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Abstract. Let Z(t) = ζ( 1
2 + it)χ−1/2( 1

2 + it) denote as usual Hardy’s function, where ζ(s) =
χ(s)ζ(1 − s) is the functional equation for the Riemann zeta-function ζ(s). It is proved that, for
t > t0 > 0,

max
T6t6T+H,Z(t)>0

Z(t) � (log T )1/4 (T θ+ε 6 H 6 T ),

max
T6t6T+H,Z(t)<0

−Z(t) � (log T )1/4 (T θ+ε 6 H 6 T ),

where θ = 17
110 = 0.1545. A similar result is shown for large values of Z(k)(t), where k > 1 is a

fixed integer. Several related topics are also discussed.

1. Introduction and statement of results. Let the Riemann zeta-function be, as
usual,

ζ(s) =
∞∑
n=1

n−s (<s > 1).

For <s 6 1 one defines ζ(s) by analytic continuation (see the monographs of H. M. Ed-
wards [8], the author [14], [16] and E. C. Titchmarsh [27] for the properties of ζ(s)).
Bounds for large values of |ζ(s)|, and in particular for |ζ( 1

2 + it)|, have been always of
great interest. A. Bondarenko and K. Seip [6] recently proved the following result. Let
0 < β < 1 be given and let c satisfy

0 < c <
√

min(1/2, 1− β).
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10 A. IVIĆ

Then, for T > T0 (> 0), there exists t ∈ [T β , T ] such that

|ζ( 1
2 + it)| > exp

(
c

√
log T log log log T

log log T

)
. (1.1)

The lower bound in (1.1) improves, by a factor of
√

log log log T in the exponential, on
previous results of H. L. Montgomery [24], R. Balasubramanian [2], R. Balasubramanian–
K. Ramachandra [25] and K. Soundararajan [26]. In particular, R. Balasubramanian–
K. Ramachandra ([25], Th. 3.2.1) stated the more general result that

max
T6t6T+H

|ζ( 1
2 + it)| > exp

(
B

√
logH

log logH

)
(log log T � H 6 T ) (1.2)

with B = 0.75. In [26] K. Soundararajan indicated that the method actually allows
B = 0.530 . . . in (1.2).

On the other hand, it seems also interesting to investigate the occurrence of large
values of Hardy’s function (see the author’s monograph [19] for its properties)

Z(t) := ζ( 1
2 + it)

(
χ( 1

2 + it)
)−1/2

, ζ(s) = χ(s)ζ(1− s),

so that

χ(s) =
Γ( 1

2 (1− s))
Γ( 1

2s)
πs−1/2.

It follows that Z(t) is a smooth, real-valued function of the real variable t, for which

|Z(t)| = |ζ( 1
2 + it)|.

Thus the bound in (1.1) (or (1.2)) is attained either for Z(t) or for −Z(t), but one cannot
say for which. Hence it seems of interest to find large positive values of Z(t) in [T, T +H]
for suitable 0 < H 6 T , or small negative values in the same interval. No results seem
to exist in this direction, and the methods used in obtaining (1.1) and (1.2) do not work
here. Some results about the distribution of positive and negative values of Z(t) were
recently obtained by S. M. Gonek and the author [9]. In particular, it was proved there
that

µ
(
I

(0)
+ (T, T )

)
� T and µ

(
I

(0)
− (T, T )

)
� T,

where µ(·) denotes the Lebesgue measure and, for a fixed integer k > 0,

I
(k)
+ (T,H) =

{
t : (T 6 t 6 T +H) ∧ (Z(k)(t) > 0)

}
,

I
(k)
− (T,H) =

{
t : (T 6 t 6 T +H) ∧ (Z(k)(t) < 0)

}
.

(1.3)

In this work we shall obtain some results on large values of Z(k)(t) (the k-th deriva-
tive of Z(t)) and some related topics. The symbol �ε will mean that the �-constant
depends on ε, an arbitrarily small, positive constant, not necessarily the same one at each
occurrence.
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Theorem 1. For T > T0 > 0 we have
max

t∈I(0)
+ (T,H)

Z(t) = max
T6t6T+H,Z(t)>0

Z(t)� (log T )1/4 (T θ+ε 6 H 6 T ),

max
t∈I(0)
− (T,H)

(
−Z(t)

)
= max
T6t6T+H,Z(t)<0

(
−Z(t)

)
� (log T )1/4 (T θ+ε 6 H 6 T ),

(1.4)

where
θ = 17

110 = 0.1545. (1.5)

