Polynomials defining many units in function fields

by

MOHAMED EL KATI and HASSAN OUKHABA (Besançon)

1. Introduction. Recently Osnel Broche and Ángel del Río [1] succeeded in classifying the polynomials with integral coefficients which give units when evaluated on *n*th roots of a fixed integer *a* for infinitely many integers *n*. The proof uses, among other things, the result proved in [3] that if *K* is a number field and *S* is a finite set of places of *K* containing the archimedean places, then the Diophantine equation X + Y = 1 has only finitely many solutions (u, v) such that *u* and *v* are *S*-units in *K*.

The purpose of this article is to study the same question in the case of global function fields, by using the Carlitz cyclotomic theory developed in [2]. More precisely, we fix a finite field \mathbb{F}_q , where q is the power of some prime number p. Let $k = \mathbb{F}_q(T)$ be the field of rational functions in the variable T over \mathbb{F}_q . Let k^{ac} be an algebraic closure of k. Let $\mathbb{F}_q[T]$ be the subring of polynomials in T. Let us briefly recall the Carlitz action of $\mathbb{F}_q[T]$ on k^{ac} . Let $\mathbb{F}_q[T]{\varphi}$ be the \mathbb{F}_q -algebra generated by $\mathbb{F}_q[T]$ together with another element φ satisfying

(1)
$$\varphi \cdot M = M^q \cdot \varphi$$
 for all $M \in \mathbb{F}_q[T]$.

Any element of $\mathbb{F}_q[T]\{\varphi\}$ is uniquely written as a polynomial in φ with coefficients in $\mathbb{F}_q[T]$. Addition in $\mathbb{F}_q[T]\{\varphi\}$ is done in the usual way. For multiplication we use the above rule (1). Here we should mention that $\mathbb{F}_q[T]\{\varphi\}$ is the non-commutative ring denoted by $\mathbb{F}_q[T][t, S]$ by Nathan Jacobson in [6, Chap. 3, §1, p. 29] where t is an indeterminate and S is the Frobenius automorphism $x \mapsto x^q$ of k^{ac} . Let $D : \mathbb{F}_q[T]\{\varphi\} \to \mathbb{F}_q[T]$ be the homomorphism of rings that assigns to an element $f = \sum_{i=0}^m b_i \varphi^i$ its constant term b_0 . Then

²⁰¹⁰ Mathematics Subject Classification: Primary 16U60; Secondary 11R60.

Key words and phrases: Carlitz modules, polynomials defining units, cyclotomic polynomials.

Received 10 October 2017; revised 13 August 2018. Published online 23 July 2019.

there exists a unique injective homomorphism of rings

$$\rho: \mathbb{F}_q[T] \to \mathbb{F}_q[T]\{\varphi\}$$

such that if we denote by ρ_M the image of $M \in \mathbb{F}_q[T]$ then

- $D(\rho_a) = a$ for all $a \in \mathbb{F}_q[T]$.
- $\rho_T = \varphi + T.$

In particular, $\rho_a = a$ for all $a \in \mathbb{F}_q$. If $M \in \mathbb{F}_q[T]$, then it is proved in [4, Proposition 1.1] that

(2)
$$\rho_M = \sum_{i=0}^d \begin{bmatrix} M \\ i \end{bmatrix} \varphi^i,$$

where d is the degree of M, $\begin{bmatrix} M \\ 0 \end{bmatrix} = M$, $\begin{bmatrix} M \\ d \end{bmatrix}$ is the leading coefficient of M and in general each $\begin{bmatrix} M \\ i \end{bmatrix}$ is a polynomial in $\mathbb{F}_q[T]$ of degree $(d-i)q^i$.

The polynomial in X with coefficients in $\mathbb{F}_q[T]$ defined by

$$\rho_M(X) = \sum_{i=0}^d \begin{bmatrix} M \\ i \end{bmatrix} X^{q^i}$$

is called the *Carlitz polynomial* associated to M. We will also denote it by X^M . For instance $X^T = \rho_T(X) = X^q + TX$ and $X^a = aX$ for $a \in \mathbb{F}_q$. One may use Carlitz polynomials to define an action of $\mathbb{F}_q[T]$ on k^{ac} : if $u \in k^{\mathrm{ac}}$ then the action of M on u, denoted by u^M , is defined by

