Revisiting Liebmann's theorem in higher codimension

by
Jogli G. ARAÚJO and Henrique F. DE LIMA

Presented by Tadeusz JANUSZKIEWICZ

Abstract

Summary. We deal with compact surfaces immersed with flat normal bundle and parallel normalized mean curvature vector field in a space form \mathbb{Q}_{c}^{2+p} of constant sectional curvature $c \in\{-1,0,1\}$. Such a surface is called an $L W$-surface when it satisfies a linear Weingarten condition of the type $K=a H+b$ for some real constants a and b, where H and K denote the mean and Gaussian curvatures, respectively. In this setting, we extend the classical rigidity theorem of Liebmann (1899) showing that a non-flat LW-surface with non-negative Gaussian curvature must be isometric to a totally umbilical round sphere.

1. Introduction and statement of the main result. The study of surfaces immersed in a 3-dimensional Riemannian space form \mathbb{Q}_{c}^{3} of constant sectional curvature c plays an important role in the theory of submanifolds. In relation to this topic, in 1897 Hadamard [3] proved that an ovaloid, that is, a compact connected surface with positive Gaussian curvature, in the 3-dimensional Euclidean space \mathbb{R}^{3} is a topological sphere. In view of this result, it was natural to look for conditions which allowed one to conclude that such a surface was necessarily a totally umbilical round sphere. In 1899 Liebmann [5] obtained his celebrated rigidity result, which states that every compact connected surface in \mathbb{R}^{3} with constant Gaussian curvature is necessarily a totally umbilical round sphere.

Later on, there have been different generalizations of Liebmann's theorem from several points of view for surfaces, and more generally hypersurfaces, in the Euclidean space [4, 7, 8, ,9, 10], or in the hyperbolic space or an open hemisphere [6]. In [1], as an application of the Gauss-Bonnet theorem

[^0]along with a formula involving the Gaussian curvatures of the first and second fundamental forms of the surface, Aledo, Alías and Romero established a new direct proof of these results.

Here, we consider a wide class of surfaces M^{2} immersed in a $(2+p)$ dimensional space form \mathbb{Q}_{c}^{2+p} of constant sectional curvature $c \in\{-1,0,1\}$, which extend those of constant Gaussian curvature, the so-called linear Weingarten surfaces or simply $L W$-surfaces. We recall that a surface is said to be an LW-surface when its mean curvature H and its Gaussian curvature K satisfy a linear relation of the type $K=a H+b$ for some constants $a, b \in \mathbb{R}$. These surfaces were originally introduced by Weingarten [11, 12] in the context of the problem of finding all surfaces of the Euclidean space isometric to a prescribed surface of revolution. In this setting, we obtain the following rigidity result which can be regarded as an extension of the previously mentioned ones:

Theorem 1.1. Let M^{2} be a compact non-flat $L W$-surface immersed in a Riemannian space form \mathbb{Q}_{c}^{2+p} of constant sectional curvature $c \in\{-1,0,1\}$, with flat normal bundle, parallel normalized mean vector field and such that its Gaussian curvature K and mean curvature H satisfy $K=a H+b$ with $a^{2}+2(2 b-c) \geq 0$. If K is non-negative on M^{2}, then M^{2} is a totally umbilical round sphere.

The proof of Theorem 1.1 is given in Section 3. Before, in Section 2 we recall some basic facts concerning the geometry of surfaces immersed in a space form.
2. Preliminaries. Let M^{2} be a connected surface immersed in a space form \mathbb{Q}_{c}^{2+p} of constant sectional curvature c. We will use the following convention on the range of indices:

$$
1 \leq A, B, C, \ldots \leq 2+p, \quad 1 \leq i, j, k, \ldots \leq 2, \quad 3 \leq \alpha, \beta, \gamma, \ldots \leq 2+p
$$

