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Abstract. We show that every sufficiently large positive integer congruent to 2 modulo 4 can
be written as the sum of two positive integers, each having only prime factors congruent to 1
modulo 4.

Responding to a question of Euler we show how the following result can be quickly
deduced from results in the modern literature:

Theorem. Every sufficiently large positive integer congruent to 2 modulo 4 can be writ-
ten as the sum of two positive integers, each having only prime factors congruent to 1
modulo 4.

This asymptotically answers a question of Euler ([2], letter to Goldbach) which has
been repeatedly enquired about by Lemmermeyer on mathematical websites [5, 6]. As
Lemmermeyer [6, 7] describes, Euler considered a result like this a possible path to
prove the four squares theorem, which he seriously attempted, but which was eventu-
ally proved by Lagrange. Important partial results towards Euler’s question are due to

2010 Mathematics Subject Classification: Primary 1N25; Secondary 11E25, 11N36, 11P32.
Key words and phrases: Binary additive problem, question of Euler, sums of integers with mul-
tiplicative constraints.
The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc118-11 [177] c© Instytut Matematyczny PAN, 2019



178 R. DIETMANN AND C. ELSHOLTZ

R. D. James [4], who in the ternary case proved that every positive integer congruent to
3 modulo 4 can be written as the sum of three numbers composed only of prime factors
congruent to 1 modulo 4. Moreover, using Brun’s sieve, he obtained an approximation
to the binary case to the effect that each large positive integer congruent to 2 modulo 4
can be written as the sum of two integers each having at most two prime factors not con-
gruent to 1 modulo 4. The ternary case allows for an elementary proof, based on Gauß’
theorem on the sum of three triangular numbers: any positive integer k can be written
as

k = x(x − 1)
2 + y(y − 1)

2 + z(z − 1)
2

and therefore

4k + 3 = [x2 + (x − 1)2] + [y2 + (y − 1)2] + [z2 + (z − 1)2].

Observe that x2 + (x − 1)2, y2 + (y − 1)2 and z2 + (z − 1)2 are each a sum of two adjacent
squares, and thus cannot be divisible by any prime p ≡ 3 (mod 4).1

We now show that the theorem is a consequence of a well known result of the late
George Greaves [3] that uses Iwaniec’s half dimensional sieve. Independently of our work
and also based on Greaves’ result, Schinzel [8] proved a related conjecture of Turán on
representing integers as sums of four squares being coprime in pairs. By Greaves [3], each
sufficiently large n with n ≡ 2 (mod 4) can be written in the form

n = p2 + q2 + x2 + y2

for primes p, q and integers x, y, and the number of such representations is at least

A
n

(log n)5/2 + o

(
n

(log n)5/2

)
for an absolute constant A > 0. Clearly the contribution coming from p = 2 or q = 2 is
of a smaller order of magnitude: if, say, p = 2, then there are O(n1/2) many possibilities
for q. Using the familiar bound r(n) �ε nε for the number of representations of a positive
integer n as a sum of two squares of integers, as r(n − 4 − q2) �ε nε, the total number
of possibilities for q, x and y in case of p = 2 is Oε(n1/2+ε). So we may assume that both
p and q are odd primes. Then n ≡ 2 (mod 4) implies that both x and y are even. If we
write

a = p2 + x2 and b = q2 + y2

both a and b are odd. Taking multiplicities into account, we conclude with r(a), r(b) =
Oε(nε) that there are at least

n1−3ε (1)

many pairs (a, b) of odd positive integers a, b, such that n = a + b and both a and b are
the sum of the square of a prime and the square of an integer. Now suppose that w is
a prime with w ≡ 3 (mod 4) and w divides a = p2 + x2, say. The footnote, with s = p

being prime, implies that p = w and x is divisible by w. There are at most O(1+n1/2/w)

1Here and in the following we make use of the following simple observation following imme-
diately from the Two Squares Theorem: if a prime p ≡ 3 (mod 4) divides a sum s2 + t2, then p
divides both s and t.
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many values of a divisible by w, and for any such a there will be only one corresponding b

since a + b = n. The same argument applies if w divides b. Moreover, clearly w can be
at most n1/2. Summing over all such w we conclude that the number of pairs (a, b) with
a + b = n and a, b of the form above, where one of a and b is divisible by any prime
congruent to 3 mod 4, is at most O(n1/2 log log n), which is of smaller order of magnitude
than (1). Since we have excluded all prime factors p of a and b with p = 2 or p ≡ 3
(mod 4), this finishes the proof.
Remark. As in [8] our argument based on [3] is ineffective regarding “sufficiently
large n”. Using the circle method with a Kloosterman refinement instead, Brüdern [1]
in particular obtained an effective version of Schinzel’s result. It should be possible to ap-
ply the same strategy to our problem here but it was our intention to keep the exposition
brief.

A quite different asymptotic solution of Euler’s problem was posted by the mathover-
flow user with pseudonym Lucia (see [6]).

One could also ask the corresponding question of writing every sufficiently large pos-
itive integer congruent to 2 modulo 4 as the sum of two integers composed only of prime
factors congruent to 3 modulo 4, but this problem seems to be out of reach of existing
methods.
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