Theorem 2. For k > 1 a fixed integer let θ1 = min
( 3

37 , µ( 1
2 )
)

+ ε, and

θk = min
{

2κ+ 2λ− 1
4k + 8κ+ 4λ + ε,

1
k
µ( 1

2 ) + ε

}
(k > 2). (1.6)

Here µ(σ) = lim sup
t→∞

log |ζ(σ + it)|/ log t, and (κ, λ) is an exponent pair. Then, for

T θk 6 H 6 T , we have

max
t∈I(k)

+ (T,H)
Z(k)(t)� logk T,

max
t∈I(k)
− (T,H)

(
−Z(k)(t)

)
� logk T.

(1.7)

Note that Theorem 2 is a sort of generalization of Theorem 1.

Theorem 3. Let ζ( 1
2 + iT ) = 0, and let Z(t) be monotonic in [T, T + H] for some

H = H(T ) satisfying T ε 6 H 6 T 1/6. Then, for (κ, λ) as before and T 6 t 6 T + 3H/4,

ζ( 1
2 + it)�ε T

(κ+λ)/2−1/4+εH−2κ−λ. (1.8)

This result essentially says that, if the difference between two consecutive zeros of Z(t)
is large, then |ζ( 1

2 + it)| between these zeros is relatively small. To assess the strength of
(1.8), we can take, e.g., the exponent pair (2.6) in (1.8). Then we obtain

ζ( 1
2 + it)�ε T

13/84+εH−81/84 (T 6 t 6 T + 3H/4, ζ( 1
2 + iT ) = 0) (1.9)

and Z(t) is monotonic in [T, T +H]. In particular, if these conditions are satisfied, then
with H = T 1/81 it follows that

ζ( 1
2 + it)�ε T

1/7+ε (1/7 = 0.142857). (1.10)

The bound (1.10) is still not known to hold unconditionally (see (2.7)). Even this is far
from the (yet unproved) Lindelöf Hypothesis that ζ( 1

2 + it)�ε t
ε.

2. Exponent pairs and a special exponential sum. The proofs of all three theorems
reduce to the estimation of a special type of exponential sum, namely

S = S(M,T ) :=
∑

M<m6M ′62M
exp
(
iT log(Q−m)

)
, Q = [(T/(2π))1/2], (2.1)

where [x] is the greatest integer not exceeding x, M ′ is a fixed integer in the range
M < M ′ 6 2M ,M assumes one of the O(log T ) valuesM = T 1/2+εH−12−j , j = 1, 2, . . . ,
and T ε 6 H 6 T 1/6. Here one can take advantage of the fact that the exponential sum
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in (2.1) is of a special nature, since n = Q − m is close to (T/(2π))1/2. This idea was
already exploited by A. A. Karatsuba [21], and in the author’s works [14], [15] and [16].
For the sake of completeness, it will be given here in some detail.

If Q = [(T/(2π))1/2], then for some θ satisfying 0 6 θ < 1 we have T = 2π(Q + θ)2.
Therefore

T log(Q−m)− T logQ = −T
∞∑
j=1

(m/Q)jj−1

= −2πQm− 2π(2Qθ + θ2)mQ−1 − πm2

− 2π(2Qθ + θ2)m2(2Q2)−1 − T
(
m3

3Q3 + m4

4Q4 + . . .

)
.

Taking into account that exp(2πir) = 1 for any integer r and considering separately even
and odd m (to get rid of the term πm2 in the above expression) we obtain

|S| 6 |S′|+ |S′′|,

where both sums S′ and S′′ are estimated analogously. Here S′ arises from even values
of m and equals

S′ =
∑

M1<m6M ′162M1

exp
(
2πif(m)

)
(M �M1 �M),

where we set

f(x) = b1x+ b2x
2 + T

2π

(
(2x)3

3Q3 + (2x)4

4Q4 + . . .

)
,

b1 = 2(2Qθ + θ2)Q−1 � 1, b2 = b1Q
−1 � Q−1.

