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A family of weakly holomorphic modular forms for Γ0(2)
with all zeros on a certain geodesic

by

SoYoung Choi (Jinju) and Bo-Hae Im (Daejeon)

1. Introduction and preliminaries. The zeros of special modular
forms and their locations have been studied actively, and there are some
results which show that the zeros of some modular forms lie on the bound-
ary of the canonical fundamental domain for SL2(Z). In particular, Rankin
and Swinnerton-Dyer [19] showed that the zeros of the Eisenstein series for
SL2(Z) lie on the lower boundary of the standard fundamental domain for
SL2(Z). In [11, 9, 10, 13, 17, 1], it is proved that all zeros or almost all zeros
of various weakly holomorphic modular forms for the groups SL2(Z), Γ0(N)
(N = 2, 3, 4) and Γ+

0 (p) (p = 2, 3) lie on the lower boundary of the canonical
fundamental domains for those groups. Here, Γ+

0 (p) is the Fricke group of

level p generated by Γ0(p) and the Fricke involution Wp =
( 0 −1/√p√

p 0

)
.

In this paper, we consider zeros of some weakly holomorphic modular
forms of weight k for Γ0(2). Let M !

k(Γ0(2)) be the space of weakly holomor-
phic modular forms of weight k for Γ0(2), and set

M !+

k (Γ0(2)) = {f ∈M !
k(Γ0(2)) : f |kWp = f},

M !−
k (Γ0(2)) = {f ∈M !

k(Γ0(2)) : f |kWp = −f}.
Then

M !
k(Γ0(2)) = M !+

k (Γ0(2))⊕M !−
k (Γ0(2)).

We also note that M !+

k (Γ0(2)) is the space of weakly holomorphic modular
forms of weight k for Γ+

0 (2). The location of zeros of almost all of the basis

elements for M !+

k (Γ0(2)) has been studied by the present authors [1, 2]. More
precisely, it has been proved in [1] that the zeros of each basis element fk,m
of M !+

k (Γ0(2)) in the fundamental domain F+ for Γ+
0 (2) lie on the lower
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boundary of F+, and it has been proved in [2] that the zeros of each fk,m
interlace with the zeros of another such form.

In this paper we consider the zeros of the basis elements for M !−
k (Γ0(2))

and find the location of zeros of almost all elements in a certain basis of
M !−
k (Γ0(2)). More precisely, we prove that the zeros lie on a certain geodesic

inside the standard fundamental domain F for Γ0(2) but not on the boundary
of F. Also we show that the zeros of each basis element interlace with the
zeros of another element.

We let F be the standard fundamental domain for Γ0(2) given by

F := {z ∈ C : |z + 1/2| ≥ 1/2, −1/2 ≤ Re(z) ≤ 0}
∪ {z ∈ C : |z − 1/2| > 1/2, 0 ≤ Re(z) < 1/2}.

Let

S :=

{
1√
2
eiθ : θ ∈ (π/2, 3π/4)

}
,

which is a part of a geodesic inside F but not on the boundary of F. We
define the usual slash operator as follows:

(f |kγ)(z) = (cz + d)−kf(γz) for γ =

(
a b

c d

)
∈ SL2(R).

For a given k ∈ 2Z, we can write

k = 8`k + rk

for unique `k ∈ Z and rk ∈ {2, 4, 6, 8}.
Let ρ := −1

2 + 1
2 i ∈ H. Then ρ is an elliptic point of order 2 for Γ0(2),

since
(
1 −1
2 −1

)
ρ = ρ for

(
1 −1
2 −1

)
∈ Γ0(2).

By the valence formula (see for example [15, (1)]), we have the following.

Lemma 1.1 ([15]). For f ∈M !
k(Γ0(2)),∑

ρ 6=τ∈Γ0(2)\H∗
ordτ f +

1

2
ordρ f =

k

4
.

Proposition 1.2. For each k = 2, 4, 6, 8 and f ∈M !−
k (Γ0(2)), the zeros

of f(z) in F belong to
{
−1

2 + 1
2 i,

1√
2
i
}
⊆ S.

Proof. First, if k = 2, then by Lemma 1.1, ordρ f = 1 and ordτ f = 0
for all τ 6= ρ. Hence ρ is the only zero of f in F.

Let z = 1√
2
i. Since f ∈M !−

k (Γ0(2)), we have

(f |kW2)(z) = −f(z),

and by the definition of the slash operator,

(f |kW2)(z) = (
√

2 z)−kf(W2(z)) = f(z)(i)−k.

Hence if k 6≡ 2 mod 4, then f(z) = 0, and so z = 1√
2
i is a zero of f in F.
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If k = 4, since ordz f ≥ 1 by the above, Lemma 1.1 implies ordz f = 1,
so z = 1√

2
i is the only zero of f in F.