$$u^M = \rho_M(u).$$

This action has been intensively studied in the literature and is referred to as the *Carlitz module*, which is a special case of the general theory of Drinfeld modules. It was applied by David Hayes [4] to obtain an explicit description of the maximal abelian extension of k. Let Λ_M be the set of roots of the polynomial $X^M = \rho_M(X)$ in k^{ac} . It is proved in [4, Theorem 1.6] that Λ_M is an $\mathbb{F}_q[T]$ -module isomorphic to $\mathbb{F}_q[T]/M\mathbb{F}_q[T]$. From [4, Section 2] we deduce that if λ is a generator of that module then the other generators are λ^A , where $A \in \mathbb{F}_q[T]$ is prime to M. Moreover, the irreducible polynomial of λ over k is

$$\Phi_M(X) = \prod_{A \in S} (X - \lambda^A),$$

where S is any complete system of representatives of the invertible classes of the ring $\mathbb{F}_q[T]/M\mathbb{F}_q[T]$. We recall that $\Phi_M(X) \in \mathbb{F}_q[T][X]$. It is the analogue of the classical cyclotomic polynomials.

Since $\rho_{T+a} = \varphi + T + a$ for any $a \in \mathbb{F}_q$ we deduce that $\rho_{T+a}(X) = X^q + (T+a)X$. This implies in particular that

$$\Phi_{T+a}(X) = X^{q-1} + T + a.$$

352

Let us come back to our task. Let $a, N \in \mathbb{F}_q[T]$ with $N \neq 0$, and let $f \in \mathbb{F}_q[T][X]$. If $f \neq 0$ then the following properties are obviously equivalent:

(1) The image of f in $\mathbb{F}_q[T][X]/(X^N - a)\mathbb{F}_q[T][X]$ is invertible.

(2) There exist $p, q \in \mathbb{F}_q[T][X]$ such that $f(X)p(X) + (X^N - a)q(X) = 1$. (3) $f(\lambda)$ is a unit in $\mathbb{F}_q[T][\lambda]$ for any root λ of $X^N - a$.

Moreover, if f is irreducible then the above three properties are also equivalent to

(4) $\alpha^N - a$ is a unit in $\mathbb{F}_q[T][\alpha]$ for any root α of f.

When (1) is satisfied we say that f defines units on roots of $\rho_N(X) - a$.

For any distinct $a, b \in \mathbb{F}_q[T]$ we define the subset $\Delta_{a,b}$ of $\mathbb{F}_q[T][X]$ by declaring that $f \in \Delta_{a,b}$ if and only if f is irreducible in $\mathbb{F}_q[T][X]$ and there exists an infinite sequence $(N_i)_{i \in \mathbb{N}}$ of monic polynomials of strictly increasing degrees and a strictly increasing sequence $(d_i)_{i \in \mathbb{N}^*}$ of positive integers such that f divides all the polynomials

$$\frac{X^{N_i}-a}{b-a} - \left(\frac{X^{N_0}-a}{b-a}\right)^{p^{d_i}}, \quad i \ge 1.$$

In this article we prove

THEOREM 1.1 (Theorem 3.1). Let $f \in \mathbb{F}_q[T][X]$ and let $a, b \in \mathbb{F}_q[T]$ be distinct. Let $\Gamma \subset \mathbb{F}_q[T]$ be an infinite set of monic polynomials. Suppose that f defines units on roots of $\rho_N(X) - a$ and on roots of $\rho_N(X) - b$, for all $N \in \Gamma$. Let $g \in \mathbb{F}_q[T][X]$ be an irreducible factor of f. Then g satisfies one of the following two conditions.

(1) There exist $\varepsilon \in \mathbb{F}_q^*$ and a monic $M \in \mathbb{F}_q[T]$ such that $g = \varepsilon \Phi_M$. Moreover, if q > 2 then $a, b \in \mathbb{F}_q^*$ and M divides all $N \in \Gamma$. If q = 2 then a and b have degree at most 1 and M is explicitly described in Propositions 2.7 and 2.9.

(2)
$$g \in \Delta_{a,b}$$
.

Our crucial argument in the proof of Theorem 1.1 is the following. Let L be a global function field and let \mathbb{F} be the field of constants of L. Let S be a finite set of primes of L. Then the Diophantine equation X + Y = 1 has only finitely many solutions (u, v) such that u and v are nonconstant S-units in L and the extension $L/\mathbb{F}(u)$ is separable. See for instance [7, Theorem 7.19]. But as one may easily check, the couples (u^{p^n}, v^{p^n}) also satisfy the above equation, are nonconstant S-units in L, but the extensions $L/\mathbb{F}(u^{p^n})$ are not separable. This phenomenon leads us to conclude that a polynomial f as in Theorem 1.1 may have irreducible factors which are not necessarily cyclotomic polynomials, the elements of $\Delta_{a,b}$. At this stage this set seems mysterious. Nevertheless, the study of the converse of Theorem 1.1 requires the study of the behavior of the elements of $\Delta_{a,b}$. We hope to be able in the future to completely describe these elements.

