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Polynomials defining many units in function fields
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Mohamed El Kati and Hassan Oukhaba (Besançon)

1. Introduction. Recently Osnel Broche and Ángel del Ŕıo [1] suc-
ceeded in classifying the polynomials with integral coefficients which give
units when evaluated on nth roots of a fixed integer a for infinitely many
integers n. The proof uses, among other things, the result proved in [3] that
if K is a number field and S is a finite set of places of K containing the
archimedean places, then the Diophantine equation X + Y = 1 has only
finitely many solutions (u, v) such that u and v are S-units in K.

The purpose of this article is to study the same question in the case
of global function fields, by using the Carlitz cyclotomic theory developed
in [2]. More precisely, we fix a finite field Fq, where q is the power of some
prime number p. Let k = Fq(T ) be the field of rational functions in the
variable T over Fq. Let kac be an algebraic closure of k. Let Fq[T ] be the
subring of polynomials in T . Let us briefly recall the Carlitz action of Fq[T ]
on kac. Let Fq[T ]{ϕ} be the Fq-algebra generated by Fq[T ] together with
another element ϕ satisfying

(1) ϕ ·M = M q · ϕ for all M ∈ Fq[T ].

Any element of Fq[T ]{ϕ} is uniquely written as a polynomial in ϕ with co-
efficients in Fq[T ]. Addition in Fq[T ]{ϕ} is done in the usual way. For multi-
plication we use the above rule (1). Here we should mention that Fq[T ]{ϕ} is
the non-commutative ring denoted by Fq[T ][t, S] by Nathan Jacobson in [6,
Chap. 3, §1, p. 29] where t is an indeterminate and S is the Frobenius auto-
morphism x 7→ xq of kac. Let D : Fq[T ]{ϕ} → Fq[T ] be the homomorphism
of rings that assigns to an element f =

∑m
i=0 biϕ

i its constant term b0. Then
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there exists a unique injective homomorphism of rings

ρ : Fq[T ]→ Fq[T ]{ϕ}
such that if we denote by ρM the image of M ∈ Fq[T ] then

• D(ρa) = a for all a ∈ Fq[T ].
• ρT = ϕ+ T .

In particular, ρa = a for all a ∈ Fq. If M ∈ Fq[T ], then it is proved in [4,
Proposition 1.1] that

(2) ρM =
d∑
i=0

[
M
i

]
ϕi,

where d is the degree of M ,
[
M
0

]
= M ,

[
M
d

]
is the leading coefficient of M

and in general each
[
M
i

]
is a polynomial in Fq[T ] of degree (d− i)qi.

The polynomial in X with coefficients in Fq[T ] defined by

ρM (X) =
d∑
i=0

[
M
i

]
Xqi

is called the Carlitz polynomial associated to M . We will also denote it
by XM . For instance XT = ρT (X) = Xq + TX and Xa = aX for a ∈ Fq.
One may use Carlitz polynomials to define an action of Fq[T ] on kac: if
u ∈ kac then the action of M on u, denoted by uM , is defined by

uM = ρM (u).

This action has been intensively studied in the literature and is referred to as
the Carlitz module, which is a special case of the general theory of Drinfeld
modules. It was applied by David Hayes [4] to obtain an explicit description
of the maximal abelian extension of k. Let ΛM be the set of roots of the
polynomial XM = ρM (X) in kac. It is proved in [4, Theorem 1.6] that ΛM is
an Fq[T ]-module isomorphic to Fq[T ]/MFq[T ]. From [4, Section 2] we deduce
that if λ is a generator of that module then the other generators are λA,
where A ∈ Fq[T ] is prime to M . Moreover, the irreducible polynomial of λ
over k is

ΦM (X) =
∏
A∈S

(X − λA),

where S is any complete system of representatives of the invertible classes of
the ring Fq[T ]/MFq[T ]. We recall that ΦM (X) ∈ Fq[T ][X]. It is the analogue
of the classical cyclotomic polynomials.

Since ρT+a = ϕ + T + a for any a ∈ Fq we deduce that ρT+a(X) =
Xq + (T + a)X. This implies in particular that

ΦT+a(X) = Xq−1 + T + a.
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Let us come back to our task. Let a,N ∈ Fq[T ] with N 6= 0, and let
f ∈ Fq[T ][X]. If f 6= 0 then the following properties are obviously equivalent:

(1) The image of f in Fq[T ][X]/(XN − a)Fq[T ][X] is invertible.
(2) There exist p, q ∈ Fq[T ][X] such that f(X)p(X) + (XN − a)q(X) = 1.
(3) f(λ) is a unit in Fq[T ][λ] for any root λ of XN − a.

