Polynomials defining many units in function fields

by

Mohamed El Kati and Hassan Oukhaba (Besançon)

1. Introduction. Recently Osnel Broche and Ángel del Río [1] succeeded in classifying the polynomials with integral coefficients which give units when evaluated on nth roots of a fixed integer a for infinitely many integers n. The proof uses, among other things, the result proved in [3] that if K is a number field and S is a finite set of places of K containing the archimedean places, then the Diophantine equation $X+Y=1$ has only finitely many solutions (u, v) such that u and v are S-units in K.

The purpose of this article is to study the same question in the case of global function fields, by using the Carlitz cyclotomic theory developed in [2]. More precisely, we fix a finite field \mathbb{F}_{q}, where q is the power of some prime number p. Let $k=\mathbb{F}_{q}(T)$ be the field of rational functions in the variable T over \mathbb{F}_{q}. Let $k^{\text {ac }}$ be an algebraic closure of k. Let $\mathbb{F}_{q}[T]$ be the subring of polynomials in T. Let us briefly recall the Carlitz action of $\mathbb{F}_{q}[T]$ on $k^{\text {ac }}$. Let $\mathbb{F}_{q}[T]\{\varphi\}$ be the \mathbb{F}_{q}-algebra generated by $\mathbb{F}_{q}[T]$ together with another element φ satisfying

$$
\begin{equation*}
\varphi \cdot M=M^{q} \cdot \varphi \quad \text { for all } M \in \mathbb{F}_{q}[T] . \tag{1}
\end{equation*}
$$

Any element of $\mathbb{F}_{q}[T]\{\varphi\}$ is uniquely written as a polynomial in φ with coefficients in $\mathbb{F}_{q}[T]$. Addition in $\mathbb{F}_{q}[T]\{\varphi\}$ is done in the usual way. For multiplication we use the above rule (11). Here we should mention that $\mathbb{F}_{q}[T]\{\varphi\}$ is the non-commutative ring denoted by $\mathbb{F}_{q}[T][t, S]$ by Nathan Jacobson in [6, Chap. 3, $\S 1$, p. 29] where t is an indeterminate and S is the Frobenius automorphism $x \mapsto x^{q}$ of $k^{\text {ac }}$. Let $D: \mathbb{F}_{q}[T]\{\varphi\} \rightarrow \mathbb{F}_{q}[T]$ be the homomorphism of rings that assigns to an element $f=\sum_{i=0}^{m} b_{i} \varphi^{i}$ its constant term b_{0}. Then

[^0]there exists a unique injective homomorphism of rings
$$
\rho: \mathbb{F}_{q}[T] \rightarrow \mathbb{F}_{q}[T]\{\varphi\}
$$
such that if we denote by ρ_{M} the image of $M \in \mathbb{F}_{q}[T]$ then

- $D\left(\rho_{a}\right)=a$ for all $a \in \mathbb{F}_{q}[T]$.
- $\rho_{T}=\varphi+T$.

In particular, $\rho_{a}=a$ for all $a \in \mathbb{F}_{q}$. If $M \in \mathbb{F}_{q}[T]$, then it is proved in [4, Proposition 1.1] that

$$
\rho_{M}=\sum_{i=0}^{d}\left[\begin{array}{c}
M \tag{2}\\
i
\end{array}\right] \varphi^{i}
$$

where d is the degree of $M,\left[\begin{array}{c}M \\ 0\end{array}\right]=M,\left[\begin{array}{c}M \\ d\end{array}\right]$ is the leading coefficient of M and in general each $\left[\begin{array}{c}M \\ i\end{array}\right]$ is a polynomial in $\mathbb{F}_{q}[T]$ of degree $(d-i) q^{i}$.

The polynomial in X with coefficients in $\mathbb{F}_{q}[T]$ defined by

$$
\rho_{M}(X)=\sum_{i=0}^{d}\left[\begin{array}{c}
M \\
i
\end{array}\right] X^{q^{i}}
$$

is called the Carlitz polynomial associated to M. We will also denote it by X^{M}. For instance $X^{T}=\rho_{T}(X)=X^{q}+T X$ and $X^{a}=a X$ for $a \in \mathbb{F}_{q}$. One may use Carlitz polynomials to define an action of $\mathbb{F}_{q}[T]$ on $k^{\text {ac }}$: if $u \in k^{\text {ac }}$ then the action of M on u, denoted by u^{M}, is defined by

$$
u^{M}=\rho_{M}(u)
$$

This action has been intensively studied in the literature and is referred to as the Carlitz module, which is a special case of the general theory of Drinfeld modules. It was applied by David Hayes [4] to obtain an explicit description of the maximal abelian extension of k. Let Λ_{M} be the set of roots of the polynomial $X^{M}=\rho_{M}(X)$ in $k^{\text {ac }}$. It is proved in [4, Theorem 1.6] that Λ_{M} is an $\mathbb{F}_{q}[T]$-module isomorphic to $\mathbb{F}_{q}[T] / M \mathbb{F}_{q}[T]$. From [4, Section 2] we deduce that if λ is a generator of that module then the other generators are λ^{A}, where $A \in \mathbb{F}_{q}[T]$ is prime to M. Moreover, the irreducible polynomial of λ over k is

$$
\Phi_{M}(X)=\prod_{A \in S}\left(X-\lambda^{A}\right)
$$

where S is any complete system of representatives of the invertible classes of the ring $\mathbb{F}_{q}[T] / M \mathbb{F}_{q}[T]$. We recall that $\Phi_{M}(X) \in \mathbb{F}_{q}[T][X]$. It is the analogue of the classical cyclotomic polynomials.

