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DIFFERENTIAL GEOMETRY

Revisiting Liebmann’s theorem in higher codimension
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Summary. We deal with compact surfaces immersed with flat normal bundle and par-
allel normalized mean curvature vector field in a space form Q2+p

c of constant sectional
curvature c ∈ {−1, 0, 1}. Such a surface is called an LW-surface when it satisfies a linear
Weingarten condition of the type K = aH + b for some real constants a and b, where H
and K denote the mean and Gaussian curvatures, respectively. In this setting, we extend
the classical rigidity theorem of Liebmann (1899) showing that a non-flat LW-surface with
non-negative Gaussian curvature must be isometric to a totally umbilical round sphere.

1. Introduction and statement of the main result. The study of
surfaces immersed in a 3-dimensional Riemannian space form Q3

c of constant
sectional curvature c plays an important role in the theory of submanifolds.
In relation to this topic, in 1897 Hadamard [3] proved that an ovaloid, that
is, a compact connected surface with positive Gaussian curvature, in the
3-dimensional Euclidean space R3 is a topological sphere. In view of this
result, it was natural to look for conditions which allowed one to conclude
that such a surface was necessarily a totally umbilical round sphere. In
1899 Liebmann [5] obtained his celebrated rigidity result, which states that
every compact connected surface in R3 with constant Gaussian curvature is
necessarily a totally umbilical round sphere.

Later on, there have been different generalizations of Liebmann’s theo-
rem from several points of view for surfaces, and more generally hypersur-
faces, in the Euclidean space [4, 7, 8, 9, 10], or in the hyperbolic space or an
open hemisphere [6]. In [1], as an application of the Gauss–Bonnet theorem
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along with a formula involving the Gaussian curvatures of the first and sec-
ond fundamental forms of the surface, Aledo, Aĺıas and Romero established
a new direct proof of these results.

Here, we consider a wide class of surfaces M2 immersed in a (2 + p)-

dimensional space form Q2+p
c of constant sectional curvature c ∈ {−1, 0, 1},

which extend those of constant Gaussian curvature, the so-called linear
Weingarten surfaces or simply LW-surfaces. We recall that a surface is said
to be an LW-surface when its mean curvature H and its Gaussian curva-
ture K satisfy a linear relation of the type K = aH + b for some constants
a, b ∈ R. These surfaces were originally introduced by Weingarten [11, 12]
in the context of the problem of finding all surfaces of the Euclidean space
isometric to a prescribed surface of revolution. In this setting, we obtain
the following rigidity result which can be regarded as an extension of the
previously mentioned ones:

Theorem 1.1. Let M2 be a compact non-flat LW-surface immersed in a
Riemannian space form Q2+p

c of constant sectional curvature c ∈ {−1, 0, 1},
with flat normal bundle, parallel normalized mean vector field and such that
its Gaussian curvature K and mean curvature H satisfy K = aH + b with
a2+2(2b−c) ≥ 0. If K is non-negative on M2, then M2 is a totally umbilical
round sphere.

The proof of Theorem 1.1 is given in Section 3. Before, in Section 2 we
recall some basic facts concerning the geometry of surfaces immersed in a
space form.

2. Preliminaries. Let M2 be a connected surface immersed in a space
form Q2+p

c of constant sectional curvature c. We will use the following con-
vention on the range of indices:

1 ≤ A,B,C, . . . ≤ 2 + p, 1 ≤ i, j, k, . . . ≤ 2, 3 ≤ α, β, γ, . . . ≤ 2 + p.

We choose a local orthonormal frame field {e1, e2, e3, . . . , e2+p} along M2,
where {ei}i=1,2 are tangent to M2 and {eα}α=3,...,2+p are normal to M2. Let
{ωB} be the corresponding dual coframe, and {ωBC} the connection 1-forms

on Q2+p
c . The second fundamental form h, the curvature tensor R and the

normal curvature tensor R⊥ of M2 can be given by

ωiα =
∑
j

hαijωj , h =
∑
i,j,α

hαijωi ⊗ ωj ⊗ eα,

dωij =
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl,

dωαβ =
∑
γ

ωαγ ∧ ωγα −
1

2

∑
k,l

R⊥
αβklωk ∧ ωl.
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Moreover, the components hαijk of the covariant derivative ∇h satisfy

(2.1)
∑
k

hαijkωk = dhαij +
∑
k

hαkiωkj +
∑
k

hαkjωki +
∑
β

hβijωβα.

The Gauss equation is

(2.2) Rijkl = c(δikδjl − δilδjk) +
∑
α

(hαikh
α
jl − hαilhαjk).

In particular, the components of the Ricci tensor Rik are given by

(2.3) Rik = cδik + 2
∑
α

Hαhαik −
∑
α,j

hαijh
α
jk,

where Hα = 1
2

∑
i h

α
ii are the components of the mean curvature vector field

H =
∑

αH
αeα.

From (2.3) we get the relation

(2.4) 2K = −2 + 4H2 − S,
where K stands for the Gaussian curvature of M2, H = |H| is the mean
curvature function and S = |h|2 =

∑
i,j,α(hαij)

2 is the squared norm of the

second fundamental form h of M2.
Assuming that M2 has flat normal bundle (that is, R⊥ = 0), by exterior

differentiation of (2.1) we obtain the Ricci identity

(2.5) hαijkl − hαijlk =
∑
m

hαmjRmikl +
∑
m

hαimRmjkl.

Moreover, the Codazzi equation is given by

(2.6) hαijk = hαikj = hαjik.

3. Proof of Theorem 1.1. In what follows, we will deal with surfaces
M2 of Q2+p

c having parallel normalized mean curvature vector field, which
means that the mean curvature function H is positive and the corresponding
normalized mean curvature vector field H/H is parallel as a section of the
normal bundle.