Moreover, if f is irreducible then the above three properties are also equiv-
alent to

(4) αN − a is a unit in Fq[T ][α] for any root α of f .

When (1) is satisfied we say that f defines units on roots of ρN (X)− a.

For any distinct a, b ∈ Fq[T ] we define the subset ∆a,b of Fq[T ][X] by
declaring that f ∈ ∆a,b if and only if f is irreducible in Fq[T ][X] and there
exists an infinite sequence (Ni)i∈N of monic polynomials of strictly increasing
degrees and a strictly increasing sequence (di)i∈N∗ of positive integers such
that f divides all the polynomials

XNi − a
b− a

−
(
XN0 − a
b− a

)pdi
, i ≥ 1.

In this article we prove

Theorem 1.1 (Theorem 3.1). Let f ∈ Fq[T ][X] and let a, b ∈ Fq[T ] be
distinct. Let Γ ⊂ Fq[T ] be an infinite set of monic polynomials. Suppose that
f defines units on roots of ρN (X) − a and on roots of ρN (X) − b, for all
N ∈ Γ . Let g ∈ Fq[T ][X] be an irreducible factor of f . Then g satisfies one
of the following two conditions.

(1) There exist ε ∈ F∗q and a monic M ∈ Fq[T ] such that g = εΦM . More-
over, if q > 2 then a, b ∈ F∗q and M divides all N ∈ Γ . If q = 2 then
a and b have degree at most 1 and M is explicitly described in Proposi-
tions 2.7 and 2.9.

(2) g ∈ ∆a,b.

Our crucial argument in the proof of Theorem 1.1 is the following. Let
L be a global function field and let F be the field of constants of L. Let S be
a finite set of primes of L. Then the Diophantine equation X + Y = 1 has
only finitely many solutions (u, v) such that u and v are nonconstant S-units
in L and the extension L/F(u) is separable. See for instance [7, Theorem
7.19]. But as one may easily check, the couples (up

n
, vp

n
) also satisfy the

above equation, are nonconstant S-units in L, but the extensions L/F(up
n
)

are not separable. This phenomenon leads us to conclude that a polynomial
f as in Theorem 1.1 may have irreducible factors which are not necessarily
cyclotomic polynomials, the elements of ∆a,b. At this stage this set seems
mysterious. Nevertheless, the study of the converse of Theorem 1.1 requires
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the study of the behavior of the elements of ∆a,b. We hope to be able in the
future to completely describe these elements.

In another direction we point out that in Corollary 2.2 we prove that
a cyclotomic polynomial ΦM defines units on roots of ρN (X) − a for any
a ∈ F∗q and for any monic polynomial N ∈ Fq[T ] divisible by M .

2. When does a polynomial ΦM define many units? In this sec-
tion we give a complete description of the pairs {a, ΦM} such that a ∈ Fq[T ]
and ΦM defines units on roots of ρN (X)− a for infinitely many monic poly-
nomials N ∈ Fq[T ]. We will use the following properties of the cyclotomic
polynomials ΦM , where M is assumed to be monic. The set of monic divi-
sors of M will be denoted by Div(M), and as usual we denote the Möbius
function on Fq[T ] by µ.

1. We have

(3) XM =
∏

D∈Div(M)

ΦD(u).

2. By Möbius inversion we obtain

(4) ΦM (X) =
∏

D∈Div(M)

(XD)µ(M/D).

3. For any irreducible distinct and monic polynomials P1, . . . , Pr in RT , and
positive integers α1, . . . , αr, we have

(5) ΦPα11 ···P
αr
r

(X) = ΦP1···Pr(X
P
α1−1
1 ···Pαr−1

r ).

4. If M and L are relatively prime in Fq[T ] and monic, we have

(6) ΦML(X) =
∏

D∈Div(M)

ΦL(XD)µ(M/D).

5. For M 6= 1 in Fq[T ] and monic, we have

(7)
∑

D∈Div(M)

µ(D) = 0.