In another direction we point out that in Corollary 2.2 we prove that a cyclotomic polynomial Φ_M defines units on roots of $\rho_N(X) - a$ for any $a \in \mathbb{F}_q^*$ and for any monic polynomial $N \in \mathbb{F}_q[T]$ divisible by M.

2. When does a polynomial Φ_M define many units? In this section we give a complete description of the pairs $\{a, \Phi_M\}$ such that $a \in \mathbb{F}_q[T]$ and Φ_M defines units on roots of $\rho_N(X) - a$ for infinitely many monic polynomials $N \in \mathbb{F}_q[T]$. We will use the following properties of the cyclotomic polynomials Φ_M , where M is assumed to be monic. The set of monic divisors of M will be denoted by Div(M), and as usual we denote the Möbius function on $\mathbb{F}_q[T]$ by μ .

1. We have

(3)
$$X^M = \prod_{D \in \operatorname{Div}(M)} \Phi_D(u).$$

2. By Möbius inversion we obtain

(4)
$$\Phi_M(X) = \prod_{D \in \operatorname{Div}(M)} (X^D)^{\mu(M/D)}$$

3. For any irreducible distinct and monic polynomials P_1, \ldots, P_r in R_T , and positive integers $\alpha_1, \ldots, \alpha_r$, we have

(5)
$$\Phi_{P_1^{\alpha_1} \cdots P_r^{\alpha_r}}(X) = \Phi_{P_1 \cdots P_r}(X^{P_1^{\alpha_1 - 1} \cdots P_r^{\alpha_r - 1}}).$$

4. If M and L are relatively prime in $\mathbb{F}_q[T]$ and monic, we have

(6)
$$\Phi_{ML}(X) = \prod_{D \in \operatorname{Div}(M)} \Phi_L(X^D)^{\mu(M/D)}.$$

5. For $M \neq 1$ in $\mathbb{F}_q[T]$ and monic, we have

(7)
$$\sum_{D \in \operatorname{Div}(M)} \mu(D) = 0.$$

For any nonzero $M \in \mathbb{F}_q[T]$ we denote by λ_M a fixed root of $\Phi_M(X)$.

LEMMA 2.1. Let $M, N, a \in \mathbb{F}_q[T]$ be such that M and N are nonzero monic polynomials. Let $D = M/\gcd(M, N)$. Then the following properties are equivalent:

- (a) Φ_M defines units on roots of $\rho_N(X) a$.
- (b) $\lambda_D a$ is a unit in $\mathbb{F}_q[T][\lambda_M]$.
- (c) $\lambda_D a$ is a unit in $\mathbb{F}_q[T][\lambda_D]$.

(d)
$$\Phi_D(a) \in \mathbb{F}_q^*$$
.

Proof. See the proof of [1, Proposition 3].

COROLLARY 2.2. Let $a \in \mathbb{F}_q^*$ and let $M_1, \ldots, M_s \in \mathbb{F}_q[T]$ be monic. Then the polynomial $f = \Phi_{M_1} \cdots \Phi_{M_s}$ defines units on roots of $\rho_N(X) - a$ for any N divisible by all the polynomials M_i , $i = 1, \ldots, s$.

Proof. Let $N \in \mathbb{F}_q[T]$ be monic and divisible by all M_i , $i = 1, \ldots, s$. By definition $f = \Phi_{M_1} \cdots \Phi_{M_s}$ defines units on roots of $\rho_N(X) - a$ if and only if for all $i \in \{1, \ldots, s\}$ the polynomial Φ_{M_i} defines units on roots of $\rho_N(X) - a$. By Lemma 2.1 this is equivalent to $\Phi_{D_i}(a) \in \mathbb{F}_q^*$ for all $i \in \{1, \ldots, s\}$, where $D_i = M_i / \gcd(M_i, N)$. But we have supposed that M_i divides N, thus $D_i = 1$ and then $\Phi_{D_i}(a) = a$.