If k = 6, Lemma 1.1 implies
∑

ρ6=τ∈Γ0(2)\H∗ ordτ f + 1
2 ordρ f = 1 + 1

2 ,

hence ordρ f ≥ 1. Let V =
(
1 −1
2 −1

)
∈ Γ0(2). Then (2τ − 1)−6f(V τ) = f(τ)

gives
f ′(τ) = (2τ − 1)−8f ′(V τ)− 12(2τ − 1)−7f(V τ).

Letting τ = ρ, we have f ′(ρ) = (2ρ−1)−8f ′(ρ), which implies that f ′(ρ) = 0.
So ordρ f = 3 and ρ is the only zero of f in F.

If k = 8, then since (
√

2 τ)−8f
(
− 1

2τ

)
= f(τ), this implies that

f ′(τ) = (
√

2 τ)−8f

(
− 1

2τ

)(
1

2τ2

)
+ f

(
− 1

2τ

)
(−8)

√
2
−8
τ−9.

By letting τ = z, we get

f ′(z) = f ′(z)

(
1

2 · −12

)
i−8 + f(z)(−8)

√
2
−8
z−9.

Since f(z) = 0, we have f ′(z) = −f ′(z), which implies f ′(z) = 0. Hence
ordz f≥2. Then by Lemma 1.1,

∑
ρ,z 6=τ∈Γ0(2)\H∗ ordτ f+ordz f+ 1

2 ordρ f=2,

which implies that ordz f = 2 and z = 1√
2
i is the only zero of f in F.

Proposition 1.3. For f ∈ M !−
k (Γ0(2)) with real Fourier coefficients,

ei(kθ+π)/2f
(

1√
2
eiθ
)

is real for θ ∈ (π/2, 3π/4).

Proof. Let z = 1√
2
eiθ = a+ bi with a, b ∈ R and let

f(z) =
∑
n≥nf

ane
2πin(a+bi) =

∑
n≥nf

ane
2πn(−b+ai).

Since a2 + b2 = |z|2 = 1
2 , we have − 1

2z = −a+ bi, and since an ∈ R, we get

f

(
− 1

2z

)
=
∑
n≥nf

ane
2πin(−a+bi) = f(z).

Thus,

ei(kθ+π)/2f(z) = eikθei(π−kθ)/2f(z) = ei(π−kθ)/2
(
e−ikθf

(
− 1

2z

))
= ei(π−kθ)/2

(
(
√

2 z)−kf

(
− 1

2z

))
= −ei(π−kθ)/2f(z).

Hence,

ieikθ/2f(z) = −ie−ikθ/2f(z) = −ieikθ/2f(z) = ieikθ/2f(z).

Remark 1.4. Let

m−k := `k + dimS−rk(Γ0(2)) = `k,
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which is defined in [7]. Let

(1)



η(z) = q1/24
∞∏
n=1

(1− qn),

∆+
2 (z) = (η(z)η(2z))8 = q

∞∏
n=1

(1− qn)8
∞∏
m=1

(1− q2m)8,

t(z) := j+2 (z) =
( η(z)
η(2z)

)24
+ 24 + 212

(η(2z)
η(z)

)24
,

Erk(z) = 1− 2rk
Brk

∞∑
n=1

σrk−1(n)qn,

E−rk(z) := E−2,rk(z) = 1
1−2rk/2 (Erk(z)− 2rk/2Erk(2z)),

∆−2,rk(z) = E−2,rk(z),

where Brk is the rkth Bernoulli number and σrk−1(n) is the standard divisor
sum of n.

For each integer m ≥ −m−k , there exists a unique f−k,m ∈ M !−
k (Γ0(2))

with q-expansion of the form

f−k,m(z) = q−m +O(qm
−
k + 1).

Moreover,

f−k,m(z) = (∆+
2 (z))`k∆−2,rk(z)PD(j+2 (z))(2)

= (∆+
2 (z))`kE−2,rk(z)PD(j+2 (z)),

where PD is a polynomial of degree D := m+m−k = m+ `k. Furthermore,
fk,m has integral Fourier coefficients (see [7]).

We also note that for k = 8`k + rk and 2− k = 8`2−k + r2−k,

2− k = 8(−`k − 1) + (10− rk) = 8`2−k + r2−k,

and

(3) `2−k = m−2−k = −`k − 1 and r2−k = 10− rk.
Now we state our first main result.

Theorem 1.5. If m ≥ 2|`k| − `k + 8, then all zeros of f−k,m lie on a part
of a certain geodesic inside F but not on the boundary of F. In particular,
they lie on S ∪W2S.

Throughout, we let

F− := f−k,−`k(z) = q`k +O(q−`k+1).

We prove the following theorem referring to [7, Lemma 4.1].

Theorem 1.6. For each n ≥ −`k,

f−k,n(z) = F−(z)
∑
r+s=n

ar(1/F
−)j+2,s.
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Proof. Recall that j+2,s = q−s +O(q). Let F− =
∑

α≥`k aα(F−)qα. Then

1 = F−(z)

(
1

F−1

)
(z) =

∑
α≥`k

aα(F−)qα
∑
β≥−`k

aβ(1/F−)qβ.