In this context, we can choose a local orthonormal frame {e1, . . . , e2+p}
such that e3 = H/H. Thus,

(3.1) H3 = 1
2 tr(h3) = H and Hα = 1

2tr(hα) = 0, α ≥ 4,

where hα stands for the 2× 2 matrix (hαij).
We will consider the symmetric tensor

Φ =
∑
α,i,j

Φαijωi ⊗ ωj ⊗ eα,

where Φαij = hαij −Hαδij . Consequently,

(3.2) Φ3
ij = h3ij −Hδij and Φαij = hαij , 4 ≤ α ≤ 2 + p.



182 J. G. Araújo and H. F. de Lima

Let |Φ|2 =
∑

i,j,α(Φαij)
2 be the square of the length of Φ. From (2.4), it

is not difficult to verify that Φ is traceless with

(3.3) |Φ|2 = S − 2H2 = 2(c+H2 −K).

In order to prove Theorem 1.1, we will also need the following key lemma
which is obtained by just adapting the proof of [13, Proposition 2.2]:

Lemma 3.1. Let M2 be an LW-surface immersed in Q2+p
c , with K =

aH + b for some a, b ∈ R such that a2 + 8(b− c) ≥ 0. Then

(3.4) |∇h|2 ≥ 4|∇H|2.

Moreover, if equality holds in (3.4) on M2, then H is constant on M2.

Now, we are in a position to present the proof of Theorem 1.1.

Proof of Theorem 1.1. We have

(3.5) 1
2∆S =

∑
i,j,α

hαij∆h
α
ij +

∑
i,j,k,α

(hαijk)
2,

where the Laplacian ∆hαij of hαij is defined by ∆hαij =
∑

k h
α
ijkk. Using the

Codazzi equation (2.6) in (3.5) we obtain

(3.6) 1
2∆S = |∇h|2 +

∑
i,j,k,α

hαijh
α
kijk.

Thus, from (2.5), (3.1) and (3.6), we conclude that

1
2∆S = |∇h|2 +

∑
i,j

nHn+1
ij hn+1

ij +
∑

i,j,m,k,α

hαijh
α
miRmkjk(3.7)

+
∑

i,j,k,m,α

hαijh
α
kmRmijk.

Consequently, taking a (local) orthonormal frame {e1, e2} on M2 such that
hαij = λαi δij for every α, from (3.7) we obtain the Simons-type formula

(3.8) 1
2∆S = |∇h|2 +

∑
i

λ3i (2H)ii +
1

2

∑
i,j,α

Rijij(λ
α
i − λαj )2.

We define an appropriate modified Cheng–Yau operator by

(3.9) L = �− 1
2a∆,

where the square operator is defined by

(3.10) �f =
∑
i,j

(2Hδij − h3ij)fij

for each f ∈ C∞(M).
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Setting f = 2H in (3.10), we obtain

�(2H) = 2H∆(2H)−
∑
i

λ3i (2H)ii(3.11)

= 1
2∆(2H)2 −

∑
i

(2H)2i −
∑
i

λ3i (2H)ii

= ∆R+ 1
2∆S − 4|∇H|2 −

∑
i

λ3i (2H)ii.

Consequently, inserting (3.8) into (3.11) we get

(3.12) �(2H) = ∆R+ |∇h|2 − 4|∇H|2 +
1

2

∑
i,j,α

Rijij(λ
α
i − λαj )2.

Since R = aH + b, from (3.9) and (3.12) we have

(3.13) L(2H) = |∇h|2 − 4|∇H|2 +
1

2

∑
i,j

Rijij(λ
α
i − λαj )2.

From the Gauss equation we have

(3.14) Rijij = c+
∑
β

λβi λ
β
j .

Hence, using (3.14), (2.4) and (3.3) we have

1

2

∑
i,j,α

Rijij(λ
α
i − λαj )2 =

∑
α

R1212(λ
α
1 − λα2 )2(3.15)

=
(
c+

∑
β

λβ1λ
β
2

)∑
α

(λα1 − λα2 )2

= 2

(
c+

∑
β

(
|hβ|2

2
− |Φβ|2

))
|Φ|2

= 2

(
c+

S

2
− |Φ|2

)
|Φ|2

= |Φ|2(−|Φ|2 + 2H2 + 2c) = 2K|Φ|2.

Thus, using Lemma 3.1 and since we are supposing that K is non-negative
on M2, from (3.13) and (3.15) we get

(3.16) L(H) ≥ K|Φ|2 ≥ 0.

On the other hand, from (3.9) and (3.10) it is not difficult to verify that

(3.17) L(H) = divM (P (∇H)),

where P = (2H + a/2)I − h3 and I denotes the identity in the algebra of
smooth vector fields on M2.
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From (3.16) and (3.17), integrating L(H) on M2, which is supposed
be compact, we obtain L(H) = 0 on M2. So, returning to (3.13) we get
|∇h|2 = 4|∇H|2 on M2. Thus, using once more Lemma 3.1 we conclude
that H is constant on M2. Consequently, since K = aH + b and M2 is also
assumed be non-flat, from (3.16) we infer that |Φ| vanishes identically, and
therefore M2 is totally umbilical.

Consequently, since M2 is totally umbilical and taking into account (3.1),
we get

hα = 〈H, eα〉I = HαI = 0

for every α > 3. This implies that the first normal subspace

N1 = {eα ∈ X⊥(M); hα = 0}⊥

is parallel and has dimension 1. Therefore, we can apply [2, Proposition 4.1]
to reduce the codimension of M2 to 1 and we conclude that it must be
isometric to a totally umbilical round sphere.
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