Let us now study the condition $\Phi_M(a) \in \mathbb{F}_q^*$. To this end we let v_{∞} be the unique valuation of $k = \mathbb{F}_q(T)$ such that $v_{\infty}(f) = -\deg(f)$ for any $f \in \mathbb{F}_q[T]$. In particular, $v_{\infty}(1/T) = 1$. The place of k defined by v_{∞} will be called the *place at infinity*.

LEMMA 2.3. Let $M \in \mathbb{F}_q[T] \setminus \{0\}$. Let w be a normalized valuation of $k(\Lambda_M)$ above v_{∞} . Let $\lambda \in \Lambda_M \setminus \{0\}$. Then $w(\lambda) \ge 0$ or $w(\lambda) = -1$.

Proof. We know that $(q-1)v_{\infty} = w$ on k. This result is proved in [4, Theorem 3.2] for those M that are a power of an irreducible polynomial in $\mathbb{F}_q[T]$. The proof in the most general context is given in [5, Proposition 4.15]. Denote deg(M) by d and the leading coefficient of M by a_d .

If d = 1 then by (2) we have $0 = \lambda^M = a_1 \lambda^q + M \lambda$. Since $\lambda \neq 0$ we immediately obtain $w(\lambda) = -1$. If $d \geq 2$ and $w(\lambda) < 0$ then for any $i \in \{0, \ldots, d\}$ we have

$$w\big(\big[{}^M_i\big]\lambda^{q^i}\big) = f(i),$$

where $f(x) = -(q-1)(d-x)q^x + w(\lambda)q^x$ and $\begin{bmatrix} M \\ i \end{bmatrix}$ is defined in (2). But the function f is strictly decreasing on [0, d-1]. Therefore

$$w\left(\sum_{i=0}^{d-1} {M \brack i} \lambda^{q^{i}}\right) = \min_{0 \le i \le d-1} w\left({M \brack i} \lambda^{q^{i}}\right) = w\left({M \brack d-1} \lambda^{q^{d-1}}\right) = q^{d-1}(w(\lambda) - (q-1)).$$

The equation $\lambda^M = 0$ then implies $w(\lambda^{q^d}) = q^{d-1}(w(\lambda) - (q-1))$ and hence $w(\lambda) = -1$.

PROPOSITION 2.4. Let $M \in \mathbb{F}_q[T] \setminus \{0\}$ and $a \in \mathbb{F}_q[T]$. Then

$$\Phi_M(a) \in \mathbb{F}_q^* \implies \begin{cases} a \in \mathbb{F}_q^* & \text{if } \deg(M) = 0, \\ a \in \mathbb{F}_q & \text{if } \deg(M) > 0 \text{ and } q \ge 3, \\ a = M + 1 & \text{if } \deg(M) = 1 \text{ and } q = 2, \\ \deg(a) \le 1 & \text{if } \deg(M) \ge 2 \text{ and } q = 2. \end{cases}$$

Proof. The case deg(M) = 0 is trivial since if $M = a_0 \in \mathbb{F}_q^*$ then $X^M = a_0 X$ and $\Phi_M(X) = X$. Assume that deg $(M) \ge 1$ and let \mathbb{U}_M be the set of roots of Φ_M . Let w be a normalized valuation of $k(\Lambda_M)$ above v_∞ . Suppose

we have $\deg(a) > 1$, or q > 2 and $\deg(a) = 1$. Then $w(a) = -(q-1) \deg(a) < -1 \le w(\lambda)$ for any $\lambda \in \mathbb{U}_M$ thanks to Lemma 2.3. If $\Phi_M(a) \in \mathbb{F}_q^*$ then

$$0 = w(\Phi_M(a)) = \sum_{\lambda \in \mathbb{U}_M} w(a - \lambda) = \deg(\Phi_M)w(a)$$

This implies that $\deg(\Phi_M) = 0$, which is absurd. Therefore we must have $\deg(a) \leq 1$. Moreover if q > 2 then $a \in \mathbb{F}_q$. We still have to prove that if q = 2 and M and a have degree 1 then a = M + 1. But if $M = T + a_0 \in R_T$, then $\rho_{T+a_0}(X) = X^2 + (T + a_0)X$ and $\Phi_M(X) = X + T + a_0$. Hence $\Phi_M(a) \in \mathbb{F}_q^*$ if and only if a = M + 1.