Since $\rho_{T+a}=\varphi+T+a$ for any $a \in \mathbb{F}_{q}$ we deduce that $\rho_{T+a}(X)=$ $X^{q}+(T+a) X$. This implies in particular that

$$
\Phi_{T+a}(X)=X^{q-1}+T+a
$$

Let us come back to our task. Let $a, N \in \mathbb{F}_{q}[T]$ with $N \neq 0$, and let $f \in \mathbb{F}_{q}[T][X]$. If $f \neq 0$ then the following properties are obviously equivalent:
(1) The image of f in $\mathbb{F}_{q}[T][X] /\left(X^{N}-a\right) \mathbb{F}_{q}[T][X]$ is invertible.
(2) There exist $p, q \in \mathbb{F}_{q}[T][X]$ such that $f(X) p(X)+\left(X^{N}-a\right) q(X)=1$.
(3) $f(\lambda)$ is a unit in $\mathbb{F}_{q}[T][\lambda]$ for any root λ of $X^{N}-a$.

Moreover, if f is irreducible then the above three properties are also equivalent to
(4) $\alpha^{N}-a$ is a unit in $\mathbb{F}_{q}[T][\alpha]$ for any root α of f.

When (1) is satisfied we say that f defines units on roots of $\rho_{N}(X)-a$.
For any distinct $a, b \in \mathbb{F}_{q}[T]$ we define the subset $\Delta_{a, b}$ of $\mathbb{F}_{q}[T][X]$ by declaring that $f \in \Delta_{a, b}$ if and only if f is irreducible in $\mathbb{F}_{q}[T][X]$ and there exists an infinite sequence $\left(N_{i}\right)_{i \in \mathbb{N}}$ of monic polynomials of strictly increasing degrees and a strictly increasing sequence $\left(d_{i}\right)_{i \in \mathbb{N}^{*}}$ of positive integers such that f divides all the polynomials

$$
\frac{X^{N_{i}}-a}{b-a}-\left(\frac{X^{N_{0}}-a}{b-a}\right)^{p^{d_{i}}}, \quad i \geq 1
$$

In this article we prove
Theorem 1.1 (Theorem 3.1). Let $f \in \mathbb{F}_{q}[T][X]$ and let $a, b \in \mathbb{F}_{q}[T]$ be distinct. Let $\Gamma \subset \mathbb{F}_{q}[T]$ be an infinite set of monic polynomials. Suppose that f defines units on roots of $\rho_{N}(X)-a$ and on roots of $\rho_{N}(X)-b$, for all $N \in \Gamma$. Let $g \in \mathbb{F}_{q}[T][X]$ be an irreducible factor of f. Then g satisfies one of the following two conditions.
(1) There exist $\varepsilon \in \mathbb{F}_{q}^{*}$ and a monic $M \in \mathbb{F}_{q}[T]$ such that $g=\varepsilon \Phi_{M}$. Moreover, if $q>2$ then $a, b \in \mathbb{F}_{q}^{*}$ and M divides all $N \in \Gamma$. If $q=2$ then a and b have degree at most 1 and M is explicitly described in Propositions 2.7 and 2.9 .
(2) $g \in \Delta_{a, b}$.

Our crucial argument in the proof of Theorem 1.1 is the following. Let L be a global function field and let \mathbb{F} be the field of constants of L. Let S be a finite set of primes of L. Then the Diophantine equation $X+Y=1$ has only finitely many solutions (u, v) such that u and v are nonconstant S-units in L and the extension $L / \mathbb{F}(u)$ is separable. See for instance [7, Theorem 7.19]. But as one may easily check, the couples ($u^{p^{n}}, v^{p^{n}}$) also satisfy the above equation, are nonconstant S-units in L, but the extensions $L / \mathbb{F}\left(u^{p^{n}}\right)$ are not separable. This phenomenon leads us to conclude that a polynomial f as in Theorem 1.1 may have irreducible factors which are not necessarily cyclotomic polynomials, the elements of $\Delta_{a, b}$. At this stage this set seems mysterious. Nevertheless, the study of the converse of Theorem 1.1 requires
the study of the behavior of the elements of $\Delta_{a, b}$. We hope to be able in the future to completely describe these elements.