Thus,
∑

α+β=γ aα(F−)aβ(1/F−) = 0 for all γ ≥ 1.

Note that F−(z)
∑

r+s=n ar(1/F
−)j+2,s(z) ∈M

!−
k (Γ0(2)) and

F−(z)
∑
r+s=n

ar

(
1

F−

)
j+2,s(z) = F−(z)

( ∑
r+s=n

ar

(
1

F−

)
(q−s +O(q))

)
= F−(z)

( ∑
r+s=n

ar

(
1

F−

)
q−s +O(q)

)
=

(∑
α≥`k

aα(F−)qα
)( ∑

r+s=n

ar

(
1

F−

)
q−s +O(q)

)

=

( ∑
α≥`k

aα(F−)qα
)(

a−`k

(
1

F−

)
q−`k−n + a−(`k−1)

(
1

F−

)
q−(`k−1)−n

+a−(`k−2)

(
1

F−

)
q−(`k−2)−n+· · ·+an−1

(
1

F−

)
q−1+an

(
1

F−

)
q0+O(q)

)
(since s ≥ 0,−m ≤ `k, and r ≥ −`k)

=
( ∑
α≥`k

aα(F−)qα
)(∑

β≥0
a−`k + β

(
1

F−

)
q−`k+βq−n +O(q)

)

= q−n
( ∑
α≥`k

aα(F−)qα
)( `k+n∑

β=0

a−`k + β

(
1

F−

)
q−`k+β

)
+O(q`k+1)

= q−n
( ∑
α≥`k

aα(F−)qα
)( n∑

β=−`k

aβ

(
1

F−

)
qβ
)

+O(q`k+1)

= q−n
`k+n∑
γ=0

( ∑
α+β=γ

aα(F−)aβ

(
1

F−

))
qγ +O(q`k+1) = q−n +O(q`k+1).

By the uniqueness of f−k,n in M !−
k (Γ0(2)), the conclusion follows.

Remark 1.7. Note that f+2,m(z) = q−m+O(q) for all m ≥ 1 and j+2,s(z) =

f+0,s(z) for all s ≥ 0. Also we have the following:

(1)
∑

m≥0 f
+
0,m(τ)e2πimz =

f+2,1(z)

j+2 (z)−j+2 (τ)
.

(2) Φ2,m(z) = q−m+O(q) (see [8] fot the definition of Φ2,m). Hence, f+2,m(z)

= q−m +O(q) ∈M !+
2 (Γ0(2)).
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(3) a0(Φ2,mf
+
0,s) = 0 for all m, s by the residue theorem since Φ2,mf

+
0,s ∈

M !+
2 (Γ0(2)).

Applying [8, Theorem 1.2] to Remark 1.7 and Theorem 1.6, we obtain

Theorem 1.8.∑
n≥−`k

f−k,n(τ)qn =
F−(τ)

F−(z)
·

f+2,1(z)

j+2 (z)− j+2 (τ)
.

Referring to [7, Lemma 4.1] again, we prove the following lemma.

Lemma 1.9.
f+2,1(z) = f−2−k,−`2−k(z)f−k,−`k(z).

Proof. Note that

f−2−k,−`2−k(z)f−k,−`k(z) = q`2−k+`k +O(1) = q−1 +O(1),

since `2−k+`k = −1 by (3) in Remark 1.4. Moreover, since f−2−k,−`2−kf
−
k,−`k ∈

M !+
2 (Γ0(2)),

f−2−k,−`2−k(z)f−k,−`k(z) = q−1 +O(q).

Hence the conclusion follows from the uniqueness of f+2,1(z) = q−1 +O(q) in

M !+

k (Γ0(2)).

Lemma 1.10. In the notations above,

F−(τ)f+2,1(z)

F−(z)(j+2 (z)− j+2 (τ))
=
f−k,−`k(τ)f−2−k,−`2−k(z)

j+2 (z)− j+2 (τ)
.

Proof. This follows from Lemma 1.9 and f−k,−`k(z) = F−(z).

We let F+ be the standard fundamental domain for Γ+
0 (2), given by

F+ := {z ∈ C : |z| ≥ 1/
√

2,−1/2 ≤ Re(z) ≤ 0}
∪ {z ∈ C : |z| > 1/

√
2, 0 ≤ Re(z) < 1/2}

(see [17, p. 694]). By Theorem 1.8 and Lemma 1.10, we have

f−k,m(z) =
�

C

f−k,−`k(z)f−2−k,−`2−k(τ)

j+2 (τ)− j+2 (z)
e−2πimτe−2πiτ de2πiτ ,

where C is a (counterclockwise oriented) circle centered at 0 in the q-plane
with a sufficiently small radius. (Here, q = e2πiτ .) Let

G−(τ, z) =
f−k,−`k(z)f−2−k,−`2−k(τ)

j+2 (τ)− j+2 (z)
e−2πimτ(4)