PROPOSITION 2.5. Suppose q > 2. Let M be a nonzero monic polynomial in $\mathbb{F}_q[T]$ and let $a \in \mathbb{F}_q[T]$. Then

$$\Phi_M(a) \in \mathbb{F}_q^* \iff \begin{cases} a \in \mathbb{F}_q^* & \text{if } \deg(M) = 0 \ (M = 1), \\ a = 0 & \text{if } \deg(M) > 0 \text{ and } M \text{ is not a prime power.} \end{cases}$$

Proof. As already observed at the beginning of the proof of Proposition 2.4, if deg(M) = 0 then $\Phi_M(a) \in \mathbb{F}_q^*$ if and only if $a \in \mathbb{F}_q^*$. Suppose that deg $(M) \ge 1$. According to Proposition 2.4 we have to consider the following cases:

- 1. The case a = 0 and $M = P^n$, where P is a monic irreducible polynomial in $\mathbb{F}_q[T]$. But then by (4) we have $\Phi_M(X) = X^{P^n}/X^{P^{n-1}}$, and in particular $\Phi_M(0) = P \notin \mathbb{F}_q^*$.
- 2. The case a = 0 and $M = P_1^{\alpha_1} \cdots P_r^{\alpha_r}$, where P_1, \ldots, P_r are distinct monic irreducible polynomials in $\mathbb{F}_q[T]$ and $\alpha_1, \ldots, \alpha_r$ are positive integers. Then by evaluating at 0 the polynomial equality $X^M/X = \prod_{D \in \text{Div}(N), D \neq 1} \Phi_D(X)$, derived from (3), we obtain

$$M = \prod_{D \in \operatorname{Div}(N), \, D \neq 1} \Phi_D(0).$$

But since $\Phi_{P_i^e}(0) = P_i$ for any positive integer e we find the relation

$$\prod_{D\in\Xi} \Phi_D(0) = 1,$$

where Ξ is the set of the monic divisors of M that are not prime powers. This proves that $\Phi_M(0) \in \mathbb{F}_q^*$.

3. The case $a \in \mathbb{F}_q^*$ and $M = P^{\dot{n}}$, where P is a monic irreducible polynomial in $\mathbb{F}_q[T]$. Here also we use the equality $\Phi_M(X) = X^{P^n}/X^{P^{n-1}}$. Since the sequence $(d-i)q^i$ is strictly increasing on [0, d-1] for any $d \ge 1$, we see from (2) that the degree in T of a^{P^n} is $q^{n \deg(P)-1}$. Hence, if $n \ge 2$ then the degree of $\Phi_M(a)$ is $q^{n \deg(P)-1} - q^{(n-1) \deg(P)-1} \ne 0$. If n = 1 then the degree of $\Phi_M(a)$ is $q^{\deg(P)-1} \ne 0$. 4. The case $a \in \mathbb{F}_q^*$ and $M = P_1^{\alpha_1} \cdots P_r^{\alpha_r}$, where P_1, \ldots, P_r are distinct monic irreducible polynomials in $\mathbb{F}_q[T]$ and $\alpha_1, \ldots, \alpha_r$ are positive integers. Set $N = P_1^{\alpha_1 - 1} \cdots P_r^{\alpha_r - 1}$ and $b = a^N$. If $N \neq 1$ then deg $(b) = q^{\deg(N)-1}$. In particular $b \notin \mathbb{F}_q$. Since $\Phi_M(a) = \Phi_{P_1 \ldots P_r}(b)$ by (5), we deduce that $\Phi_M(a) \notin \mathbb{F}_q^*$ thanks to Proposition 2.4. If N = 1 then by (4) we have $\Phi_M(a) = \prod_{D \in \text{Div}(M)} (a^D)^{\mu(M/D)}$ and $q \deg(\Phi_M(a)) = \sum_{D \in \text{Div}(M), D \neq 1} \mu(M/D) q^{\deg(D)}$. The assumption $\Phi_M(a) \in \mathbb{F}_q^*$ would imply $\sum_{D \in \text{Div}(M), D \neq 1} \mu(M/D) q^{\deg(D)} = 0$. For $i \in \{1, 2\}$ we denote by Ω_i the set of $D \in \text{Div}(M) \setminus \{1\}$ with $\mu(M/D) = (-1)^i$. Since $r \geq 2$ the sets Ω_1 and Ω_2 are not empty and the last equality may be written as

$$\sum_{D\in \varOmega_1} q^{\deg(D)} = \sum_{D\in \varOmega_2} q^{\deg(D)}$$

In addition we note that

(8)
$$\prod_{i=1}^{r} (1 - q^{\deg(P_i)}) - 1 = \begin{cases} \sum_{D \in \Omega_2} q^{\deg(D)} - \sum_{D \in \Omega_1} q^{\deg(D)} & \text{if } r \text{ is even,} \\ \sum_{D \in \Omega_1} q^{\deg(D)} - \sum_{D \in \Omega_2} q^{\deg(D)} & \text{if } r \text{ is odd.} \end{cases}$$

This implies that $\prod_{i=1}^{r} (1 - q^{\deg(P_i)}) = 1$, which is impossible.