(2.2)

If 1 � M � T 1/4, then we use Lemma 2.6 (with k = 3, K = 2k−1 = 4, λ3 = T−1/2)
of [14] to obtain S � T 5/24. If M � T 1/4 and M1 6 x 6 2M1, then we have f ′(x) � 1
and, as x→∞,

f (k)(x) = (ck + o(1))x3−kT−1/2 (k 6 3),

f (k)(x) = (ck + o(1))T 1−k/2 (k > 3).
In this case we shall estimate S′ by van der Corput’s classical theory of exponent pairs.
This method explained in detail in Chapter 2 of [14]. The precise (technical) definition of
an exponent pair is given there on top of p. 80, but in many instances (including (2.2))
it suffices to have f(x) ∈ Cr[B, 2B] for some r > 5, and moreover the derivatives of f(x)
for x ∈ [B, 2B] and r = 1, 2, . . . satisfy

AB1−r �r |f (r)(x)| �r AB
1−r. (2.3)

If A� |f ′(x)| � A, A > 1/2 then (κ, λ) is an exponent pair if 0 6 κ 6 1
2 6 λ 6 1 and∑

B<n6B+h
e(f(n))� AκBλ

(
B > 1, 1 < h 6 B, e(x) = exp(2πix)

)
. (2.4)

Trivially (0, 1) is an exponent pair, and if (κ, λ) is an exponent pair, so is also

(k, `) =
(

κ

2κ+ 2 ,
1
2 + λ

2κ+ 2

)
, (k, `) = (λ− 1

2 , κ+ 1
2 ).
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The first process of forming new exponent pairs is called the A-process, and the second
one the B-process, as shown in Lemma 2.8 and Lemma 2.9 of [14]. Additionally the set
of exponent pairs is trivially a convex set of two-dimensional points, and the process of
forming exponent pairs through convexity is called the C-process.

There are, however, possibilities to construct exponent pairs which do not arise from
the trivial one by applying the A-, B- or C-process. Historically the first such pair was

(κ1, λ1) =
(

9
56 + ε,

37
56 + ε

)
, (2.5)

obtained in the pioneering works of E. Bombieri and H. Iwaniec [4], [5]. The more recent
work on this subject was done by M. N. Huxley (see e.g., [11], [12], [13]), who elaborated
on the ideas of Bombieri–Iwaniec. The new exponent pairs were obtained by refining the
original Bombieri–Iwaniec method. J. Bourgain [7] recently showed that

(κ0, λ0) =
(

13
84 + ε,

55
84 + ε

)
(2.6)

is another exponent pair which does not arise by the use of classical theory. Both exponent
pairs in (2.5) and (2.6) have λ = κ+ 1/2, but κ0 < κ1. In [7] Bourgain also proved that

ζ( 1
2 + it)�ε |t|13/84+ε,

13
84 = 0.154761 . . . , (2.7)

which is currently the best result of its kind. Note that 53/342 > θ = 17/110 of Theo-
rem 1.

The function f(x) in (2.2) does not satisfy directly the definition of exponent pairs,
although f (k)(x) �k x

3−kT−1/2 for k > 3, which is also satisfied for 1 6 k 6 3. But, as
explained in [15], if we apply the A-process and then the B-process to the exponential
sum S′, we obtain an exponential sum to which the theory of exponent pairs may be
applied. In other words, if (κ, λ) = BA(p, q) for an exponent pair (p, q), then since the
order of f ′(x) is M2T−1/2, it follows that

S′ � (M2T−1/2)κMλ (T 1/4 �M � T 1/2).

Thus, in the whole range for M ,

|S′|+ |S′′| �M2κ+λT−κ/2 + T 5/24.

Therefore the sum in (2.1) satisfies

S �ε T
ε
(
(T 1/2H−1)2κ+λT−κ/2 + T 5/24). (2.8)

3. Proof of Theorem 1. Suppose that 0 < H 6 T and that k > 0 is a fixed integer.
The first step in both the proofs of Theorem 1 and Theorem 2 is to observe that, in view
of (1.3),∫ T+H

T

Z(k)(t)ϕ(t)dt =
∫
I

(k)
+ (T,H)

Z(k)(t)ϕ(t)dt+
∫
I

(k)
− (T,H)

Z(k)(t)ϕ(t)dt,

∫ T+H

T

|Z(k)(t)|ϕ(t)dt =
∫
I

(k)
+ (T,H)

Z(k)(t)ϕ(t)dt−
∫
I

(k)
− (T,H)

Z(k)(t)ϕ(t)dt.
(3.1)
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Here ϕ(t) is a smooth, nonnegative function, supported in [T, T +H], such that ϕ(t) = 1
when T +H/4 6 t 6 T + 3H/4. For an explicit construction of such a function, see e.g.,
Lemma 4.3 of the author’s monograph [16]. We have