=
(∆+

2 (z))`kE−rk(z)E−10−rk(τ)

(∆+
2 (τ))`k+1(j+2 (τ)− j+2 (z))

e−2πimτ .
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Now we compute the residues of
f−k,−`k(z)f−2−k,−`2−k(τ)

j+2 (τ)− j+2 (z)
at τ=z and τ=− 1

2z :

(5) Resτ=z
f−k,−`k(z)f−2−k,−`2−k(τ)

j+2 (τ)− j+2 (z)
= lim

τ→z
(τ − z)

f−k,−`k(z)f−2−k,−`2−k(τ)

j+2 (τ)− j+2 (z)

=

(
dj+2
dτ

∣∣∣∣
τ=z

)−1
· f+2,1(z) (by Lemma 1.9)

=

(
dj+2
dτ

∣∣∣∣
τ=z

)−1
· dj+2 (z)

dz
· −1

2πi
= − 1

2πi
,

(6) Resτ=− 1
2z

f−k,−`k(z)f−2−k,−`2−k(τ)

j+2 (τ)− j+2 (z)

= Resτ=− 1
2z

−f−k,−`k
(
− 1

2z

)
(
√

2 z)−kf−2−k,−`2−k(τ)

j+2 (τ)− j+2
(
− 1

2z

)
= Resτ=w

−f−k,−`k(w)(
√

2 z)−kf−2−k,−`2−k(τ)

j+2 (τ)− j+2 (w)(
where w = − 1

2z

)
= 1

2πi(
√

2 z)−k by (5).

Next, we consider when Im(z) 1√
2

sin θ > 1
2 . Let A′ be a real number such

that 1
2 < A′ < Im(z). Since F+ is the fundamental domain for Γ+

0 (2) and

j+2 (τ) is invariant under the action of Γ+
0 (2), the residue theorem shows that

for a real number A > 1/
√

2,

(7)

1/2+iA′�

−1/2+iA′
G−(τ, z) dτ = f−k,m(z)−

1/2+iA�

1/2+iA′

G−(τ, z) dτ−
−1/2+iA′�

−1/2+iA

G−(τ, z) dτ

+ 2πi
∑

τ=z,− 1
2z

Resτ G
−(τ, z)

= f−k,m(z)− e−2πimz +

(
1√
2 z

)k
e−2πim(− 1

2z
),

since

2πi
∑

τ=z,− 1
2z

Resτ G
−(τ, z) =

1/2+iA�

1/2+iA′

G−(τ, z) dτ +

−1/2+iA�

1/2+iA

G−(τ, z) dτ

+

−1/2+iA′�

−1/2+iA

G−(τ, z) dτ +

1/2+iA′�

−1/2+iA′
G−(τ, z) dτ,
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and
1/2+iA�

−1/2+iA

G−(τ, z) dτ = f−k,m(z).

Proposition 1.11. We have

(8) ieikθ/2e
−2πm 1√

2
sin θ

f−k,m

(
1√
2
eiθ
)

+ 2 sin

(
kθ

2
− 2πm

1√
2

cos θ

)

= ieikθ/2e
−2πm 1√

2
sin θ

1/2+iA′�

−1/2+iA′
G−
(
τ,

1√
2
eiθ
)

dτ.

Proof. First, we get

(9) ieikθ/2e
−2πm 1√

2
sin θ
(

1√
2

1
1√
2
eiθ

)k
e
−2πim

(
− 1

2( 1√
2
eiθ)

)
= ie−ikθ/2e

√
2πim cos θ

= i

(
cos

(
kθ

2
−
√

2πm cos θ

)
− sin

(
kθ

2
−
√

2πm cos θ

))
= i cos

(
kθ

2
−
√

2πm cos θ

)
+ sin

(
kθ

2
−
√

2πm cos θ

)
.

Also, at z = 1√
2
eiθ,

(10) ieikθ/2e
−2πm 1√

2
sin θ

e−2πimz

= i cos

(
kθ

2
−
√

2πm cos θ

)
− sin

(
kθ

2
−
√

2πm cos θ

)
.

By subtracting (10) from (9), we get

ieikθ/2e
−2πm 1√

2
sin θ
(
−e−2πimz +

(
1√
2 z

)k
e−2πim

(
− 1

2z

))
= 2 sin

(
kθ

2
−
√

2πm cos θ

)
.

Thus, we complete the proof by the formula (7) for the integral of G−.

In order to prove Theorem 1.5, we need the following lemma.

Lemma 1.12. If m ≥ 2|`k| − `k + 8, then for all θ ∈ (π/2, 3π/4),∣∣∣∣ieikθ/2e−2πm 1√
2
sin θ

f−k,m

(
1√
2
eiθ
)

+2 sin

(
kθ

2
−2πm

1√
2

cos θ

)∣∣∣∣ < 1.9457196.
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Proof. We follow [1, p. 303, proof of Lemma 2.3] with the following
replacement of the numerical quantities and computations:

E−rk

(
−1

2z

)
= −(

√
2 z)rkE−rk(z),

E−rk

(
−1

2z ± 2

)
= −(

√
2 z)rk(z ± 1)rkE−rk(z),

B−k := iBk, where Bk is defined in [1, p. 306].