We choose a local orthonormal frame field $\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{2+p}\right\}$ along M^{2}, where $\left\{e_{i}\right\}_{i=1,2}$ are tangent to M^{2} and $\left\{e_{\alpha}\right\}_{\alpha=3, \ldots, 2+p}$ are normal to M^{2}. Let $\left\{\omega_{B}\right\}$ be the corresponding dual coframe, and $\left\{\omega_{B C}\right\}$ the connection 1-forms on \mathbb{Q}_{c}^{2+p}. The second fundamental form h, the curvature tensor R and the normal curvature tensor R^{\perp} of M^{2} can be given by

$$
\begin{aligned}
\omega_{i \alpha} & =\sum_{j} h_{i j}^{\alpha} \omega_{j}, \quad h=\sum_{i, j, \alpha} h_{i j}^{\alpha} \omega_{i} \otimes \omega_{j} \otimes e_{\alpha} \\
d \omega_{i j} & =\sum_{k} \omega_{i k} \wedge \omega_{k j}-\frac{1}{2} \sum_{k, l} R_{i j k l} \omega_{k} \wedge \omega_{l} \\
d \omega_{\alpha \beta} & =\sum_{\gamma} \omega_{\alpha \gamma} \wedge \omega_{\gamma \alpha}-\frac{1}{2} \sum_{k, l} R_{\alpha \beta k l}^{\perp} \omega_{k} \wedge \omega_{l}
\end{aligned}
$$

Moreover, the components $h_{i j k}^{\alpha}$ of the covariant derivative ∇h satisfy

$$
\begin{equation*}
\sum_{k} h_{i j k}^{\alpha} \omega_{k}=d h_{i j}^{\alpha}+\sum_{k} h_{k i}^{\alpha} \omega_{k j}+\sum_{k} h_{k j}^{\alpha} \omega_{k i}+\sum_{\beta} h_{i j}^{\beta} \omega_{\beta \alpha} . \tag{2.1}
\end{equation*}
$$

The Gauss equation is

$$
\begin{equation*}
R_{i j k l}=c\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+\sum_{\alpha}\left(h_{i k}^{\alpha} h_{j l}^{\alpha}-h_{i l}^{\alpha} h_{j k}^{\alpha}\right) . \tag{2.2}
\end{equation*}
$$

In particular, the components of the Ricci tensor $R_{i k}$ are given by

$$
\begin{equation*}
R_{i k}=c \delta_{i k}+2 \sum_{\alpha} H^{\alpha} h_{i k}^{\alpha}-\sum_{\alpha, j} h_{i j}^{\alpha} h_{j k}^{\alpha}, \tag{2.3}
\end{equation*}
$$

where $H^{\alpha}=\frac{1}{2} \sum_{i} h_{i i}^{\alpha}$ are the components of the mean curvature vector field $\mathbf{H}=\sum_{\alpha} H^{\alpha} e_{\alpha}$.

From (2.3) we get the relation

$$
\begin{equation*}
2 K=-2+4 H^{2}-S, \tag{2.4}
\end{equation*}
$$

where K stands for the Gaussian curvature of $M^{2}, H=|\mathbf{H}|$ is the mean curvature function and $S=|h|^{2}=\sum_{i, j, \alpha}\left(h_{i j}^{\alpha}\right)^{2}$ is the squared norm of the second fundamental form h of M^{2}.

Assuming that M^{2} has flat normal bundle (that is, $R^{\perp}=0$), by exterior differentiation of 2.1 we obtain the Ricci identity

$$
\begin{equation*}
h_{i j k l}^{\alpha}-h_{i j l k}^{\alpha}=\sum_{m} h_{m j}^{\alpha} R_{m i k l}+\sum_{m} h_{i m}^{\alpha} R_{m j k l} . \tag{2.5}
\end{equation*}
$$

Moreover, the Codazzi equation is given by

$$
\begin{equation*}
h_{i j k}^{\alpha}=h_{i k j}^{\alpha}=h_{j i k}^{\alpha} . \tag{2.6}
\end{equation*}
$$

3. Proof of Theorem 1.1. In what follows, we will deal with surfaces M^{2} of \mathbb{Q}_{c}^{2+p} having parallel normalized mean curvature vector field, which means that the mean curvature function H is positive and the corresponding normalized mean curvature vector field \mathbf{H} / H is parallel as a section of the normal bundle.