In another direction we point out that in Corollary 2.2 we prove that a cyclotomic polynomial Φ_{M} defines units on roots of $\rho_{N}(X)-a$ for any $a \in \mathbb{F}_{q}^{*}$ and for any monic polynomial $N \in \mathbb{F}_{q}[T]$ divisible by M.
2. When does a polynomial Φ_{M} define many units? In this section we give a complete description of the pairs $\left\{a, \Phi_{M}\right\}$ such that $a \in \mathbb{F}_{q}[T]$ and Φ_{M} defines units on roots of $\rho_{N}(X)-a$ for infinitely many monic polynomials $N \in \mathbb{F}_{q}[T]$. We will use the following properties of the cyclotomic polynomials Φ_{M}, where M is assumed to be monic. The set of monic divisors of M will be denoted by $\operatorname{Div}(M)$, and as usual we denote the Möbius function on $\mathbb{F}_{q}[T]$ by μ.

1. We have

$$
\begin{equation*}
X^{M}=\prod_{D \in \operatorname{Div}(M)} \Phi_{D}(u) \tag{3}
\end{equation*}
$$

2. By Möbius inversion we obtain

$$
\begin{equation*}
\Phi_{M}(X)=\prod_{D \in \operatorname{Div}(M)}\left(X^{D}\right)^{\mu(M / D)} \tag{4}
\end{equation*}
$$

3. For any irreducible distinct and monic polynomials P_{1}, \ldots, P_{r} in R_{T}, and positive integers $\alpha_{1}, \ldots, \alpha_{r}$, we have

$$
\begin{equation*}
\Phi_{P_{1}^{\alpha_{1}} \ldots P_{r}^{\alpha_{r}}}(X)=\Phi_{P_{1} \ldots P_{r}}\left(X^{P_{1}^{\alpha_{1}-1} \ldots P_{r}^{\alpha_{r}-1}}\right) \tag{5}
\end{equation*}
$$

4. If M and L are relatively prime in $\mathbb{F}_{q}[T]$ and monic, we have

$$
\begin{equation*}
\Phi_{M L}(X)=\prod_{D \in \operatorname{Div}(M)} \Phi_{L}\left(X^{D}\right)^{\mu(M / D)} \tag{6}
\end{equation*}
$$

5. For $M \neq 1$ in $\mathbb{F}_{q}[T]$ and monic, we have

$$
\begin{equation*}
\sum_{D \in \operatorname{Div}(M)} \mu(D)=0 \tag{7}
\end{equation*}
$$

For any nonzero $M \in \mathbb{F}_{q}[T]$ we denote by λ_{M} a fixed root of $\Phi_{M}(X)$.
Lemma 2.1. Let $M, N, a \in \mathbb{F}_{q}[T]$ be such that M and N are nonzero monic polynomials. Let $D=M / \operatorname{gcd}(M, N)$. Then the following properties are equivalent:
(a) Φ_{M} defines units on roots of $\rho_{N}(X)-a$.
(b) $\lambda_{D}-a$ is a unit in $\mathbb{F}_{q}[T]\left[\lambda_{M}\right]$.
(c) $\lambda_{D}-a$ is a unit in $\mathbb{F}_{q}[T]\left[\lambda_{D}\right]$.
(d) $\Phi_{D}(a) \in \mathbb{F}_{q}^{*}$.

Proof. See the proof of [1, Proposition 3].

Corollary 2.2. Let $a \in \mathbb{F}_{q}^{*}$ and let $M_{1}, \ldots, M_{s} \in \mathbb{F}_{q}[T]$ be monic. Then the polynomial $f=\Phi_{M_{1}} \cdots \Phi_{M_{s}}$ defines units on roots of $\rho_{N}(X)-a$ for any N divisible by all the polynomials $M_{i}, i=1, \ldots, s$.

Proof. Let $N \in \mathbb{F}_{q}[T]$ be monic and divisible by all $M_{i}, i=1, \ldots, s$. By definition $f=\Phi_{M_{1}} \cdots \Phi_{M_{s}}$ defines units on roots of $\rho_{N}(X)-a$ if and only if for all $i \in\{1, \ldots, s\}$ the polynomial $\Phi_{M_{i}}$ defines units on roots of $\rho_{N}(X)-a$. By Lemma 2.1 this is equivalent to $\Phi_{D_{i}}(a) \in \mathbb{F}_{q}^{*}$ for all $i \in\{1, \ldots, s\}$, where $D_{i}=M_{i} / \operatorname{gcd}\left(M_{i}, N\right)$. But we have supposed that M_{i} divides N, thus $D_{i}=1$ and then $\Phi_{D_{i}}(a)=a$.

Let us now study the condition $\Phi_{M}(a) \in \mathbb{F}_{q}^{*}$. To this end we let v_{∞} be the unique valuation of $k=\mathbb{F}_{q}(T)$ such that $v_{\infty}(f)=-\operatorname{deg}(f)$ for any $f \in \mathbb{F}_{q}[T]$. In particular, $v_{\infty}(1 / T)=1$. The place of k defined by v_{∞} will be called the place at infinity.