Then by Proposition 1.11,

ieikθ/2e
−2πm 1√

2
sin θ

f−k,m

(
1√
2
eiθ
)

+ 2 sin

(
kθ

2
− 2πm

1√
2

cos θ

)

= ieikθ/2e
−2πm 1√

2
sin θ

1/2+iA′�

−1/2+iA′
G−
(
τ,

1√
2
eiθ
)

dτ,

which equals

−B−k + ieikθ/2e
−2πm 1√

2
sin θ

1/2�

−1/2

G−
(
x+ 0.3i,

1√
2
eiθ
)

dx

if 2 ≤ θ < 3π/4 and A′ = 0.3 < Im

(
−1

2 1√
2
eiθ + 2

)
,

ieikθ/2e
−2πm 1√

2
sin θ

1/2�

−1/2

G−
(
x+ 0.4i,

1√
2
eiθ
)

dx

if π/2 ≤ θ < 2 and A′ = 0.4 > Im

(
−1

2 1√
2
eiθ + 2

)
.

Then, we get the bounds in [1, Lemma 3.1] by replacing (1)(e) and (2)(d)
there by (1)(e)′ and (2)(d)′ respectively, where

(1)(e)′ For k = 2, 4, 6, 8, |E−rk(z)| |E−10−rk(τ)| ≤ 4613.738108 if τ = x+ 0.3i.

(2)(d)′ For k = 2, 4, 6, 8, |E−rk(z)| |E−10−rk(τ)| ≤ 378.3098018 if τ = x+ 0.4i.

In fact, both upper bounds are smaller than or close enough to those of
(1)(e) and (2)(d) in [1, Lemma 3.1], so we can proceed as in [1, proof of
Lemma 3.1]. To be precise, we indicate some steps which contain different
quantities from ones in that proof.
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First, in order to prove (1)(e)′, we note that

|E−2 (z)| = |E2(z)− 2E2(2z)| ≤ 1
3(|E2(z)|+ 2|E2(2z)|)

≤
(

1 + 24
∞∑
n=1

n3e
−2πn 1√

2
sin θ

1− e−2πn
1√
2
sin θ

+ 2

(
1 + 24

∞∑
n=1

n3e
−4πn 1√

2
sin θ

1− e−4πn
1√
2
sin θ

))

≤
(

1 + 24

∞∑
n=1

n3e−πn

1− e−πn
+ 2

(
1 + 24

∞∑
n=1

n3e−2πn

1− e−2πn

))
≤ 4.270087259.

Similarly,

|E−2 (τ)| ≤
(

1 + 24

∞∑
n=1

n3e−2πn(0.3)

1− e−2πn(0.3)
+ 2

(
1 + 24

∞∑
n=1

n3e−4πn(0.3)

1− e−4πn(0.3)

))
≤ 9.930494810,

|E−4 (z)| ≤ 1
3(|E4(z)|+ 4|E4(2z)|) ≤ 7.278814458,

|E−4 (τ)| ≤ 1
3(|E4(τ)|+ 4|E4(2τ)|) ≤ 51.51027855,

|E−6 (z)| ≤ 1
7(|E6(z)|+ 8|E6(2z)|) ≤ 11.69821417,

|E−6 (τ)| ≤ 1
7(|E6(τ)|+ 8|E6(2τ)|) ≤ 222.6799583,

|E−8 (z)| ≤ 1
15(|E8(z)|+ 16|E8(2z)|) ≤ 19.35577645,

|E−8 (τ)| ≤ 1
15(|E8(τ)|+ 16|E8(2τ)|) ≤ 1080.478648.

Hence, for all rk ∈ {2, 4, 6, 8},
|E−rk(z)| |E−10−rk(τ)| ≤ 4613.738108.

In order to prove (2)(d)′, we compute

|E−2 (z)| ≤
(

1 + 24

∞∑
n=1

n3e−
√
2πn sin(2)

1− e−
√
2πn sin(2)

+ 2

(
1 + 24

∞∑
n=1

n3e−2
√
2πn sin(2)

1− e−2
√
2πn sin(2)

))
≤ 3.460102014,

|E−2 (τ)| ≤
(

1 + 24

∞∑
n=1

n3e−
√
2πn(0.4)

1− e−
√
2πn(0.4)

+ 2

(
1 + 24

∞∑
n=1

n3e−2
√
2πn(0.4)

1− e−2
√
2πn(0.4)

))
≤ 5.796531643,

|E−4 (z)| ≤ 1
3(|E4(z)|+ 4|E4(2z)|) ≤ 3.409788137,

|E−4 (τ)| ≤ 1
3(|E4(τ)|+ 4|E4(2τ)|) ≤ 16.58085726,

|E−6 (z)| ≤ 1
7(|E6(z)|+ 8|E6(2z)|) ≤ 3.572474692,

|E−6 (τ)| ≤ 1
7(|E6(τ)|+ 8|E6(2τ)|) ≤ 40.94172134,

|E−8 (z)| ≤ 1
15(|E8(z)|+ 16|E8(2z)|) ≤ 3.576888371,

|E−8 (τ)| ≤ 1
15(|E8(τ)|+ 16|E8(2τ)|) ≤ 109.3348694.
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Hence, for all rk ∈ {2, 4, 6, 8},

|E−rk(z)| |E−10−rk(τ)| ≤ 378.3098018.