For any nonzero M ∈ Fq[T ] we denote by λM a fixed root of ΦM (X).

Lemma 2.1. Let M,N, a ∈ Fq[T ] be such that M and N are nonzero
monic polynomials. Let D = M/gcd(M,N). Then the following properties
are equivalent:

(a) ΦM defines units on roots of ρN (X)− a.
(b) λD − a is a unit in Fq[T ][λM ].
(c) λD − a is a unit in Fq[T ][λD].
(d) ΦD(a) ∈ F∗q.

Proof. See the proof of [1, Proposition 3].
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Corollary 2.2. Let a ∈ F∗q and let M1, . . . ,Ms ∈ Fq[T ] be monic.
Then the polynomial f = ΦM1 · · ·ΦMs defines units on roots of ρN (X) − a
for any N divisible by all the polynomials Mi, i = 1, . . . , s.

Proof. Let N ∈ Fq[T ] be monic and divisible by all Mi, i = 1, . . . , s. By
definition f = ΦM1 · · ·ΦMs defines units on roots of ρN (X)−a if and only if
for all i ∈ {1, . . . , s} the polynomial ΦMi defines units on roots of ρN (X)−a.
By Lemma 2.1 this is equivalent to ΦDi(a) ∈ F∗q for all i ∈ {1, . . . , s}, where
Di = Mi/gcd(Mi, N). But we have supposed that Mi divides N , thus Di = 1
and then ΦDi(a) = a.

Let us now study the condition ΦM (a) ∈ F∗q . To this end we let v∞ be
the unique valuation of k = Fq(T ) such that v∞(f) = −deg(f) for any
f ∈ Fq[T ]. In particular, v∞(1/T ) = 1. The place of k defined by v∞ will be
called the place at infinity.

Lemma 2.3. Let M ∈ Fq[T ] \ {0}. Let w be a normalized valuation of
k(ΛM ) above v∞. Let λ ∈ ΛM \ {0}. Then w(λ) ≥ 0 or w(λ) = −1.

Proof. We know that (q − 1)v∞ = w on k. This result is proved in [4,
Theorem 3.2] for those M that are a power of an irreducible polynomial
in Fq[T ]. The proof in the most general context is given in [5, Proposition
4.15]. Denote deg(M) by d and the leading coefficient of M by ad.

If d = 1 then by (2) we have 0 = λM = a1λ
q + Mλ. Since λ 6= 0

we immediately obtain w(λ) = −1. If d ≥ 2 and w(λ) < 0 then for any
i ∈ {0, . . . , d} we have

w
([
M
i

]
λq

i)
= f(i),

where f(x) = −(q− 1)(d−x)qx +w(λ)qx and
[
M
i

]
is defined in (2). But the

function f is strictly decreasing on [0, d− 1]. Therefore

w
(d−1∑
i=0

[
M
i

]
λq

i
)

= min
0≤i≤d−1

w
([
M
i

]
λq

i)
= w

([
M
d−1
]
λq

d−1)
= qd−1(w(λ)−(q−1)).

The equation λM = 0 then implies w(λq
d
) = qd−1(w(λ)− (q−1)) and hence

w(λ) = −1.

Proposition 2.4. Let M ∈ Fq[T ] \ {0} and a ∈ Fq[T ]. Then

ΦM (a) ∈ F∗q =⇒


a ∈ F∗q if deg(M) = 0,

a ∈ Fq if deg(M) > 0 and q ≥ 3,

a = M + 1 if deg(M) = 1 and q = 2,

deg(a) ≤ 1 if deg(M) ≥ 2 and q = 2.

Proof. The case deg(M) = 0 is trivial since if M = a0 ∈ F∗q then XM =
a0X and ΦM (X) = X. Assume that deg(M) ≥ 1 and let UM be the set of
roots of ΦM . Let w be a normalized valuation of k(ΛM ) above v∞. Suppose
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we have deg(a) > 1, or q > 2 and deg(a) = 1. Then w(a) = −(q−1) deg(a) <
−1 ≤ w(λ) for any λ ∈ UM thanks to Lemma 2.3. If ΦM (a) ∈ F∗q then

0 = w(ΦM (a)) =
∑
λ∈UM

w(a− λ) = deg(ΦM )w(a).