Lemma 2.3. Let $M \in \mathbb{F}_{q}[T] \backslash\{0\}$. Let w be a normalized valuation of $k\left(\Lambda_{M}\right)$ above v_{∞}. Let $\lambda \in \Lambda_{M} \backslash\{0\}$. Then $w(\lambda) \geq 0$ or $w(\lambda)=-1$.

Proof. We know that $(q-1) v_{\infty}=w$ on k. This result is proved in 4, Theorem 3.2] for those M that are a power of an irreducible polynomial in $\mathbb{F}_{q}[T]$. The proof in the most general context is given in [5, Proposition 4.15]. Denote $\operatorname{deg}(M)$ by d and the leading coefficient of M by a_{d}.

If $d=1$ then by 2 we have $0=\lambda^{M}=a_{1} \lambda^{q}+M \lambda$. Since $\lambda \neq 0$ we immediately obtain $w(\lambda)=-1$. If $d \geq 2$ and $w(\lambda)<0$ then for any $i \in\{0, \ldots, d\}$ we have

$$
w\left(\left[\begin{array}{c}
M \\
i
\end{array}\right] \lambda^{q^{i}}\right)=f(i),
$$

where $f(x)=-(q-1)(d-x) q^{x}+w(\lambda) q^{x}$ and $\left[\begin{array}{c}M \\ i\end{array}\right]$ is defined in (2). But the function f is strictly decreasing on $[0, d-1]$. Therefore
$w\left(\sum_{i=0}^{d-1}\left[\begin{array}{c}M \\ i\end{array}\right] \lambda^{q^{i}}\right)=\min _{0 \leq i \leq d-1} w\left(\left[\begin{array}{c}M \\ i\end{array}\right] \lambda^{q^{i}}\right)=w\left(\left[\begin{array}{c}M \\ d-1\end{array}\right] \lambda^{q^{d-1}}\right)=q^{d-1}(w(\lambda)-(q-1))$.
The equation $\lambda^{M}=0$ then implies $w\left(\lambda^{q^{d}}\right)=q^{d-1}(w(\lambda)-(q-1))$ and hence $w(\lambda)=-1$.

Proposition 2.4. Let $M \in \mathbb{F}_{q}[T] \backslash\{0\}$ and $a \in \mathbb{F}_{q}[T]$. Then

$$
\Phi_{M}(a) \in \mathbb{F}_{q}^{*} \Longrightarrow \begin{cases}a \in \mathbb{F}_{q}^{*} & \text { if } \operatorname{deg}(M)=0 \\ a \in \mathbb{F}_{q} & \text { if } \operatorname{deg}(M)>0 \text { and } q \geq 3 \\ a=M+1 & \text { if } \operatorname{deg}(M)=1 \text { and } q=2 \\ \operatorname{deg}(a) \leq 1 & \text { if } \operatorname{deg}(M) \geq 2 \text { and } q=2\end{cases}
$$

Proof. The case $\operatorname{deg}(M)=0$ is trivial since if $M=a_{0} \in \mathbb{F}_{q}^{*}$ then $X^{M}=$ $a_{0} X$ and $\Phi_{M}(X)=X$. Assume that $\operatorname{deg}(M) \geq 1$ and let \mathbb{U}_{M} be the set of roots of Φ_{M}. Let w be a normalized valuation of $k\left(\Lambda_{M}\right)$ above v_{∞}. Suppose
we have $\operatorname{deg}(a)>1$, or $q>2$ and $\operatorname{deg}(a)=1$. Then $w(a)=-(q-1) \operatorname{deg}(a)<$ $-1 \leq w(\lambda)$ for any $\lambda \in \mathbb{U}_{M}$ thanks to Lemma 2.3. If $\Phi_{M}(a) \in \mathbb{F}_{q}^{*}$ then

$$
0=w\left(\Phi_{M}(a)\right)=\sum_{\lambda \in \mathbb{U}_{M}} w(a-\lambda)=\operatorname{deg}\left(\Phi_{M}\right) w(a) .
$$

This implies that $\operatorname{deg}\left(\Phi_{M}\right)=0$, which is absurd. Therefore we must have $\operatorname{deg}(a) \leq 1$. Moreover if $q>2$ then $a \in \mathbb{F}_{q}$. We still have to prove that if $q=2$ and M and a have degree 1 then $a=M+1$. But if $M=T+a_{0} \in R_{T}$, then $\rho_{T+a_{0}}(X)=X^{2}+\left(T+a_{0}\right) X$ and $\Phi_{M}(X)=X+T+a_{0}$. Hence $\Phi_{M}(a) \in \mathbb{F}_{q}^{*}$ if and only if $a=M+1$.