Therefore, at τ = x + 0.3i, if k ≥ 0 and m ≥ `k + 8, then by [1,
Lemma 3.1(1)(a–d)] together with (1)(e)′ above we have

|G−(τ, z)| ≤
∣∣∣∣∆+

2 (z)

∆+
2 (τ)

∣∣∣∣`k |E−rk(z)| |E−10−rk(τ)|
|∆+

2 (τ)| |j+2 (τ)− j+2 (z)|
e2π(0.3)m

≤ (2.314348553)`k
4613.738108

0.02697058723 · 9.145597363︸ ︷︷ ︸
=:C1

(e0.6π)m.

Hence if k ≥ 0, then by [1, Lemma 3.1(1)],

|B−k |+ e
−2πm 1√

2
sin θ

1/2�

−1/2

∣∣∣∣G(x+ 0.3i,
1√
2
eiθ
)∣∣∣∣ dx

≤ |B−k |+ e−πm
1/2�

−1/2

∣∣∣∣G−(x+ 0.3i,
1√
2
eiθ
)∣∣∣∣ dx

≤ 1.036225459 + (2.314348553)`kC1(e
0.6π−π)m

≤ 1.036225459 + (2.314348553)`kC1(0.2846095432)m

≤ 1.036225459 + (2.314348553 · 0.2846095432)`k(0.2846095432)8C1

= 1.036225459 + 0.6586856845`k0.8052785386

< 1.841503998 < 1.9457196.

If k < 0, then `k < 0 and so if m ≥ −3`k + 8, then from (4), [1,
Lemma 3.1(1)(a–d)] and (1)(e)′ above we have

|B−k |+ e
−2πm 1√

2
sin θ

1/2�

−1/2

∣∣∣∣G−(x+ 0.3i,
1√
2
eiθ
)∣∣∣∣ dx

≤ |B−k |+ e−πm
1/2�

−1/2

∣∣∣∣G−(x+ 0.3i,
1√
2
eiθ
)∣∣∣∣ dx

≤ 1.8713088 + (4.008127019)−`kC1(e
0.6π−π)m

≤ 1.8713088 + (4.008127019)−`kC1(0.2846095432)m

≤ 1.8713088 + (4.008127019 · 0.28460954323)−`k(0.2846095432)8C1

= 1.8713088 + 0.09240380412−`k0.8052785386

< 1.9457196.
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Next, at τ = x+0.3i, if k ≥ 0 and m ≥ `k+8, then by [1, Lemma 3.1(2)(a–c)]
together with (2)(d)′ above we have

|G−(τ, z)| ≤
∣∣∣∣∆+

2 (z)

∆+
2 (τ)

∣∣∣∣`k |E−rk(z)| |E−10−rk(τ)|
|∆+

2 (τ)| |j+2 (τ)− j+2 (z)|
e2π(0.4)m

≤ (0.5509743592)`k
378.3098018

0.03690703328 · 0.61658483︸ ︷︷ ︸
=:C2

(e0.8π)m.

Hence if m ≥ `k + 6, then

e
−2πm 1√

2
sin θ

1/2�

−1/2

∣∣∣∣G−(x+ 0.4i,
1√
2
eiθ
)∣∣∣∣dx

≤ e−
√
2πm sin(2)

1/2�

−1/2

∣∣∣∣G−(x+ 0.4i,
1√
2
eiθ
)∣∣∣∣ dx

≤ (0.5509743592)`kC2(e
0.8π−

√
2π sin(2))m

≤ (0.5509743592)`kC2(0.2172670797)m

≤ (0.5509743592 · 0.2172670797)`k(0.2172670797)6C2

= 0.1197085901`k1.748675334 ≤ 1.748675334 < 1.9457196.

If m ≥ `k + 8, then m ≥ `k + 6, hence the above holds.

If k < 0, then by (4), [1, Lemma 3.1(2)(a–c)] and (2)(d)′ above again,

|G−(τ, z)| ≤
∣∣∣∣∆+

2 (τ)

∆+
2 (z)

∣∣∣∣−`k |E−rk(z)| |E−10−rk(τ)|
|∆+

2 (τ)| |j+2 (τ)− j+2 (z)|
e2π(0.4)m

≤ (3.850448548)−`kC2(e
0.8π)m.