In this context, we can choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{2+p}\right\}$ such that $e_{3}=\mathbf{H} / H$. Thus,

$$
\begin{equation*}
H^{3}=\frac{1}{2} \operatorname{tr}\left(h^{3}\right)=H \quad \text { and } \quad H^{\alpha}=\frac{1}{2} \operatorname{tr}\left(h^{\alpha}\right)=0, \alpha \geq 4, \tag{3.1}
\end{equation*}
$$

where h^{α} stands for the 2×2 matrix $\left(h_{i j}^{\alpha}\right)$.
We will consider the symmetric tensor

$$
\Phi=\sum_{\alpha, i, j} \Phi_{i j}^{\alpha} \omega_{i} \otimes \omega_{j} \otimes e_{\alpha},
$$

where $\Phi_{i j}^{\alpha}=h_{i j}^{\alpha}-H^{\alpha} \delta_{i j}$. Consequently,

$$
\begin{equation*}
\Phi_{i j}^{3}=h_{i j}^{3}-H \delta_{i j} \quad \text { and } \quad \Phi_{i j}^{\alpha}=h_{i j}^{\alpha}, 4 \leq \alpha \leq 2+p . \tag{3.2}
\end{equation*}
$$

Let $|\Phi|^{2}=\sum_{i, j, \alpha}\left(\Phi_{i j}^{\alpha}\right)^{2}$ be the square of the length of Φ. From 2.4), it is not difficult to verify that Φ is traceless with

$$
\begin{equation*}
|\Phi|^{2}=S-2 H^{2}=2\left(c+H^{2}-K\right) \tag{3.3}
\end{equation*}
$$

In order to prove Theorem 1.1, we will also need the following key lemma which is obtained by just adapting the proof of [13, Proposition 2.2]:

Lemma 3.1. Let M^{2} be an $L W$-surface immersed in \mathbb{Q}_{c}^{2+p}, with $K=$ $a H+b$ for some $a, b \in \mathbb{R}$ such that $a^{2}+8(b-c) \geq 0$. Then

$$
\begin{equation*}
|\nabla h|^{2} \geq 4|\nabla H|^{2} \tag{3.4}
\end{equation*}
$$

Moreover, if equality holds in (3.4) on M^{2}, then H is constant on M^{2}.
Now, we are in a position to present the proof of Theorem 1.1.
Proof of Theorem 1.1. We have

$$
\begin{equation*}
\frac{1}{2} \Delta S=\sum_{i, j, \alpha} h_{i j}^{\alpha} \Delta h_{i j}^{\alpha}+\sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2} \tag{3.5}
\end{equation*}
$$

where the Laplacian $\Delta h_{i j}^{\alpha}$ of $h_{i j}^{\alpha}$ is defined by $\Delta h_{i j}^{\alpha}=\sum_{k} h_{i j k k}^{\alpha}$. Using the Codazzi equation (2.6) in (3.5) we obtain

$$
\begin{equation*}
\frac{1}{2} \Delta S=|\nabla h|^{2}+\sum_{i, j, k, \alpha} h_{i j}^{\alpha} h_{k i j k}^{\alpha} \tag{3.6}
\end{equation*}
$$

Thus, from (2.5, (3.1) and (3.6), we conclude that

$$
\begin{align*}
\frac{1}{2} \Delta S= & |\nabla h|^{2}+\sum_{i, j} n H_{i j}^{n+1} h_{i j}^{n+1}+\sum_{i, j, m, k, \alpha} h_{i j}^{\alpha} h_{m i}^{\alpha} R_{m k j k} \tag{3.7}\\
& +\sum_{i, j, k, m, \alpha} h_{i j}^{\alpha} h_{k m}^{\alpha} R_{m i j k} .
\end{align*}
$$

Consequently, taking a (local) orthonormal frame $\left\{e_{1}, e_{2}\right\}$ on M^{2} such that $h_{i j}^{\alpha}=\lambda_{i}^{\alpha} \delta_{i j}$ for every α, from 3.7 we obtain the Simons-type formula

$$
\begin{equation*}
\frac{1}{2} \Delta S=|\nabla h|^{2}+\sum_{i} \lambda_{i}^{3}(2 H)_{i i}+\frac{1}{2} \sum_{i, j, \alpha} R_{i j i j}\left(\lambda_{i}^{\alpha}-\lambda_{j}^{\alpha}\right)^{2} \tag{3.8}
\end{equation*}
$$

We define an appropriate modified Cheng-Yau operator by

$$
\begin{equation*}
L=\square-\frac{1}{2} a \Delta \tag{3.9}
\end{equation*}
$$

where the square operator is defined by

$$
\begin{equation*}
\square f=\sum_{i, j}\left(2 H \delta_{i j}-h_{i j}^{3}\right) f_{i j} \tag{3.10}
\end{equation*}
$$

for each $f \in C^{\infty}(M)$.