ϕ(r)(t)�r H
−r (r = 0, 1, 2, . . .). (3.2)

On adding the two expressions in (3.1) it follows that∫
I

(k)
+ (T,H)

Z(k)(t)ϕ(t)dt = 1
2

(∫ T+H

T

Z(k)(t)ϕ(t)dt+
∫ T+H

T

|Z(k)(t)|ϕ(t)dt
)
, (3.3)

and subtracting them one has∫
I

(k)
− (T,H)

Z(k)(t)ϕ(t)dt = 1
2

(∫ T+H

T

Z(k)(t)ϕ(t)dt−
∫ T+H

T

|Z(k)(t)|ϕ(t)dt
)
.

The proofs of both bounds in (1.4) are analogous, so only the first one will be considered
in detail. We remark that the sets in (1.3) are non-empty in view of (3.4) and (3.5) below.
We start from (3.3) with k = 0, noting that, for log log T � H 6 T ,∫ T+H

T

|Z(t)|ϕ(t)dt >
∫ T+3H/4

T+H/4
|ζ( 1

2 + it)|dt� H(logH)1/4. (3.4)

For the second lower bound inequality in (3.4) see e.g., K. Ramachandra [25]. If we can
prove that, for H = T θ+ε with θ given by (1.5),∫ T+H

T

Z(t)ϕ(t)dt� H, (3.5)

then from (3.3) with k = 0, (3.4) and (3.5) it follows that

H max
T6t6T+H,Z(t)>0

Z(t) >
∫ T+H

T,Z(t)>0
|Z(t)|ϕ(t)dt�

∫ T+H

T

|Z(t)|ϕ(t)dt� H(logH)1/4.

This gives the first bound in (1.4), if T θ+ε 6 H 6 T . Namely if this bound holds with
H = T θ+ε, it obviously holds for larger H as well.

To see how one obtains (3.5), with H as in Theorem 1, one proceeds as in Section 10.3
of [14] or Section 2.4 of [16], using a weak form of the so-called Riemann–Siegel formula
for Z(t), namely the asymptotic formula

Z(t) = 2
∑

n6
√
t/(2π)

n−1/2 cos
(
t log

√
t/(2π)
n

− t

2 −
π

8

)
+O(t−1/4). (3.6)

We restrict first H to the range 0 < H 6 T 1/4, and insert (3.6) in the integral in (3.5).
Consider the terms for which |n−

√
t/(2π)| > 2T 1/2+εH−1. It follows that one has then

|n−
√
T/(2π)| > T 1/2+εH−1, in view of our range for H. Then each integration by parts

of these terms in (3.5) leads to a similar integral as before, which is smaller by a factor
which is� T−ε. After integrating sufficiently many times by parts, with the aid of (3.2),
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it is seen that these make a contribution which is �ε 1, namely negligible. Analogously
to (10.37) of [14] one obtains∫ T+H

T

Z(t)ϕ(t)dt�ε HT
ε−1/4

+HT ε−1/4
∑
M

max
M ′

∣∣∣ ∑
M<m6M ′<2M

exp
(
iT log(Q−m)

)∣∣∣, (3.7)

where Q = [(T/(2π))1/2], and
∑
M

denotes summation over O(log T ) values

M = 2−jT 1/2+εH−1, j = 1, 2, . . . .

The exponential sum in (3.7) is the same as the one in (2.1). Thus we may use (2.8) to
deduce that the integral in (3.7) is

�ε HT
ε−1/4(T 5/24 + (T 1/2H−1)2κ+λT−κ/2)�ε H

if
H = T (2κ+2λ−1)/(8κ+4λ)+ε. (3.8)

Choosing (κ, λ) = A(κ0, λ0), with (κ0, λ0) given by (2.6), we have
2κ+ 2λ− 1

8κ+ 4λ = κ0 + λ0

4(κ0 + λ0) + 2 . (3.9)

Therefore with the exponent pair (2.6) we obtain θ = 17/110 + ε, as asserted by (1.5).
Note that we can take θ1 ≡ θ = 17/110 + ε in (2.1). The previous value θ1 arose from

the exponent pair

(κ, λ) = ( 1
2α+ ε, 1

2 + 1
2α+ ε), α = 0.329021356 . . . ,

which minimizes κ+λ by the use of classical processes for the creation of exponent pairs.
One has then

κ+ λ

4(κ+ λ) + 2 = θ1 + ε,

but the use of Bourgain’s exponent pair gives a better result.
The preceding proof is related to the method used in [14, Chapter 10] to prove that

tn+1 − tn �ε t
α+ε
n , α = 0.15594583 . . . , (3.10)

where 0 < t1 6 t2 6 t3 . . . are the zeros of Z(t) (counted with their multiplicities), or
equivalently the ordinates of zeros of ζ(s) on the “critical line” <s = 1/2. Note that α in
(3.10) is larger than the value θ = 17/110 + ε in (1.5), which comes from the use of the
new exponent pair (2.6). The use of this exponent pair would yield also α = 17/110 + ε

in (3.10).