Hence if m ≥ −3`k + 8, then

e
−2πm 1√

2
sin θ

1/2�

−1/2

∣∣∣∣G−(x+ 0.4i,
1√
2
eiθ
)∣∣∣∣dx

≤ e−
√
2πm sin(2)

1/2�

−1/2

∣∣∣∣G−(x+ 0.4i,
1√
2
eiθ
)∣∣∣∣ dx

≤ (3.850448548)−`kC2(e
0.8π−

√
2π sin(2))m

≤ (3.850448548)−`kC2(0.2172670797)m

≤ (3.850448548 · 0.21726707973)−`k(0.2172670797)8C2

= 0.03949054300−`k0.08254619103 ≤ 1 < 1.9457196.
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F+

W2(F
+)

a3

a′1

a′3

a′2

a1a2

F = F+ ∪W2(F+)

Fig. 1. Transformations of the boundary segments of F+ in F via W2

Proof of Theorem 1.5. Since f−k,m is the product of ∆+
2 , E−2,rk , and a

polynomial PD(j+2 (z)) in t(z) of degree D = m + `k by (2), and since ∆+
2

has no zero on H and the zeros of E−2,rk lie on S by Proposition 1.2, it is

enough to consider the zeros of PD(j+2 (z)). We show that all zeros in F+ of
PD(j+2 (z)) lie on S, and the number of zeros is D, the degree of PD. We note
that the arc S is transformed into W2(S) =

{
1√
2
e2πiθ : π/4 < θ < π/2

}
⊆ F

via W2, and that the left and right vertical boundaries of F+ are transformed
into the lower left arc and the lower right arc of the boundary of F via W2,
respectively, as shown in Fig. 1, and referring to [1, p. 319, Appendix A, (a)].
Therefore, all zeros in F of PD(j+2 (z)) lie on S ∪W2(S), which is a geodesic
inside F.

We can prove that all zeros in F+ of PD(j+2 (z)) lie on S by following
[1, p. 303, proof of Theorem 1.2] with 2 cos

(
kθ
2 − 2πm 1√

2
cos θ

)
replaced by

2 sin
(
kθ
2 − 2πm 1√

2
cos θ

)
and using

ieikθ/2e
−2πm 1√

2
sin θ

f−k,m

(
1√
2
eiθ
)

instead of eikθ/2e
−2πm 1√

2
sin θ

f−k,m
(

1√
2
eiθ
)

in Proposition 1.3 as a real-valued

function in [1] together with Lemma 1.12.

2. Interlacing of zeros of f−k,m. In this section, we obtain the same

result on the interlacing property of the zeros of f−k,m with zeros of another

such form as shown for f+k,m in [2]. The following is our second main result.

Theorem 2.1. Let ε > 0. Then for large enough k > 0 and each fixed
m ≥ `k + 8 (for large enough m ≥ `k + 8 when k is fixed, respectively), the
zeros of f−k,m(z) interlace with the zeros of fk+12,m(z) (resp. fk,m+1(z)) on
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the arc Aε and the arc AW2
ε respectively under the one-to-one correspondence

between zeros α of f−k,m in Aε and zeros W2α in AW2
ε , where

Aε = {eiθ/
√

2 : π/2 < θ < 3π/4− ε} ⊆ S,
AW2
ε = {eiθ/

√
2 : π/4− ε < θ < π/2} ⊆W2(S).

We sketch the proof of Theorem 2.1 which uses the same argument as
in [2] to show that the zeros of the sine functions (instead of the cosine
functions in [2]) of the following functions interlace and then we show the
interlacing of zeros of f−k,m with those of f−k+8,m and those of f−k,m+1. We
note that it is enough to prove the interlacing on Aε by transforming Aε by
the action of W2 into AW2

ε .

As in [2], we define, for θ ∈ I = (π/2, 3π/4),

b(θ) =
kθ

2
− 2πm

1√
2

cos θ =
kθ

2
−
√

2πm cos θ,

bk+8(θ) =
(k + 8)θ

2
−
√

2πm cos θ,

bm+1(θ) =
kθ

2
−
√

2π(m+ 1) cos θ.

From now on, b∗(θ) denotes bk+8(θ) or bm+1(θ) unless otherwise specified.

Lemma 2.2. If m ≥ 2|`k| − `k + 8, then

(a) the first zero in I (of sin(b(θ)) or sin(b∗(θ))) is a zero of sin(b∗(θ)),
(b) the last zero in I is a zero of sin(b∗(θ)),
(c) the zeros of sin(b∗(θ)) and sin(b(θ)) in I are never equal, and
(d) between two consecutive zeros of sin(b∗(θ)) there is exactly one zero of

sin(b(θ)).

That is, the zeros of sin(b(θ)) interlace on I with the zeros of sin(bk+8(θ))
and with the zeros of sin(bm+1(θ)) respectively.