Proposition 2.5. Suppose $q>2$. Let M be a nonzero monic polynomial in $\mathbb{F}_{q}[T]$ and let $a \in \mathbb{F}_{q}[T]$. Then

$$
\Phi_{M}(a) \in \mathbb{F}_{q}^{*} \Longleftrightarrow \begin{cases}a \in \mathbb{F}_{q}^{*} & \text { if } \operatorname{deg}(M)=0(M=1), \\ a=0 & \text { if } \operatorname{deg}(M)>0 \text { and } M \text { is not a prime power } .\end{cases}
$$

Proof. As already observed at the beginning of the proof of Proposition 2.4. if $\operatorname{deg}(M)=0$ then $\Phi_{M}(a) \in \mathbb{F}_{q}^{*}$ if and only if $a \in \mathbb{F}_{q}^{*}$. Suppose that $\operatorname{deg}(M) \geq 1$. According to Proposition 2.4 we have to consider the following cases:

1. The case $a=0$ and $M=P^{n}$, where P is a monic irreducible polynomial in $\mathbb{F}_{q}[T]$. But then by (4) we have $\Phi_{M}(X)=X^{P^{n}} / X^{P^{n-1}}$, and in particular $\Phi_{M}(0)=P \notin \mathbb{F}_{q}^{*}$.
2. The case $a=0$ and $M=P_{1}^{\alpha_{1}} \ldots P_{r}^{\alpha_{r}}$, where P_{1}, \ldots, P_{r} are distinct monic irreducible polynomials in $\mathbb{F}_{q}[T]$ and $\alpha_{1}, \ldots, \alpha_{r}$ are positive integers. Then by evaluating at 0 the polynomial equality $X^{M} / X=$ $\prod_{D \in \operatorname{Div}(N), D \neq 1} \Phi_{D}(X)$, derived from (3), we obtain

$$
M=\prod_{D \in \operatorname{Div}(N), D \neq 1} \Phi_{D}(0) .
$$

But since $\Phi_{P_{i}^{e}}(0)=P_{i}$ for any positive integer e we find the relation

$$
\prod_{D \in \Xi} \Phi_{D}(0)=1,
$$

where Ξ is the set of the monic divisors of M that are not prime powers. This proves that $\Phi_{M}(0) \in \mathbb{F}_{q}^{*}$.
3. The case $a \in \mathbb{F}_{q}^{*}$ and $M=P^{n}$, where P is a monic irreducible polynomial in $\mathbb{F}_{q}[T]$. Here also we use the equality $\Phi_{M}(X)=X^{P^{n}} / X^{P^{n-1}}$. Since the sequence $(d-i) q^{i}$ is strictly increasing on $[0, d-1]$ for any $d \geq 1$, we see from (2) that the degree in T of $a^{P^{n}}$ is $q^{n \operatorname{deg}(P)-1}$. Hence, if $n \geq 2$ then the degree of $\Phi_{M}(a)$ is $q^{n \operatorname{deg}(P)-1}-q^{(n-1) \operatorname{deg}(P)-1} \neq 0$. If $n=1$ then the degree of $\Phi_{M}(a)$ is $q^{\operatorname{deg}(P)-1} \neq 0$.
4. The case $a \in \mathbb{F}_{q}^{*}$ and $M=P_{1}^{\alpha_{1}} \ldots P_{r}^{\alpha_{r}}$, where P_{1}, \ldots, P_{r} are distinct monic irreducible polynomials in $\mathbb{F}_{q}[T]$ and $\alpha_{1}, \ldots, \alpha_{r}$ are positive integers. Set $N=P_{1}^{\alpha_{1}-1} \cdots P_{r}^{\alpha_{r}-1}$ and $b=a^{N}$. If $N \neq 1$ then $\operatorname{deg}(b)=$ $q^{\operatorname{deg}(N)-1}$. In particular $b \notin \mathbb{F}_{q}$. Since $\Phi_{M}(a)=\Phi_{P_{1} \ldots P_{r}}(b)$ by (5), we deduce that $\Phi_{M}(a) \notin \mathbb{F}_{q}^{*}$ thanks to Proposition 2.4. If $N=1$ then by (4) we have $\Phi_{M}(a)=\prod_{D \in \operatorname{Div}(M)}\left(a^{D}\right)^{\mu(M / D)}$ and $q \operatorname{deg}\left(\Phi_{M}(a)\right)=$ $\sum_{D \in \operatorname{Div}(M), D \neq 1} \mu(M / D) q^{\operatorname{deg}(D)}$. The assumption $\Phi_{M}(a) \in \mathbb{F}_{q}^{*}$ would imply $\sum_{D \in \operatorname{Div}(M), D \neq 1} \mu(M / D) q^{\operatorname{deg}(D)}=0$. For $i \in\{1,2\}$ we denote by Ω_{i} the set of $D \in \operatorname{Div}(M) \backslash\{1\}$ with $\mu(M / D)=(-1)^{i}$. Since $r \geq 2$ the sets Ω_{1} and Ω_{2} are not empty and the last equality may be written as

$$
\sum_{D \in \Omega_{1}} q^{\operatorname{deg}(D)}=\sum_{D \in \Omega_{2}} q^{\operatorname{deg}(D)}
$$