This concludes the proof of the proposition. \blacksquare

LEMMA 2.6. Suppose q = 2. Then:

- (i) $\rho_{T^n}(1) = T + 1$ and $\rho_{(T+1)^n}(1) = T$ for any nonzero integer n.
- (ii) $\Phi_{T^n}(1) = \Phi_{(T+1)^n}(1) = 1$ for any nonzero integer n > 1.
- (iii) $\rho_D(1) = (D(0) D(1))T + D(1)$ for any $D \in \mathbb{F}_2[T]$. In particular, if D(0) = D(1) = 1 we have $\rho_D(1) = 1$.

Proof. We can show (i) by induction. We deduce (ii) from (i) since we have $\Phi_{P^n}(X) = X^{P^n}/X^{P^{n-1}}$ for any prime P in $\mathbb{F}_q[T]$. As for (iii) it is sufficient to note that $D = D(0) + \sum_{k=1}^d T^{n_k}$, then apply (i).

PROPOSITION 2.7. Suppose q = 2 and $a \in \mathbb{F}_2$. Let $M = T^{\alpha}(T+1)^{\beta}N$ with N monic and prime to T(T+1). Then $\Phi_M(a) = 1$ if and only if one of the following conditions is satisfied:

- (1) a = 0 and M is not a prime power,
- (2) a = 1 and M = 1,
- (3) a = 1, deg(M) ≥ 2 , $N \neq 1$ and $(\alpha, \beta) \neq (1, 1)$,
- (4) a = 1, deg $(M) \ge 2$, N = 1 but $\alpha \ne 1$ and $\beta \ne 1$,
- (5) a = 1, $(\alpha, \beta) = (1, 1)$ and N is not a prime power.

Proof. Since the case $\deg(M) = 0$ is obvious and the case $\deg(M) = 1$ is impossible by Proposition 2.4, we suppose that $\deg(M) \ge 2$. Then by

arguing as for q > 2 we may show that $\Phi_M(0) = 1 \Leftrightarrow M$ is not a prime power. If a = 1 we obtain the following results.

- 1. If $M = T^{\alpha}$ or $M = (T+1)^{\alpha}$ with $\alpha \geq 2$, then $\Phi_M(1) = 1$ thanks to Lemma 2.6.
- 2. If M = T(T+1) then $\Phi_M(1) = 0$ since obviously $\Phi_{T(T+1)}(X) = X+1$. 3. If $M = T^{\alpha}(T+1)^{\beta}$ with $\alpha, \beta > 1$, then $1^{T^{\alpha-1}(T+1)^{\beta-1}} = 0$ thanks to Lemma 2.6. Thus $\Phi_M(1) = \Phi_{T(T+1)}(1^{T^{\alpha-1}(T+1)^{\beta-1}}) = \Phi_{T(T+1)}(0) = 1$.
- 4. If $M = T(T+1)^{\beta}$ with $\beta > 1$, then $\Phi_M(1) = \Phi_{T(T+1)}(1^{(T+1)^{\beta-1}}) =$ $\Phi_{T(T+1)}(T) = T + 1.$
- 5. If $M = T^{\alpha}(T+1)$ with $\alpha > 1$, then $\Phi_M(1) = \Phi_{T(T+1)}(1^{T^{\alpha-1}}) =$ $\Phi_{T(T+1)}(T+1) = T.$
- 6. If $M = T^{\alpha}(T+1)^{\beta}N$ with $(\alpha, \beta) \neq (1, 1)$ and $N \neq 1$ monic and prime to T(T+1), then on the one hand $\Phi_{T^{\alpha}(T+1)^{\beta}}(1) \neq 0$ by the previous study. On the other hand by Lemma 2.6(iii) we have $1^D = 1$ for any monic divisor D of N. Formulas (6) and (7) then imply

$$\Phi_M(1) = \prod_{D \in \text{Div}(N)} (\Phi_{T^{\alpha}(T+1)^{\beta}}(1^D))^{\mu(N/D)}$$
$$= (\Phi_{T^{\alpha}(T+1)^{\beta}}(1))^{\sum_{D \in \text{Div}(N)} \mu(N/D)} = 1.$$

