ρ).

In order to estimate Sn,−1(ρ) note that

Sn,−1(ρ) =

∞∑
l=1

[
Pn−3(l) +

(n− 2)!

l

]
e−2ρl,

where Pn−3 is a polynomial of degree n − 3. Thus, Sn,−1 can be expressed
as a linear combination of S2,m, m = −1, 0, . . . , n− 3:

(21) Sn,−1(ρ) =

n−3∑
m=−1

κn,m · S2,m(ρ).

It follows from (19) and (20) that for m ∈ N0,

(22) S2,m(ρ) =
Q(n, e−2ρ)

(1− e−2ρ)m+1
,
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where Q is a polynomial. Further,

S2,−1(ρ) =
∞∑
l=1

e−2ρl

l
.

Since the function t 7→ e−2ρt/t is decreasing on (0,∞),
∞∑
l=2

e−2ρl

l
≤
∞�

1

e−2ρt

t
dt.

Thus,

(23) 0 ≤ S2,−1(ρ) ≤ e−2ρ +

∞�

1

e−2ρt

t
dt = e−2ρ + Γ (0, 2ρ).

It follows from (21)–(23) and

1

(1− e−2ρ)m
= O

(
1

ρm

)
as ρ→ 0

that

Sn,−1(ρ) = O
(

1

ρn−2

)
as ρ→ 0.

Therefore, the rest term in (18) can be written as

R(ρ) =
κ(ρ)

ρn−2

with a bounded function κ. Formulae (12) and (13) are obtained from (14)
and (15) by substituting (16)–(18) with the series Sn,m, m = 1, 2, 3, 4,
computed from (19) via (20). In the computation, Sn,0 is replaced by
(1− e−2ρ)1−n. The difference between the two expressions can be absorbed
by the rest term R(ρ), and the replacement simplifies the calculations sig-
nificantly.

(11) follows directly from (12) and (13).

Remark. The variances of the Abel–Poisson wavelet can be written as

varS(ΨAρ ) =
n2 − 3n+ 3

n(n− 1)
· ρ2 − 2n2 − 4n+ 3 + 2n+1n(n− 1)κ(ρ)

n2(n− 1)
· ρ3

+O(ρ4),

varM (ΨAρ ) =
n2 + 3n+ 2

4ρ2
+
n2 − 1

2nρ
+O(1)

as ρ → 0. Note that the first term of the space variance as well as the first
two terms of the momentum variance are equal to those computed for Pois-
son wavelets [16, Theorem 3.1] with 1/2 substituted for m. Consequently,
the limit of U(ΨAρ ) as ρ → 0 coincides with that for a Poisson wavelet
with m = 1/2. Note that formally the Abel–Poisson wavelet is a Poisson
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wavelet of order 1/2. Therefore, the results concerning the variances and
the uncertainty product are not surprising.
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