This implies that deg(ΦM ) = 0, which is absurd. Therefore we must have
deg(a) ≤ 1. Moreover if q > 2 then a ∈ Fq. We still have to prove that if q = 2
and M and a have degree 1 then a = M + 1. But if M = T + a0 ∈ RT , then
ρT+a0(X) = X2 + (T + a0)X and ΦM (X) = X + T + a0. Hence ΦM (a) ∈ F∗q
if and only if a = M + 1.

Proposition 2.5. Suppose q > 2. Let M be a nonzero monic polynomial
in Fq[T ] and let a ∈ Fq[T ]. Then

ΦM (a) ∈ F∗q ⇐⇒

{
a ∈ F∗q if deg(M) = 0 (M = 1),

a = 0 if deg(M) > 0 and M is not a prime power.

Proof. As already observed at the beginning of the proof of Proposi-
tion 2.4, if deg(M) = 0 then ΦM (a) ∈ F∗q if and only if a ∈ F∗q . Suppose that
deg(M) ≥ 1. According to Proposition 2.4 we have to consider the following
cases:

1. The case a = 0 andM = Pn, where P is a monic irreducible polynomial in
Fq[T ]. But then by (4) we have ΦM (X) = XPn/XPn−1

, and in particular
ΦM (0) = P 6∈ F∗q .

2. The case a = 0 and M = Pα1
1 · · ·Pαrr , where P1, . . . , Pr are distinct monic

irreducible polynomials in Fq[T ] and α1, . . . , αr are positive integers.
Then by evaluating at 0 the polynomial equality XM/X =∏
D∈Div(N), D 6=1 ΦD(X), derived from (3), we obtain

M =
∏

D∈Div(N), D 6=1

ΦD(0).

But since ΦP ei (0) = Pi for any positive integer e we find the relation∏
D∈Ξ

ΦD(0) = 1,

where Ξ is the set of the monic divisors of M that are not prime powers.
This proves that ΦM (0) ∈ F∗q .

3. The case a ∈ F∗q and M = Pn, where P is a monic irreducible polynomial

in Fq[T ]. Here also we use the equality ΦM (X) = XPn/XPn−1
. Since the

sequence (d− i)qi is strictly increasing on [0, d− 1] for any d ≥ 1, we see
from (2) that the degree in T of aP

n
is qn deg(P )−1. Hence, if n ≥ 2 then

the degree of ΦM (a) is qndeg(P )−1− q(n−1) deg(P )−1 6= 0. If n = 1 then the
degree of ΦM (a) is qdeg(P )−1 6= 0.
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4. The case a ∈ F∗q and M = Pα1
1 · · ·Pαrr , where P1, . . . , Pr are distinct

monic irreducible polynomials in Fq[T ] and α1, . . . , αr are positive inte-

gers. Set N = Pα1−1
1 · · ·Pαr−1r and b = aN . If N 6= 1 then deg(b) =

qdeg(N)−1. In particular b 6∈ Fq. Since ΦM (a) = ΦP1...Pr(b) by (5), we
deduce that ΦM (a) 6∈ F∗q thanks to Proposition 2.4. If N = 1 then

by (4) we have ΦM (a) =
∏
D∈Div(M)(a

D)µ(M/D) and q deg(ΦM (a)) =∑
D∈Div(M),D 6=1 µ(M/D)qdeg(D). The assumption ΦM (a) ∈ F∗q would im-

ply
∑

D∈Div(M), D 6=1 µ(M/D)qdeg(D) = 0. For i ∈ {1, 2} we denote by Ωi

the set of D ∈ Div(M) \ {1} with µ(M/D) = (−1)i. Since r ≥ 2 the sets
Ω1 and Ω2 are not empty and the last equality may be written as∑

D∈Ω1

qdeg(D) =
∑
D∈Ω2

qdeg(D).

In addition we note that

(8)
r∏
i=1

(1− qdeg(Pi))− 1 =

{∑
D∈Ω2

qdeg(D) −
∑

D∈Ω1
qdeg(D) if r is even,∑

D∈Ω1
qdeg(D) −

∑
D∈Ω2

qdeg(D) if r is odd.

This implies that
∏r
i=1(1− qdeg(Pi)) = 1, which is impossible.

This concludes the proof of the proposition.