7. If M = T(T+1)N with N monic and prime to T(T+1), then by using (6) and the fact that $\Phi_{T(T+1)}(X) = X + 1$ we obtain

$$\Phi_M(X) = \prod_{D \in \text{Div}(N)} (\Phi_{T(T+1)}(X^D))^{\mu(N/D)} = \prod_{D \in \text{Div}(N)} (X^D + 1)^{\mu(N/D)}$$
$$= \prod_{D \in \text{Div}(N)} ((X+1)^D)^{\mu(N/D)} = \Phi_N(X+1).$$

Hence $\Phi_M(1) = \Phi_N(0)$. Therefore $\Phi_M(1) = 1$ if and only if N is not a prime power.

This completes the proof of the lemma.

LEMMA 2.8. Suppose q = 2. Then:

(i) $T^{T^n} = 0$ and $(T+1)^{(T+1)^n} = 0$, for any positive integer n.

(ii) $T^D = D(0).T$ and $(T+1)^D = D(1).(T+1)$, for any $D \in \mathbb{F}_2[T]$.

Proof. We show (i) by induction on n. To show (ii) we first note that $D = D(0) + \sum_{k=1}^{d} T^{n_k} = D(1) + \sum_{k=1}^{d'} (T+1)^{m_k}$, then we apply (i).

PROPOSITION 2.9. Suppose q = 2 and let A = T or A = T + 1. Let $M = A^n N$ with N monic and prime to A, and n a nonnegative integer. Then $\Phi_M(A) = 1$ if and only if either $n \neq 1$ and $N \neq 1$, or n = 1 and N is not a prime power.

Proof. According to Proposition 2.4, $\Phi_M(A) = 1$ implies M = A + 1 or deg $(M) \ge 2$. Assume that deg $(M) \ge 2$. Then we have to consider the following cases.

- 1. If $n \ge 2$ and N = 1 then by (5) and Lemma 2.8 we have $\Phi_M(A) = \Phi_A(A^{A^{n-1}}) = \Phi_A(0) = A.$
- 2. If $n \neq 1$ and $N \neq 1$ then since $\Phi_{A^n}(A) = A$ even for n = 0 we obtain

$$\Phi_M(A) = \prod_{D \in \text{Div}(N)} (\Phi_{A^n}(A^D))^{\mu(N/D)} = \prod_{D \in \text{Div}(N)} (\Phi_{A^n}(A))^{\mu(N/D)}$$
$$= \prod_{D \in \text{Div}(N)} (A)^{\mu(N/D)} = 1$$

by (6), Lemma 2.8(ii) and (7).

3. If n = 1 then since $\Phi_A(X) = X + A$ as explained in the introduction, we have

$$\Phi_M(X) = \prod_{D \in \text{Div}(N)} (\Phi_A(X^D))^{\mu(N/D)} = \prod_{D \in \text{Div}(N)} (X^D + A)^{\mu(N/D)}$$
$$= \prod_{D \in \text{Div}(N)} ((X + A)^D)^{\mu(N/D)} = \Phi_N(X + A),$$

by (6) and Lemma 2.8(ii). Hence $\Phi_M(A) = \Phi_N(0)$. Therefore $\Phi_M(A) = 1$ if and only if N is not a prime power.

This completes the proof of the proposition. \blacksquare

3. Proof of Theorem 1.1. We are now ready to prove

THEOREM 3.1. Let $f \in \mathbb{F}_q[T][X]$ and let $a, b \in \mathbb{F}_q[T]$ be distinct. Let $\Gamma \subset \mathbb{F}_q[T]$ be an infinite set of monic polynomials. Suppose that f defines units on roots of $\rho_N(X) - a$ and on roots of $\rho_N(X) - b$ for all $N \in \Gamma$. Let $g \in \mathbb{F}_q[T][X]$ be an irreducible factor of f. Then g satisfies one of the following two conditions:

- (1) There exists $\varepsilon \in \mathbb{F}_q^*$ and a monic $M \in \mathbb{F}_q[T]$ such that $g = \varepsilon \Phi_M$. Moreover, if q > 2 then $a, b \in \mathbb{F}_q^*$ and M divides all $N \in \Gamma$. If q = 2 then a and b have degree at most 1 and M is explicitly described in Propositions 2.7 and 2.9.
- (2) $g \in \Delta_{a,b}$.