In addition we note that
(8) $\prod_{i=1}^{r}\left(1-q^{\operatorname{deg}\left(P_{i}\right)}\right)-1= \begin{cases}\sum_{D \in \Omega_{2}} q^{\operatorname{deg}(D)}-\sum_{D \in \Omega_{1}} q^{\operatorname{deg}(D)} & \text { if } r \text { is even, } \\ \sum_{D \in \Omega_{1}} q^{\operatorname{deg}(D)}-\sum_{D \in \Omega_{2}} q^{\operatorname{deg}(D)} & \text { if } r \text { is odd. }\end{cases}$

This implies that $\prod_{i=1}^{r}\left(1-q^{\operatorname{deg}\left(P_{i}\right)}\right)=1$, which is impossible.
This concludes the proof of the proposition.
Lemma 2.6. Suppose $q=2$. Then:
(i) $\rho_{T^{n}}(1)=T+1$ and $\rho_{(T+1)^{n}}(1)=T$ for any nonzero integer n.
(ii) $\Phi_{T^{n}}(1)=\Phi_{(T+1)^{n}}(1)=1$ for any nonzero integer $n>1$.
(iii) $\rho_{D}(1)=(D(0)-D(1)) T+D(1)$ for any $D \in \mathbb{F}_{2}[T]$. In particular, if $D(0)=D(1)=1$ we have $\rho_{D}(1)=1$.

Proof. We can show (i) by induction. We deduce (ii) from (i) since we have $\Phi_{P^{n}}(X)=X^{P^{n}} / X^{P^{n-1}}$ for any prime P in $\mathbb{F}_{q}[T]$. As for (iii) it is sufficient to note that $D=D(0)+\sum_{k=1}^{d} T^{n_{k}}$, then apply (i).

Proposition 2.7. Suppose $q=2$ and $a \in \mathbb{F}_{2}$. Let $M=T^{\alpha}(T+1)^{\beta} N$ with N monic and prime to $T(T+1)$. Then $\Phi_{M}(a)=1$ if and only if one of the following conditions is satisfied:
(1) $a=0$ and M is not a prime power,
(2) $a=1$ and $M=1$,
(3) $a=1, \operatorname{deg}(M) \geq 2, N \neq 1$ and $(\alpha, \beta) \neq(1,1)$,
(4) $a=1, \operatorname{deg}(M) \geq 2, N=1$ but $\alpha \neq 1$ and $\beta \neq 1$,
(5) $a=1,(\alpha, \beta)=(1,1)$ and N is not a prime power.

Proof. Since the case $\operatorname{deg}(M)=0$ is obvious and the case $\operatorname{deg}(M)=1$ is impossible by Proposition 2.4, we suppose that $\operatorname{deg}(M) \geq 2$. Then by
arguing as for $q>2$ we may show that $\Phi_{M}(0)=1 \Leftrightarrow M$ is not a prime power. If $a=1$ we obtain the following results.

1. If $M=T^{\alpha}$ or $M=(T+1)^{\alpha}$ with $\alpha \geq 2$, then $\Phi_{M}(1)=1$ thanks to Lemma 2.6
2. If $M=T(T+1)$ then $\Phi_{M}(1)=0$ since obviously $\Phi_{T(T+1)}(X)=X+1$.
3. If $M=T^{\alpha}(T+1)^{\beta}$ with $\alpha, \beta>1$, then $1^{T^{\alpha-1}(T+1)^{\beta-1}}=0$ thanks to Lemma 2.6. Thus $\Phi_{M}(1)=\Phi_{T(T+1)}\left(1^{T^{\alpha-1}(T+1)^{\beta-1}}\right)=\Phi_{T(T+1)}(0)=1$.
4. If $M=T(T+1)^{\beta}$ with $\beta>1$, then $\Phi_{M}(1)=\Phi_{T(T+1)}\left(1^{(T+1)^{\beta-1}}\right)=$ $\Phi_{T(T+1)}(T)=T+1$.
5. If $M=T^{\alpha}(T+1)$ with $\alpha>1$, then $\Phi_{M}(1)=\Phi_{T(T+1)}\left(1^{T^{\alpha-1}}\right)=$ $\Phi_{T(T+1)}(T+1)=T$.
6. If $M=T^{\alpha}(T+1)^{\beta} N$ with $(\alpha, \beta) \neq(1,1)$ and $N \neq 1$ monic and prime to $T(T+1)$, then on the one hand $\Phi_{T^{\alpha}(T+1)^{\beta}}(1) \neq 0$ by the previous study. On the other hand by Lemma 2.6 (iii) we have $1^{D}=1$ for any monic divisor D of N. Formulas (6) and (7) then imply

$$
\begin{aligned}
\Phi_{M}(1) & =\prod_{D \in \operatorname{Div}(N)}\left(\Phi_{\left.T^{\alpha}(T+1)^{\beta}\left(1^{D}\right)\right)^{\mu(N / D)}}\right. \\
& =\left(\Phi_{T^{\alpha}(T+1)^{\beta}}(1)\right)^{\sum_{D \in \operatorname{Div}(N)} \mu(N / D)}=1 .
\end{aligned}
$$