4. Proof of Theorem 2. The main idea of proof is the same as in the proof of Theo-
rem 1. It suffices to consider the first bound (1.7), as the other one is proved analogously.
We start from (3.1), and it will be shown that, for k ∈ N fixed∫ T+H

T

|Z(k)(t)|ϕ(t)dt� H(log T )k (T ε 6 H 6 T ) (4.1)



16 A. IVIĆ

and that, with H = T θk (see (1.6)),∫ T+H

T

Z(k)(t)ϕ(t)dt�ε H. (4.2)

From (3.3), (4.1) and (4.2) it follows then that

H logk T �
∫ T+H

T

|Z(k)(t)|ϕ(t)dt�
∫
I

(k)
+ (T,H)

Z(k)(t)ϕ(t)dt 6 H max
t∈I(k)

+ (T,H)
Z(k)(t),

which yields the first bound in (1.7). For the integral in (4.1), it may be supposed with-
out loss of generality that T/2+π/8 = 2πK, K ∈ N, and we assume that T ε 6 H 6 T 1/6.
Setting P =

√
T/(2π) we have the approximate functional equation (see p. 59 of

A. A. Karatsuba [21])

Z(k)(t) = (−1)k/2 2
∑
n6P

(
log P

n

)k
n−1/2 cos(t logP − t logn) +O(T−1/4 logk+1 T ). (4.3)

It can be obtained, e.g., on simplifying by Taylor’s formula the expression for Z(k)(t)
given by Theorem 5.2 of [19]. We insert (4.3) in (4.1), noting that

2 cos
(
t logP − t logn

)
= eit logP (e−it logn + e−it log(T/(2πn))),

since P =
√
T/(2π). This gives∫ T+H

T

|Z(k)(t)|ϕ(t)dt

>
∫ T+H

T

ϕ(t)
∣∣∣∣∑
n6P

(
log P

n

)k
n−1/2(e−it logn + e−it log(T/(2πn)))∣∣∣∣dt

+O(HT−1/4 logk+1 T )

>

∣∣∣∣∫ T+H

T

ϕ(t)
∑
n6P

(
log P

n

)k
n−1/2(e−it logn + e−it log(T/(2πn))) dt∣∣∣∣

+O(HT−1/4 logk+1 T ).

Therefore the problem reduces to the estimation of the integrals

S1 :=
∫ T+H

T

ϕ(t)
∑
n6P

(
log P

n

)k
n−1/2e−it logn dt,

S2 :=
∫ T+H

T

ϕ(t)
∑
n6P

(
log P

n

)k
n−1/2e−it log(T/(2πn)) dt.

In S1 the term with n = 1 contributes∫ T+H

T

ϕ(t)(logP )k dt� H(logP )k.

Now note that, if α is real and α 6= 0, r integrations by parts give∫ T+H

T

ϕ(t)eiαt dt = (−1)r

(iα)r

∫ T+H

T

ϕ(r)(t)eiαt dt. (4.4)
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Recall that (3.2) says that
ϕ(r)(t)�r H

−r (r = 0, 1, 2, . . .).
In S1 one has, for n > 1, α = − logn� log 2, and in S2 one has

α = − log(T/(2πn))� log T.
Thus, if r = r(ε) is sufficiently large, in view of H > T ε and (4.4) the terms n > 1 in S1
and all the terms in S2 make a contribution which is� 1, that is, negligible. This finishes
the proof of (4.1).