Proof. Let $\alpha \in k^{\mathrm{ac}}$ be a root of g. The hypotheses imply that there exists an infinite sequence N_0, N_1, \ldots of monic polynomials of strictly increasing degrees such that $\alpha^{N_i} - a$ and $\alpha^{N_i} - b$ are units in $\mathbb{F}_q[T][\alpha]$. Let S_0 be the set of places v of $L = k(\alpha)$ such that b - a or α is not a unit at v. Let S_{∞} be the set of places of L extending the place at infinity. Then $S = S_0 \cup S_{\infty}$ is finite. Let \mathcal{O}_S be the Dedekind ring of elements of L that are integral at all places outside S. Then $\mathbb{F}_q[T][\alpha] \subset \mathcal{O}_S$, in particular if we put

$$U_i = \frac{b - \alpha^{N_i}}{b - a}$$
 and $V_i = \frac{\alpha^{N_i} - a}{b - a}$,

then U_i and V_i are units in \mathcal{O}_S and $U_i + V_i = 1$. Define $\Psi : \mathbb{N} \to \mathcal{O}_S^* \times \mathcal{O}_S^*$ by $\Psi(i) = (U_i, V_i)$, where \mathcal{O}_S^* is the group of units of \mathcal{O}_S . If Ψ is not injective, then there exist $i_0 < i_1$ such that $\alpha^{N_{i_1} - N_{i_0}} = 0$. In particular g is, up to a nonzero constant, equal to a cyclotomic polynomial Φ_M . Moreover, for each $N \in \Gamma$ we must have $\Phi_{D_N}(a) \in \mathbb{F}_q^*$ and $\Phi_{D_N}(b) \in \mathbb{F}_q^*$, where $D_N = M/\gcd(M, N)$, thanks to Lemma 2.1. If q > 2 then since $a \neq b$ we deduce from Proposition 2.5 that $a, b \in \mathbb{F}_q^*$ and $D_N = 1$, in other words M divides all the polynomials N. If q = 2 we see from Proposition 2.4 that $\deg(a), \deg(b) \leq 1$. The corresponding polynomials M are described in Propositions 2.7 and 2.9.

Suppose that Ψ is injective. Then by [7, Theorem 7.19] there exist u and v in \mathcal{O}_S^* and two strictly increasing sequences $(i_j)_{j\in\mathbb{N}}$ and $(d_j)_{j\in\mathbb{N}}$ of positive integers such that

$$U_{i_j} = u^{p^{d_j}}$$
 and $V_{i_j} = v^{p^{d_j}}$.

This implies

$$\frac{\alpha^{N_{i_j}} - a}{b - a} = \left(\frac{\alpha^{N_{i_0}} - a}{b - a}\right)^{p^{d_j - d_0}} \quad \text{for any } j \ge 0.$$

In other words, g divides in $\mathbb{F}_q[T][X]$ all the polynomials

$$\frac{(b-a)^{p^{d_j-d_0}}}{b-a}(X^{N_{i_j}}-a) - (X^{N_{i_0}}-a)^{p^{d_j-d_0}}, \quad j \ge 0.$$

This is exactly the definition of $g \in \Delta_{a,b}$.

Acknowledgements. The authors express their sincere thanks to the referee for the meticulous reading of the manuscript. His remarks and suggestions were highly constructive and helpful.

References

- O. Broche and Á. del Río, Polynomials defining many units, Math. Z. 283 (2016), 1195–1200.
- [2] L. Carlitz, A class of polynomials, Trans. Amer. Math. Soc. 43 (1938), 167–182.
- [3] J.-H. Evertse, K. Györy, C. L. Stewart and R. Tijdeman, S-unit equations and their applications, in: New Advances in Transcendence Theory (Durham, 1986), Cambridge Univ. Press, Cambridge, 1988, 110–174.
- [4] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77–91.

- [5] D. R. Hayes, Stickelberger elements in function fields, Compos. Math. 55 (1985), 209– 239.
- [6] N. Jacobson, The Theory of Rings, Amer. Math. Soc. Math. Surveys II, Amer. Math. Soc., New York, 1943.
- [7] M. Rosen, Number Theory in Function Fields, Grad. Texts in Math. 210, Springer, New York, 2002.

Mohamed El Kati, Hassan Oukhaba Université de Bourgogne Franche-Comté Laboratoire de Mathématique (LMB) 16 Route de Gray 25030 Besançon Cedex, France E-mail: nor712@live.fr hassan.oukhaba@univ-fcomte.fr