Setting $f=2 H$ in 3.10, we obtain

$$
\begin{align*}
\square(2 H) & =2 H \Delta(2 H)-\sum_{i} \lambda_{i}^{3}(2 H)_{i i} \tag{3.11}\\
& =\frac{1}{2} \Delta(2 H)^{2}-\sum_{i}(2 H)_{i}^{2}-\sum_{i} \lambda_{i}^{3}(2 H)_{i i} \\
& =\Delta R+\frac{1}{2} \Delta S-4|\nabla H|^{2}-\sum_{i} \lambda_{i}^{3}(2 H)_{i i}
\end{align*}
$$

Consequently, inserting (3.8) into (3.11) we get

$$
\begin{equation*}
\square(2 H)=\Delta R+|\nabla h|^{2}-4|\nabla H|^{2}+\frac{1}{2} \sum_{i, j, \alpha} R_{i j i j}\left(\lambda_{i}^{\alpha}-\lambda_{j}^{\alpha}\right)^{2} \tag{3.12}
\end{equation*}
$$

Since $R=a H+b$, from (3.9) and (3.12 we have

$$
\begin{equation*}
L(2 H)=|\nabla h|^{2}-4|\nabla H|^{2}+\frac{1}{2} \sum_{i, j} R_{i j i j}\left(\lambda_{i}^{\alpha}-\lambda_{j}^{\alpha}\right)^{2} \tag{3.13}
\end{equation*}
$$

From the Gauss equation we have

$$
\begin{equation*}
R_{i j i j}=c+\sum_{\beta} \lambda_{i}^{\beta} \lambda_{j}^{\beta} \tag{3.14}
\end{equation*}
$$

Hence, using (3.14), (2.4) and (3.3) we have

$$
\begin{align*}
\frac{1}{2} \sum_{i, j, \alpha} R_{i j i j}\left(\lambda_{i}^{\alpha}-\lambda_{j}^{\alpha}\right)^{2} & =\sum_{\alpha} R_{1212}\left(\lambda_{1}^{\alpha}-\lambda_{2}^{\alpha}\right)^{2} \tag{3.15}\\
& =\left(c+\sum_{\beta} \lambda_{1}^{\beta} \lambda_{2}^{\beta}\right) \sum_{\alpha}\left(\lambda_{1}^{\alpha}-\lambda_{2}^{\alpha}\right)^{2} \\
& =2\left(c+\sum_{\beta}\left(\frac{\left|h^{\beta}\right|^{2}}{2}-\left|\Phi^{\beta}\right|^{2}\right)\right)|\Phi|^{2} \\
& =2\left(c+\frac{S}{2}-|\Phi|^{2}\right)|\Phi|^{2} \\
& =|\Phi|^{2}\left(-|\Phi|^{2}+2 H^{2}+2 c\right)=2 K|\Phi|^{2}
\end{align*}
$$

Thus, using Lemma 3.1 and since we are supposing that K is non-negative on M^{2}, from (3.13) and (3.15 we get

$$
\begin{equation*}
L(H) \geq K|\Phi|^{2} \geq 0 \tag{3.16}
\end{equation*}
$$

On the other hand, from (3.9) and 3.10 it is not difficult to verify that

$$
\begin{equation*}
L(H)=\operatorname{div}_{M}(P(\nabla H)) \tag{3.17}
\end{equation*}
$$

where $P=(2 H+a / 2) I-h^{3}$ and I denotes the identity in the algebra of smooth vector fields on M^{2}.