The formula (4.3) shows that each differentiation introduces a factor logP/n in the
sum in (4.3). Thus, in view of (3.4), which is the case k = 0 of the integral in (4.1), it
seems reasonable to expect that one even has∫ T+H

T

|Z(k)(t)|dt� H(log T )k+1/4 (T ε 6 H 6 T ). (4.5)

Proving (4.5) does not seem easy.
To establish (4.2), we use (4.3). The major contribution comes from

<
{∫ T+H

T

ϕ(t)
∑
n6P

(
log P

n

)k
n−1/2 exp(it log(P/n))dt

}

= <
{∑
n6P

(
log P

n

)k
n−1/2

∫ T+H

T

ϕ(t) exp(it log(P/n))dt
}
. (4.6)

Since P =
√
T/(2π), on using (4.4) it is seen that the terms in (4.6) for which

|n −
√
T/(2π)| > T 1/2+εH−1 make a negligible contribution. This is similar to the dis-

cussion leading to (3.7). With Q = [P ] and the substitution n = Q−m, as in (2.1), one
obtains precisely the exponential sum (2.1), weighted by the monotonic factor(

log P
n

)k
�k,ε T

εH−k,

which may be conveniently removed with partial summation. What remains is an ex-
ponential sum of the type (2.1), which is estimated by (2.8). Thus the integral in (4.2)
is

�ε,k H
1−kT ε

(
(T 1/2H−1)2κ+λT−κ/2−1/4 + T−1/24)�ε,k H

if H = T θk with
θk 6

2κ+ 2λ− 1
4k + 8κ+ 4λ + ε.

The value θ1 = 3/37 = 0.081 follows on taking
(κ, λ) = (4/11, 11/18) = BA(2/7, 4/7).

To obtain the other value θk 6 µ( 1
2 )/k + ε, note that after k integrations by parts the

integral in (4.2) becomes

(−1)k
∫ T+H

T

ϕ(k)(t)Z(t)dt� H1−k max
t∈[T+H]

|ζ( 1
2 + it)| � H

for H = T θk with θk 6 µ( 1
2 )/k + ε, as asserted. This completes the proof of Theorem 2.
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5. Proof of Theorem 3. First note that, under the hypotheses of Theorem 3,

|ζ( 1
2 + it)| =

∣∣∣∫ t

T

Z ′(t)dt
∣∣∣ 6 ∣∣∣∫ T+H

T

ψ(t)Z ′(t)dt
∣∣. (5.1)

Here ψ(t) (> 0) is a smooth function constructed in the following way. If t ∈ [T, T+3H/4],
then ψ(t) = 1, and ψ(t) = 0 for t > T +H. Moreover, ψ′(t)� H−1. The second integral
in (5.1) is

−
∫ T+H

T

ψ′(t)Z(t)dt,

and this leads again to the exponential sum in (2.1), weighted by the factor ψ′(t)� 1/H.
Using again (2.8) we have

ζ( 1
2 + it)�ε T

ε
(
(T 1/2H−1)2κ+λT−κ/2−1/4 + T−1/24)

�ε T
(κ+λ)/2−1/4+εH−2κ−λ + T ε−1/24.

(5.2)

Therefore we obtain (1.8) and (1.9) with the exponent pair (2.6). This completes the
proof of Theorem 3. It is similar to the second part of Theorem 2 in [15]. The condition
ζ( 1

2 + iT ) = 0 is not so restrictive, as if this happens, there is a H0 (> 0) such that Z(t)
is monotonic in [T, T + H0]. In fact, it is well known that under the Riemann Hypoth-
esis (RH) the zeros of Z(t) and Z ′(t) are interlacing, namely that Z ′(t) has exactly one
zero between two consecutive zeros of Z(t) (see e.g., H. M. Edwards [8]). R. J. Ander-
son [1] showed that the zeros of Z ′(t) and Z ′′(t) are also interlacing (RH). More recently
K. Matsuoka [23] showed that the zeros of Z(n)(t) and Z(n+1)(t) are also interlacing for
n = 2, 3, . . . (RH). But unconditionally, what can one say about the number of zeros
of Z ′(t) between two consecutive zeros tn, tn+1 of Z(t)? If the number of such zeros is
denoted by M(n), is it true that M(n) = O(logn)? The analogous question can be asked
about the zeros of Z(k)(t) in general. R. J. Anderson [1] proved that

N (1)(T ) 6 T

2π log T

2π −
T

2π +O(log T ), (5.3)

where N (1)(T ) denotes the number of zeros of Z ′(t) in [0, T ]. Moreover, if the RH holds,
then he showed that equality holds in (5.3). If equality holds unconditionally, this would
imply that

lim sup
n→∞

M(n)
logn = +∞

cannot hold.

