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Abstract. Let (A0, A1) be a Banach couple, (B0, B1) a quasi-Banach couple, 0 < q ≤ ∞ and
T a linear operator. We prove that if T : A0 → B0 is bounded and T : A1 → B1 is compact,
then the interpolated operator by the logarithmic method T : (A0, A1)1,q,A → (B0, B1)1,q,A is
compact too. This result allows the extension of some limit variants of Krasnosel’skǐı’s compact
interpolation theorem.

1. Introduction. In 1960, Krasnosel’skǐı [20] gave a reinforced version of the Riesz–
Thorin theorem involving compactness. He proved that if T is a linear operator such
that T : Lp0 → Lq0 compactly and T : Lp1 → Lq1 boundedly with 1 ≤ p0, p1, q1 ≤ ∞,
1 ≤ q0 < ∞, 0 < θ < 1, 1/p = (1 − θ)/p0 + θ/p1 and 1/q = (1 − θ)/q0 + θ/q1, then
T : Lp → Lq is also compact. This result promoted the study of compact operators
between abstract interpolation spaces. The first results were due to Lions and Peetre [21]
and to Persson [23] (see also [2, 24] and the references given there). In 1992, it was proven
by Cwikel [15] and Cobos, Kühn and Schonbek [12] that if (A0, A1), (B0, B1) are Banach
couples and T is a linear operator such that T : Aj → Bj is bounded, for j = 0, 1, and
one of the restrictions is compact, then the interpolated operator by the real method
T : (A0, A1)θ,q → (B0, B1)θ,q is also compact. In 1998, Cobos and Persson proved in [13]
that the previous result is still valid for quasi-Banach couples. As a particular application
of this result, they gave an extension of Krasnosel’skǐı’s theorem to Lorentz spaces with
no restrictions on parameters qj , that is to say, 0 < q0 6= q1 ≤ ∞.
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The logarithmic perturbations (A0, A1)θ,q,A of the real method have attracted con-
siderable attention in the last years (see [18, 19, 14, 3]). When θ = 0 and θ = 1, these
spaces are related to the limiting interpolation spaces [5, 10, 11]. Applying the logarith-
mic methods to the couple (Lr, L∞) one can get generalized Lorentz–Zygmund spaces
Lp,q,A (see [16, 22]).

Edmunds and Opic established in [17] the following limit version of Krasnosel’skǐı’s
theorem: let (R,µ) and (S, ν) be finite measure spaces, 1 < p0 < p1 ≤ ∞, 1 < q0 <

q1 ≤ ∞, 1 ≤ q < ∞ and α + 1/q > 0. If T is a linear operator such that T : Lp0(R) →
Lq0(S) compactly and T : Lp1(R)→ Lq1(S) boundedly then T : Lp0,q,α+1/min(p0,q)(R)→
Lq0,q,α+1/max(q0,q)(S) is also compact.

Later Cobos, Fernández Cabrera and Martínez [7] and Cobos and Segurado [14] ob-
tained abstract versions of this result. They work with logarithmic interpolation methods
with limit values of θ applied to Banach couples and 1 ≤ q ≤ ∞. In particular, it is shown
in [14] that the result of Edmunds and Opic also holds when the spaces are defined over
any σ-finite measure spaces.

The first objective of this paper is to extend the abstract results for 0 < q ≤ ∞ and
a quasi-Banach target couple. Then, as a consequence, we prove an extended version of
the limit Krasnosel’skǐı type result for 0 < q0 < q1 ≤ ∞ and 0 < q <∞.

The organization of the paper is as follows. In Section 2 we review the definition
and some properties of limit logarithmic interpolation spaces. In Section 3 we prove the
abstract compactness theorem for logarithmic spaces. As the proof is quite technical,
we settle several auxiliary lemmas in advance. Finally, in Section 4 we derive the Kras-
nosel’skǐı’s type result.

2. Logarithmic interpolation spaces. Let Ā = (A0, A1) be a quasi-Banach couple,
that is to say, two quasi-Banach spaces Aj , j = 0, 1, which are continuously embedded in
some Hausdorff topological vector space. We put cAj ≥ 1 for the constants in the quasi-
triangle inequality, j = 0, 1. Let t > 0, the Peetre’s K- and J-functionals are defined
by

K(t, a) = K(t, a;A0, A1) = inf
{
‖a0‖A0 + t‖a1‖A1 : a = a0 + a1, aj ∈ Aj , j = 0, 1

}
where a ∈ A0 +A1, and

J(t, a) = J(t, a;A0, A1) = max{‖a‖A0 , t‖a‖A1}, a ∈ A0 ∩A1.

Observe that K(1, ·) is the quasi-norm of A0 +A1 and J(1, ·) the quasi-norm of A0 ∩A1.
In both cases, the quasi-triangular inequality holds with constant c = max{cA0 , cA1}.
When cA0 = cA1 = 1 we say that Ā = (A0, A1) is a Banach couple.