Lemma 2.6. Suppose q = 2. Then:

(i) ρTn(1) = T + 1 and ρ(T+1)n(1) = T for any nonzero integer n.
(ii) ΦTn(1) = Φ(T+1)n(1) = 1 for any nonzero integer n > 1.
(iii) ρD(1) = (D(0) − D(1))T + D(1) for any D ∈ F2[T ]. In particular, if

D(0) = D(1) = 1 we have ρD(1) = 1.

Proof. We can show (i) by induction. We deduce (ii) from (i) since we

have ΦPn(X) = XPn/XPn−1
for any prime P in Fq[T ]. As for (iii) it is

sufficient to note that D = D(0) +
∑d

k=1 T
nk , then apply (i).

Proposition 2.7. Suppose q = 2 and a ∈ F2. Let M = Tα(T + 1)βN
with N monic and prime to T (T + 1). Then ΦM (a) = 1 if and only if one
of the following conditions is satisfied:

(1) a = 0 and M is not a prime power,
(2) a = 1 and M = 1,
(3) a = 1, deg(M) ≥ 2, N 6= 1 and (α, β) 6= (1, 1),
(4) a = 1, deg(M) ≥ 2, N = 1 but α 6= 1 and β 6= 1,
(5) a = 1, (α, β) = (1, 1) and N is not a prime power.

Proof. Since the case deg(M) = 0 is obvious and the case deg(M) = 1
is impossible by Proposition 2.4, we suppose that deg(M) ≥ 2. Then by
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arguing as for q > 2 we may show that ΦM (0) = 1 ⇔ M is not a prime
power. If a = 1 we obtain the following results.

1. If M = Tα or M = (T + 1)α with α ≥ 2, then ΦM (1) = 1 thanks to
Lemma 2.6.

2. If M = T (T + 1) then ΦM (1) = 0 since obviously ΦT (T+1)(X) = X + 1.

3. If M = Tα(T + 1)β with α, β > 1, then 1T
α−1(T+1)β−1

= 0 thanks to

Lemma 2.6. Thus ΦM (1) = ΦT (T+1)(1
Tα−1(T+1)β−1

) = ΦT (T+1)(0) = 1.

4. If M = T (T + 1)β with β > 1, then ΦM (1) = ΦT (T+1)(1
(T+1)β−1

) =
ΦT (T+1)(T ) = T + 1.

5. If M = Tα(T + 1) with α > 1, then ΦM (1) = ΦT (T+1)(1
Tα−1

) =
ΦT (T+1)(T + 1) = T .

6. If M = Tα(T + 1)βN with (α, β) 6= (1, 1) and N 6= 1 monic and prime to
T (T + 1), then on the one hand ΦTα(T+1)β (1) 6= 0 by the previous study.

On the other hand by Lemma 2.6(iii) we have 1D = 1 for any monic
divisor D of N . Formulas (6) and (7) then imply

ΦM (1) =
∏

D∈Div(N)

(ΦTα(T+1)β (1D))µ(N/D)

= (ΦTα(T+1)β (1))
∑
D∈Div(N) µ(N/D) = 1.

7. If M = T (T + 1)N with N monic and prime to T (T + 1), then by using
(6) and the fact that ΦT (T+1)(X) = X + 1 we obtain

ΦM (X) =
∏

D∈Div(N)

(ΦT (T+1)(X
D))µ(N/D) =

∏
D∈Div(N)

(XD + 1)µ(N/D)

=
∏

D∈Div(N)

((X + 1)D)µ(N/D) = ΦN (X + 1).

Hence ΦM (1) = ΦN (0). Therefore ΦM (1) = 1 if and only if N is not a
prime power.

This completes the proof of the lemma.

Lemma 2.8. Suppose q = 2. Then:

(i) T T
n

= 0 and (T + 1)(T+1)n = 0, for any positive integer n.
(ii) TD = D(0).T and (T + 1)D = D(1).(T + 1), for any D ∈ F2[T ].

Proof. We show (i) by induction on n. To show (ii) we first note that

D = D(0) +
∑d

k=1 T
nk = D(1) +

∑d′

k=1(T + 1)mk , then we apply (i).

Proposition 2.9. Suppose q = 2 and let A = T or A = T + 1. Let
M = AnN with N monic and prime to A, and n a nonnegative integer.
Then ΦM (A) = 1 if and only if either n 6= 1 and N 6= 1, or n = 1 and N is
not a prime power.
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Proof. According to Proposition 2.4, ΦM (A) = 1 implies M = A + 1
or deg(M) ≥ 2. Assume that deg(M) ≥ 2. Then we have to consider the
following cases.