Proof. We can proceed as in [2, proof of Lemma 3.1] by replacing cosine
functions by sine functions.

Throughout this section, we suppose that k > 0 to prove Theorem 2.1.

As in [14, Sec. 5] and [2], we estimate the zeros near θ = π/2 and near
θ = 3π/4. The linear approximations by the Taylor series for b and b∗ with
error term Rm(θ) are given by

Lk,m(θ) =
kπ

4
+
k + 2

√
2mπ

2

(
θ − π

2

)
,

Lk+8,m(θ) =
(k + 8)π

4
+
k + 8 + 2

√
2mπ

2

(
θ − π

2

)
,
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Lk,m+1(θ) =
kπ

4
+
k + 2

√
2(m+ 1)π

2

(
θ − π

2

)
.

Let α1, α2 and α3 be the first zeros of sin(Lk+8,m(θ)), sin(Lk,m(θ)) and
sin(Lk,m+1(θ)) in I respectively, and let β1, β2 and β3 be the first zeros of
sin(bk+8(θ)), sin(b(θ)) and sin(bm+1(θ)) in I respectively.

We note that by Lemma 2.2(a),

β2 > β1, β2 > β3.

Also we can get α1, α2, α3 explicitly from Lemma 2.3 below with

c =

{
π if k ≡ 0 mod 4,

π/2 if k ≡ 2 mod 4;

the proof of Lemma 2.3 is the same as that of [2, Lemma 4.1] with c defined
above.

Lemma 2.3. For i = 1, 2, 3,

αi =
π

2
+

2c

gi(k,m)
, where gi(k,m) =


k + 8 + 2

√
2mπ if i = 1,

k + 2
√

2mπ if i = 2,

k + 2
√

2 (m+ 1)π if i = 3.

Hence α2 > α1.

Next we obtain the following by adapting the arguments for cosine func-
tions in [2, proof of Lemma 4.2(a)] to sine functions:

Lemma 2.4. For some integers n1 and n2, we have

bk+8(β1) = n1π = Lk+8,m(α1), b(β2) = n2π = Lk,m(α2),

bk+8(α1) = n1π −Rm(α1), b(α2) = n2π −Rm(α2),

bm+1(β3) = Lk,m+1(α3).

In fact, n2 = n1 − 2.

Next, we find lower bounds near θ = 3π/4 concretely.
The linear approximations by the Taylor series for b and b∗ near θ = 3π/4

are

Uk,m(θ) =
(3k + 8m)π

8
+
k + 2mπ

2

(
θ − 3π

4

)
,

Uk+8,m(θ) =
(3(k + 8) + 8m)π

8
+
k + 8 + 2mπ

2

(
θ − 3π

4

)
,

Uk,m+1(θ) =
(3k + 8(m+ 1))π

8
+
k + 2(m+ 1)π

2

(
θ − 3π

4

)
.

Now let γ1, γ2 and γ3 be the last zeros of sin(Uk+8,m(θ)), sin(Uk,m(θ))
and sin(Uk,m+1(θ)) in I respectively, and let µ1, µ2 and µ3 be the last zeros
of sin(bk+8(θ)), sin(b(θ)) and sin(bm+1(θ)) in I respectively.
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We note that by Lemma 2.2(b),

µ2 < µ1, µ2 < µ3.

Also we can get γ1, γ2, γ3 explicitly from Lemma 2.5 below with

a =


π if k ≡ 0 mod 8,

3π/4 if k ≡ 4 mod 8,

π/2 if k ≡ 2 mod 8,

π/4 if k ≡ 6 mod 8;

the proof of Lemma 2.5 is a modification of [2, proof of Lemma 4.3] with a
defined above.

Lemma 2.5. For i = 1, 2, 3,

γi =
3π

4
− 2a

gi(k,m)
, where gi(k,m) =


k + 8 + 2mπ if i = 1,

k + 2mπ if i = 2,

k + 2(m+ 1)π if i = 3.

Hence γ1 > γ2.

Then, we can prove the following by adapting [2, proof of Lemma 4.4(a)]
to sine functions.

Lemma 2.6. For some integers n1 and n2, we have

bk+8(µ1) = n1π = Uk+8,m(γ1), b(µ2) = n2π = Uk,m(γ2),

bk+8(γ1) = n1π −Rm(γ1), b(γ2) = n2π −Rm(γ2).

In fact, n2 = n1 − 3.

Finally, Theorem 2.1 follows from the same argument as in [2, Sec-
tion 4.3] by replacing cosine functions by sine functions and by using the
bound D < 1.9457196 given in Lemma 1.12 and its proof in the previous
section.

3. Future work. As shown in this paper as well as in [1] and [10],
there are infinitely many weakly holomorphic modular forms for SL2(Z),
Γ0(2) and Γ+

0 (2) all of whose zeros lie on certain geodesics in the upper
half-plane. In future work, we hope to find infinitely many modular forms
for other arithmetic groups all of whose zeros lie on some geodesics in the
upper half-plane.
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