6. Some remarks. In this section some remarks pertaining to Theorem 1 and related
topics are presented.

Remark 1. One can prove without difficulty that

max
T6t6T+H,Z(t)>0

Z(t)� (log T )1/4 (T 1/4 6 H 6 T ), (6.1)

and similarly

max
T6t6T+H,Z(t)<0

−Z(t)� (log T )1/4 (T 1/4 6 H 6 T ). (6.2)



ON LARGE VALUES OF HARDY’S FUNCTION Z(t) AND ITS DERIVATIVES 19

The bounds are the same as in (1.3) and (1.4), but the range for H is poorer. To see this,
note that we have (this corresponds to ϕ(t) ≡ 1, t ∈ [T, T +H] in (3.1) for k = 0)∫ T+H

T,Z(t)>0
Z(t)dt = 1

2

(∫ T+H

T

Z(t)dt+
∫ T+H

T

|Z(t)|dt
)
,

and similarly ∫ T+H

T,Z(t)<0
Z(t)dt = 1

2

(∫ T+H

T

Z(t)dt−
∫ T+H

T

|Z(t)|dt
)
.

Let now T 1/4 6 H 6 T . Then from∫ T

0
Z(t)dt = O(T 1/4) (6.3)

we get ∫ T+H

T

Z(t)dt = O(T 1/4).

The bound in (6.3) was proved independently by M. Jutila [20] and M. Korolev [22], who
used different methods in their proofs. It follows that∫ T+H

T,Z(t)>0
Z(t)dt� H(log T )1/4 (T 1/4 6 H 6 T ),

and one obtains (6.1). The proof of (6.2) is analogous.

Remark 2. The bounds in (1.4) are much weaker than the ones in (1.1) and (1.2).
However, Theorem 1 provides good localization of large positive and small negative values
of Z(t). An improvement of the power of the logarithm in Theorem 1 would follow e.g.,
if one had good upper bounds for higher odd moments of Z(t). At present, nothing but
trivial bounds is known (see the monograph [19]). For example, the best one can currently
get for the cubic moment of Z(t) is∣∣∣∫ T

0
Z3(t)dt

∣∣∣ 6 ∫ T

0
|Z3(t)|dt =

∫ T

0
|ζ( 1

2 + it)|3 dt� T (log T )9/4.

The last bound is a recent result of S. Bettin, V. Chandee and M. Radziwiłł [3].

It was stated by the author in [19] that it is plausible that one has∫ T

0
Z3(t)dt = Oε(T 3/4+ε). (6.4)

In fact, it is known (see equation (11.9) of [19]) that∫ 2T

T

Z3(t)dt = 2π
√

2
3

∑
(T/2π)3/26n6(T/π)3/2

d3(n)n−1/6 cos
(
3πn2/3 + 1

8π
)

+Oε(T 3/4+ε),

where d3(n) (generated by ζ3(s)) is the number of ways n can be represented as a product
of three natural numbers. Thus the problem of evaluating the cubic moment of Z(t)
reduces to the estimation of the exponential sum on the right-hand side of the above
equation.
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Unconditionally it is known (see K. Ramachandra [25]) that∫ T+H

T

|Z(t)|3 dt =
∫ T+H

T

|ζ( 1
2 + it)|3 dt� H(logH)9/4 (log log T � H 6 T ). (6.5)

Using (6.4), (6.5) and an argument similar to the one above it would follow that∫ T+H

T,Z(t)>0
Z3(t)dt = 1

2

(∫ T+H

T

|Z(t)|3 dt+
∫ T+H

T

Z3(t)dt
)

� H(log T )9/4 (T 3/4+ε 6 H 6 T ).

This yields

max
T6t6T+H,Z(t)>0

Z(t)� (log T )3/4 (T 3/4+ε � H 6 T ),

and the analogous lower bound

max
T6t6T+H,Z(t)<0

−Z(t)� (log T )3/4 (T 3/4+ε � H 6 T ).

Remark 3. Another possibility, similar to the one above, is to try proving the bound∫ 2T

T

Z(t) |Z(t)|dt = O(T ), (6.6)

which seems to be of independent interest. There is massive cancellation in the primitive
of Z(t), as witnessed by (6.3). Thus it seems plausible that (6.6) should hold (or even a
stronger bound). We have∫ 2T

T

Z(t) |Z(t)|dt =
∫ 2T

T,Z(t)>0
Z(t) |Z(t)|dt+

∫ 2T

T,Z(t)<0
Z(t) |Z(t)|dt

=
∫ 2T

T,Z(t)>0
|ζ( 1

2 + it)|2 dt−
∫ 2T

T,Z(t)<0
|ζ( 1

2 + it)|2 dt.