1. If n ≥ 2 and N = 1 then by (5) and Lemma 2.8 we have ΦM (A) =

ΦA(AA
n−1

) = ΦA(0) = A.
2. If n 6= 1 and N 6= 1 then since ΦAn(A) = A even for n = 0 we obtain

ΦM (A) =
∏

D∈Div(N)

(ΦAn(AD))µ(N/D) =
∏

D∈Div(N)

(ΦAn(A))µ(N/D)

=
∏

D∈Div(N)

(A)µ(N/D) = 1

by (6), Lemma 2.8(ii) and (7).
3. If n = 1 then since ΦA(X) = X +A as explained in the introduction, we

have

ΦM (X) =
∏

D∈Div(N)

(ΦA(XD))µ(N/D) =
∏

D∈Div(N)

(XD +A)µ(N/D)

=
∏

D∈Div(N)

((X +A)D)µ(N/D) = ΦN (X +A),

by (6) and Lemma 2.8(ii). Hence ΦM (A) = ΦN (0). Therefore ΦM (A) = 1
if and only if N is not a prime power.

This completes the proof of the proposition.

3. Proof of Theorem 1.1. We are now ready to prove

Theorem 3.1. Let f ∈ Fq[T ][X] and let a, b ∈ Fq[T ] be distinct. Let
Γ ⊂ Fq[T ] be an infinite set of monic polynomials. Suppose that f defines
units on roots of ρN (X) − a and on roots of ρN (X) − b for all N ∈ Γ .
Let g ∈ Fq[T ][X] be an irreducible factor of f . Then g satisfies one of the
following two conditions:

(1) There exists ε ∈ F∗q and a monic M ∈ Fq[T ] such that g = εΦM . More-
over, if q > 2 then a, b ∈ F∗q and M divides all N ∈ Γ . If q = 2 then
a and b have degree at most 1 and M is explicitly described in Proposi-
tions 2.7 and 2.9.

(2) g ∈ ∆a,b.

Proof. Let α ∈ kac be a root of g. The hypotheses imply that there exists
an infinite sequence N0, N1, . . . of monic polynomials of strictly increasing
degrees such that αNi − a and αNi − b are units in Fq[T ][α]. Let S0 be the
set of places v of L = k(α) such that b − a or α is not a unit at v. Let S∞
be the set of places of L extending the place at infinity. Then S = S0 ∪ S∞
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is finite. Let OS be the Dedekind ring of elements of L that are integral at
all places outside S. Then Fq[T ][α] ⊂ OS , in particular if we put

Ui =
b− αNi
b− a

and Vi =
αNi − a
b− a

,

then Ui and Vi are units in OS and Ui+Vi = 1. Define Ψ : N→ O∗S ×O∗S by
Ψ(i) = (Ui, Vi), where O∗S is the group of units of OS . If Ψ is not injective,
then there exist i0 < i1 such that αNi1−Ni0 = 0. In particular g is, up
to a nonzero constant, equal to a cyclotomic polynomial ΦM . Moreover,
for each N ∈ Γ we must have ΦDN (a) ∈ F∗q and ΦDN (b) ∈ F∗q , where
DN = M/gcd(M,N), thanks to Lemma 2.1. If q > 2 then since a 6= b we
deduce from Proposition 2.5 that a, b ∈ F∗q and DN = 1, in other words
M divides all the polynomials N . If q = 2 we see from Proposition 2.4
that deg(a),deg(b) ≤ 1. The corresponding polynomials M are described in
Propositions 2.7 and 2.9.

Suppose that Ψ is injective. Then by [7, Theorem 7.19] there exist u and
v in O∗S and two strictly increasing sequences (ij)j∈N and (dj)j∈N of positive
integers such that

Uij = up
dj

and Vij = vp
dj
.

This implies

αNij − a
b− a

=

(
αNi0 − a
b− a

)pdj−d0
for any j ≥ 0.

In other words, g divides in Fq[T ][X] all the polynomials

(b− a)p
dj−d0

b− a
(XNij − a)−

(
XNi0 − a

)pdj−d0
, j ≥ 0.

This is exactly the definition of g ∈ ∆a,b.
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