7. If $M=T(T+1) N$ with N monic and prime to $T(T+1)$, then by using (6) and the fact that $\Phi_{T(T+1)}(X)=X+1$ we obtain

$$
\begin{aligned}
\Phi_{M}(X) & =\prod_{D \in \operatorname{Div}(N)}\left(\Phi_{T(T+1)}\left(X^{D}\right)\right)^{\mu(N / D)}=\prod_{D \in \operatorname{Div}(N)}\left(X^{D}+1\right)^{\mu(N / D)} \\
& =\prod_{D \in \operatorname{Div}(N)}\left((X+1)^{D}\right)^{\mu(N / D)}=\Phi_{N}(X+1)
\end{aligned}
$$

Hence $\Phi_{M}(1)=\Phi_{N}(0)$. Therefore $\Phi_{M}(1)=1$ if and only if N is not a prime power.
This completes the proof of the lemma.
Lemma 2.8. Suppose $q=2$. Then:
(i) $T^{T^{n}}=0$ and $(T+1)^{(T+1)^{n}}=0$, for any positive integer n.
(ii) $T^{D}=D(0) \cdot T$ and $(T+1)^{D}=D(1) \cdot(T+1)$, for any $D \in \mathbb{F}_{2}[T]$.

Proof. We show (i) by induction on n. To show (ii) we first note that $D=D(0)+\sum_{k=1}^{d} T^{n_{k}}=D(1)+\sum_{k=1}^{d^{\prime}}(T+1)^{m_{k}}$, then we apply (i).

Proposition 2.9. Suppose $q=2$ and let $A=T$ or $A=T+1$. Let $M=A^{n} N$ with N monic and prime to A, and n a nonnegative integer. Then $\Phi_{M}(A)=1$ if and only if either $n \neq 1$ and $N \neq 1$, or $n=1$ and N is not a prime power.

Proof. According to Proposition 2.4, $\Phi_{M}(A)=1$ implies $M=A+1$ or $\operatorname{deg}(M) \geq 2$. Assume that $\operatorname{deg}(M) \geq 2$. Then we have to consider the following cases.

1. If $n \geq 2$ and $N=1$ then by (5) and Lemma 2.8 we have $\Phi_{M}(A)=$ $\Phi_{A}\left(A^{A^{n-1}}\right)=\Phi_{A}(0)=A$.
2. If $n \neq 1$ and $N \neq 1$ then since $\Phi_{A^{n}}(A)=A$ even for $n=0$ we obtain

$$
\begin{aligned}
\Phi_{M}(A) & =\prod_{D \in \operatorname{Div}(N)}\left(\Phi_{A^{n}}\left(A^{D}\right)\right)^{\mu(N / D)}=\prod_{D \in \operatorname{Div}(N)}\left(\Phi_{A^{n}}(A)\right)^{\mu(N / D)} \\
& =\prod_{D \in \operatorname{Div}(N)}(A)^{\mu(N / D)}=1
\end{aligned}
$$

by (6), Lemma 2.8(ii) and (7).
3. If $n=1$ then since $\Phi_{A}(X)=X+A$ as explained in the introduction, we have

$$
\begin{aligned}
\Phi_{M}(X) & =\prod_{D \in \operatorname{Div}(N)}\left(\Phi_{A}\left(X^{D}\right)\right)^{\mu(N / D)}=\prod_{D \in \operatorname{Div}(N)}\left(X^{D}+A\right)^{\mu(N / D)} \\
& =\prod_{D \in \operatorname{Div}(N)}\left((X+A)^{D}\right)^{\mu(N / D)}=\Phi_{N}(X+A)
\end{aligned}
$$

by (6) and Lemma 2.8 (ii). Hence $\Phi_{M}(A)=\Phi_{N}(0)$. Therefore $\Phi_{M}(A)=1$ if and only if N is not a prime power.
This completes the proof of the proposition.
3. Proof of Theorem 1.1. We are now ready to prove

Theorem 3.1. Let $f \in \mathbb{F}_{q}[T][X]$ and let $a, b \in \mathbb{F}_{q}[T]$ be distinct. Let $\Gamma \subset \mathbb{F}_{q}[T]$ be an infinite set of monic polynomials. Suppose that f defines units on roots of $\rho_{N}(X)-a$ and on roots of $\rho_{N}(X)-b$ for all $N \in \Gamma$. Let $g \in \mathbb{F}_{q}[T][X]$ be an irreducible factor of f. Then g satisfies one of the following two conditions:
(1) There exists $\varepsilon \in \mathbb{F}_{q}^{*}$ and a monic $M \in \mathbb{F}_{q}[T]$ such that $g=\varepsilon \Phi_{M}$. Moreover, if $q>2$ then $a, b \in \mathbb{F}_{q}^{*}$ and M divides all $N \in \Gamma$. If $q=2$ then a and b have degree at most 1 and M is explicitly described in Propositions 2.7 and 2.9.
(2) $g \in \Delta_{a, b}$.