Similarly we obtain∫ 2T

T

|ζ( 1
2 + it)|2 dt =

∫ 2T

T,Z(t)>0
|ζ( 1

2 + it)|2 dt+
∫ 2T

T,Z(t)<0
|ζ( 1

2 + it)|2 dt.

Adding these relations we infer that∫ 2T

T,Z(t)>0
|ζ( 1

2 + it)|2 dt = 1
2

(∫ 2T

T

|ζ( 1
2 + it)|2 dt+

∫ 2T

T

Z(t) |Z(t)|dt
)

= 1
2 T log T +O(T ),

where we used (6.6) and the elementary formula∫ T

0
|ζ( 1

2 + it)|2 dt = T log T +O(T ).

We obtain
1
2 T log T +O(T ) 6 T max

T6t62T, Z(t)>0
Z2(t).

This implies
max

T6t62T, Z(t)>0
Z(t) >

√
1
2 log T +O(1) ,
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and a similar bound for −Z(t) when Z(t) < 0. Of course, the problem of proving (6.6)
remains. We note that (6.6) is equivalent to∫ 2T

T,Z(t)>0
|ζ( 1

2 + it)|2 dt = 1
2 T log T +O(T ).

Remark 4. Let 0 < γ1 6 γ2 6 γ3 6 . . . denote ordinates of complex zeros of the
Riemann zeta-function, with multiplicities counted. If the Riemann Hypothesis holds,
then

{γn}∞n=1 ≡ {tn}
∞
n=1.

However, for the difference tn+1 − tn only the (unconditional) bound (3.10) is known.
For γn+1 − γn a much better bound holds, which is to be expected, since there are at
least as many γn’s as there are tn’s in any finite interval. Namely from Theorem 9.12 of
E. C. Titchmarsh [27] it follows that unconditionally, for some A > 0, n > n0,

γn+1 − γn 6
A

log log log γn
. (6.7)

R. R. Hall and W. K. Hayman [8] showed that any constant A > π/2 is permissible
in (6.7).

Remark 5. The result of Theorem 1 is unconditional. However, it seems difficult to
obtain sharper lower bounds even if one assumes the Riemann Hypothesis.

Remark 6. In the author’s papers [17], [18] small values of the zeta-function on the
critical line and gaps between consecutive zeros are investigated. A conditional result, on
the RH and the so called Gaussian unitary ensemble hypothesis (GUE), states that for
almost all γn (≡ tn)

max
γn6t6γn+1

|Z(t)| ≡ max
γn6t6γn+1

|ζ( 1
2 + it)| > γn+1 − γn.

In other words, most of the time the maximum of |Z(t)| between its two consecutive zeros
is larger than the gap between these zeros.

The GUE hypothesis states that, on the RH and with

0 6 α < β <∞, δn = 1
2π (γn+1 − γn) log

(
γn
2π

)
,

we have ∑
γn6T,δn∈[α,β]

1 =
(∫ β

α

p(0, u)du+ o(1)
) T

2π log
(
T

2π

)
(T →∞). (6.8)

The function p(0, u) (and the related function p(k, u)) is a certain probabilistic density,
given by complicated functions defined in terms of linear prolate spheroidal wave func-
tions. We have

1−
(

sin πu
πu

)2
=
∞∑
k=0

p(k, u),

p(0, u) = 1
3 π

3u2 − 2
15 π

4u4 + 1
315 π

6u6 + . . . (u→ 0+),
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and
log p(0, u) = −π

2

8 + o(1) (u→∞).

The asymptotic formula (6.8) is to be compared with the classical Riemann–von Mangoldt
formula (see e.g., Chapter 1 of [14])∑

γn6T

1 = T

2π log
(
T

2π

)
− T

2π +O(log T ).

Remark 7. If one considers large values not of Z(t), but of its primitive, namely

F (t) :=
∫ t

0
Z(u)du,

then the following result holds. There exist positive constants A,B such that every in-
terval [x, x+A

√
x ], for x > x0 > 0, contains two points x1, x2 for which

F (x1) > Bx
1/4
1 , F (x2) < −Bx1/4

2 . (6.9)
The omega-results in (6.9) follow from Theorem 1 of M. A. Korolev [22] with

x = 2πN2, A > 2π
√

2π, ϑ = 1
2 ,

and N even or odd, respectively.
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