From (3.16) and (3.17), integrating $L(H)$ on M^{2}, which is supposed be compact, we obtain $L(H)=0$ on M^{2}. So, returning to (3.13) we get $|\nabla h|^{2}=4|\nabla H|^{2}$ on M^{2}. Thus, using once more Lemma 3.1 we conclude that H is constant on M^{2}. Consequently, since $K=a H+b$ and M^{2} is also assumed be non-flat, from (3.16) we infer that $|\Phi|$ vanishes identically, and therefore M^{2} is totally umbilical.

Consequently, since M^{2} is totally umbilical and taking into account (3.1), we get

$$
h^{\alpha}=\left\langle\mathbf{H}, e_{\alpha}\right\rangle I=H^{\alpha} I=0
$$

for every $\alpha>3$. This implies that the first normal subspace

$$
N_{1}=\left\{e_{\alpha} \in \mathfrak{X}^{\perp}(M) ; h^{\alpha}=0\right\}^{\perp}
$$

is parallel and has dimension 1. Therefore, we can apply [2, Proposition 4.1] to reduce the codimension of M^{2} to 1 and we conclude that it must be isometric to a totally umbilical round sphere.

Acknowledgements. The first author was partially supported by INCTMat/CAPES, Brazil. The second author was partially supported by CNPq, Brazil, grant 303977/2015-9.

References

[1] J. A. Aledo, L. J. Alías and A. Romero, A new proof of Liebmann classical rigidity theorem for surfaces in space forms, Rocky Mountain J. Math. 35, (2005), 1811-1824.
[2] M. Dajczer, Submanifolds and Isometric Immersions, Math. Lect. Ser. 13, Publish or Perish, Houston, TX, 1990.
[3] J. Hadamard, Sur certaines propriétés des trajectoires en dynamique, J. Math. Pures Appl. 3 (1897), 331-387.
[4] D. Koutroufiotis, Two characteristic properties of the sphere, Proc. Amer. Math. Soc. 44 (1974), 176-178.
[5] H. Liebmann, Eine neue Eigenschaft der Kugel, Nachr. Königl. Ges. Wiss. Göttingen Math.-Phys. Kl. 1899, 44-55.
[6] S. Montiel and A. Ros, Compact hypersurfaces: The Alexandrov theorem for higher order mean curvatures, in: Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math. 52, Longman Sci. Tech., Harlow, 1991, 279-296.
[7] A. Ros, Compact hypersurfaces with constant higher order mean curvatures, Rev. Mat. Iberoamer. 3 (1987), 447-453.
[8] A. Ros, Compact hypersurfaces with constant scalar curvature and a congruence theorem, J. Differential Geom. 27 (1988), 215-220.
[9] R. Schneider, Closed convex hypersurfaces with second fundamental form of constant curvature, Proc. Amer. Math. Soc. 35 (1972), 230-233.
[10] U. Simon, Characterizations of the sphere by the curvature of the second fundamental form, Proc. Amer. Math. Soc. 55 (1976), 382-384.
[11] J. Weingarten, Ueber eine Klasse auf einander abwickelbarer Flächen, J. Reine Angew. Math. 59 (1861), 382-393.
[12] J. Weingarten, Ueber die Flächen, derer Normalen eine gegebene Fläche berühren, J. Reine Angew. Math. 62 (1863), 61-63.
[13] D. Yang and Z. Hou, Linear Weingarten spacelike submanifolds in de Sitter space, J. Geom. 103 (2012), 177-190.

Jogli G. Araújo Henrique F. de Lima (corresponding author)
Departamento de Matemática
Departamento de Matemática
Universidade Federal Rural de Pernambuco Universidade Federal de Campina Grande
52.171-900 Recife, Pernambuco, Brazil 58.429-970 Campina Grande, Paraíba, Brazil

E-mail: jogli.silva@ufrpe.br
E-mail: henrique@mat.ufcg.edu.br

[^0]: 2010 Mathematics Subject Classification: Primary 53C42; Secondary 53A10, 53C20.
 Key words and phrases: space forms, compact LW-surfaces, parallel normalized mean curvature vector field, totally umbilical round spheres.
 Received 29 May 2019.
 Published online 17 June 2019.