Proof. Let $\alpha \in k^{\text {ac }}$ be a root of g. The hypotheses imply that there exists an infinite sequence N_{0}, N_{1}, \ldots of monic polynomials of strictly increasing degrees such that $\alpha^{N_{i}}-a$ and $\alpha^{N_{i}}-b$ are units in $\mathbb{F}_{q}[T][\alpha]$. Let S_{0} be the set of places v of $L=k(\alpha)$ such that $b-a$ or α is not a unit at v. Let S_{∞} be the set of places of L extending the place at infinity. Then $S=S_{0} \cup S_{\infty}$
is finite. Let \mathcal{O}_{S} be the Dedekind ring of elements of L that are integral at all places outside S. Then $\mathbb{F}_{q}[T][\alpha] \subset \mathcal{O}_{S}$, in particular if we put

$$
U_{i}=\frac{b-\alpha^{N_{i}}}{b-a} \quad \text { and } \quad V_{i}=\frac{\alpha^{N_{i}}-a}{b-a}
$$

then U_{i} and V_{i} are units in \mathcal{O}_{S} and $U_{i}+V_{i}=1$. Define $\Psi: \mathbb{N} \rightarrow \mathcal{O}_{S}^{*} \times \mathcal{O}_{S}^{*}$ by $\Psi(i)=\left(U_{i}, V_{i}\right)$, where \mathcal{O}_{S}^{*} is the group of units of \mathcal{O}_{S}. If Ψ is not injective, then there exist $i_{0}<i_{1}$ such that $\alpha^{N_{i_{1}}-N_{i_{0}}}=0$. In particular g is, up to a nonzero constant, equal to a cyclotomic polynomial Φ_{M}. Moreover, for each $N \in \Gamma$ we must have $\Phi_{D_{N}}(a) \in \mathbb{F}_{q}^{*}$ and $\Phi_{D_{N}}(b) \in \mathbb{F}_{q}^{*}$, where $D_{N}=M / \operatorname{gcd}(M, N)$, thanks to Lemma 2.1. If $q>2$ then since $a \neq b$ we deduce from Proposition 2.5 that $a, b \in \mathbb{F}_{q}^{*}$ and $D_{N}=1$, in other words M divides all the polynomials N. If $q=2$ we see from Proposition 2.4 that $\operatorname{deg}(a), \operatorname{deg}(b) \leq 1$. The corresponding polynomials M are described in Propositions 2.7 and 2.9 .

Suppose that Ψ is injective. Then by [7, Theorem 7.19] there exist u and v in \mathcal{O}_{S}^{*} and two strictly increasing sequences $\left(i_{j}\right)_{j \in \mathbb{N}}$ and $\left(d_{j}\right)_{j \in \mathbb{N}}$ of positive integers such that

$$
U_{i_{j}}=u^{p^{d_{j}}} \quad \text { and } \quad V_{i_{j}}=v^{p^{d_{j}}} .
$$

This implies

$$
\frac{\alpha^{N_{i_{j}}}-a}{b-a}=\left(\frac{\alpha^{N_{i_{0}}}-a}{b-a}\right)^{p^{d_{j}-d_{0}}} \quad \text { for any } j \geq 0
$$

In other words, g divides in $\mathbb{F}_{q}[T][X]$ all the polynomials

$$
\frac{(b-a)^{d^{d_{j}-d_{0}}}}{b-a}\left(X^{N_{i_{j}}}-a\right)-\left(X^{N_{i_{0}}}-a\right)^{p^{d_{j}-d_{0}}}, \quad j \geq 0
$$

This is exactly the definition of $g \in \Delta_{a, b}$.
Acknowledgements. The authors express their sincere thanks to the referee for the meticulous reading of the manuscript. His remarks and suggestions were highly constructive and helpful.

References

[1] O. Broche and Á. del Río, Polynomials defining many units, Math. Z. 283 (2016), 1195-1200.
[2] L. Carlitz, A class of polynomials, Trans. Amer. Math. Soc. 43 (1938), 167-182.
[3] J.-H. Evertse, K. Györy, C. L. Stewart and R. Tijdeman, S-unit equations and their applications, in: New Advances in Transcendence Theory (Durham, 1986), Cambridge Univ. Press, Cambridge, 1988, 110-174.
[4] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91.
[5] D. R. Hayes, Stickelberger elements in function fields, Compos. Math. 55 (1985), 209239.
[6] N. Jacobson, The Theory of Rings, Amer. Math. Soc. Math. Surveys II, Amer. Math. Soc., New York, 1943.
[7] M. Rosen, Number Theory in Function Fields, Grad. Texts in Math. 210, Springer, New York, 2002.

Mohamed El Kati, Hassan Oukhaba
Université de Bourgogne Franche-Comté
Laboratoire de Mathématique (LMB)
16 Route de Gray
25030 Besançon Cedex, France
E-mail: nor712@live.fr
hassan.oukhaba@univ-fcomte.fr

[^0]: 2010 Mathematics Subject Classification: Primary 16U60; Secondary 11R60.
 Key words and phrases: Carlitz modules, polynomials defining units, cyclotomic polynomials.
 Received 10 October 2017; revised 13 August 2018.
 Published online 23 July 2019.