For a quasi-Banach couple Ā = (A0, A1), the Gagliardo completion A∼
j of Aj is formed

of all a ∈ A0 +A1 such that

‖a‖A∼
j

:= sup
{
t−jK(t, a) : t > 0

}
<∞,

(see [1, 2, 4]). Clearly Aj ↪→ A∼
j , where ↪→ means continuous embedding. Note that

K(t, a;A∼
0 , A

∼
1 ) ≤ K(t, a;A0, A1) ≤ max{cA0 , cA1}K(t, a;A∼

0 , A
∼
1 ), (1)
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for t > 0 and a ∈ A0+A1. Indeed, for any decomposition a = a0+a1, with aj ∈ Aj ↪→ A∼
j ,

we have
K(t, a;A∼

0 , A
∼
1 ) ≤ ‖a0‖A∼

0
+ t‖a1‖A∼

1
≤ ‖a0‖A0 + t‖a1‖A1 .

Hence K(t, a;A∼
0 , A

∼
1 ) ≤ K(t, a;A0, A1). On the other hand, if a = b0 + b1 with

bj ∈ A∼
j ↪→ A0 +A1, then

K(t, a;A0, A1) ≤ max{cA0 , cA1}
(
K(t, b0;A0, A1) +K(t, b1;A0, A1)

)
≤ max{cA0 , cA1}

(
‖b0‖A∼

0
+ t‖b1‖A∼

1

)
.

Thus K(t, a;A0, A1) ≤ max{cA0 , cA1}K(t, a;A∼
0 , A

∼
1 ). In particular, if Ā = (A0, A1) is a

Banach couple, we get an equality in (1) as it can be seen in [1, Theorem V.1.5].
Let `(t) = 1 + |log t|, ``(t) = 1 + (log(1 + |log t|)) and for A = (α0, α∞) ∈ R2

`A(t) = `(α0,α∞)(t) =
{
`α0(t) if 0 < t ≤ 1,
`α∞(t) if 1 < t <∞,

and define ``A(t) similarly.
Given 0 ≤ θ ≤ 1, 0 < q ≤ ∞, A ∈ R2 and a quasi-Banach couple Ā = (A0, A1), the

logarithmic interpolation space (A0, A1)θ,q,A consists of all a ∈ A0 +A1 such that

‖a‖(A0,A1)θ,q,A = ‖
(
K(2m, a)2−mθ`A(2m)

)
m∈Z‖`q <∞.

Since this definition requires the weighted sequence space `q(2−mθ`A(2m)), we also use
the notation (A0, A1)`q(2−mθ`A(2m)). It is not difficult to check that the quasi-norm of
(A0, A1)θ,q,A is equivalent to the continuous quasi-norm

‖a‖(A0,A1)θ,q,A ∼


(∫ ∞

0

[
t−θ`A(t)K(t, a)

]q dt
t

)1/q
if 0 < q <∞,

sup
{
t−θ`A(t)K(t, a) : t > 0

}
if q =∞.

See [18, 19] for more details on (A0, A1)θ,q,A.
We are interested in the limiting interpolation spaces that appear when θ = 0 and

θ = 1. Note that K(t, a;A0, A1) = tK(t−1, a;A1, A0) and therefore

(A0, A1)θ,q,(α0,α∞) = (A1, A0)1−θ,q,(α∞,α0) (2)

with equal quasi-norms. In particular, (A0, A1)0,q,(α0,α∞) = (A1, A0)1,q,(α∞,α0). Subse-
quently we focus on the case θ = 1.

Under the assumptions {
α0 + 1

q < 0 if 0 < q <∞,
α0 < 0 if q =∞,

(3)

we see that A0∩A1 ↪→ (A0, A1)1,q,A ↪→ A0+A1, for any quasi-Banach couple Ā = (A0, A1)
(see [19, Theorem 2.2]).

When Ā = (A0, A1) is a Banach couple, it will be useful to represent the space
(A0, A1)1,q,A by means of the J-functional.
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Let Ā = (A0, A1) be a Banach couple, 0 < q ≤ ∞, A = (α0, α∞) ∈ R2 and B =
(β0, β∞) ∈ R2. Assume that{

α∞ > 0, or α∞ = 0 and β∞ ≥ 0 if 0 < q ≤ 1,
α∞ − 1

q′ > 0, or α∞ = 1
q′ and β∞ −

1
q′ > 0 if 1 < q ≤ ∞,

(4)

where 1/q + 1/q′ = 1. The space (A0, A1)J1,q,A,B = (A0, A1)J`q(2−m`A(2m)``B(2m)) is formed
of all those a ∈ A0 +A1 for which there exists (um) ⊆ A0 ∩A1 such that

a =
∞∑

m=−∞
um (convergence in A0 +A1)

and
‖
(
J(2m, um)2−m`A(2m)``B(2m)

)
m∈Z‖`q <∞.

We set

‖a‖(A0,A1)J1,q,A,B
= inf

{
‖
(
J(2m, um)2−m`A(2m)``B(2m)

)
‖`q : a =

∞∑
m=−∞

um

}
.

If B = (0, 0), we simply write (A0, A1)J1,q,A. It is proven in [3, Section 2] that under
the assumptions in (4), A0 ∩ A1 ↪→ (A0, A1)1,q,A,B ↪→ A0 + A1 for every Banach couple
Ā = (A0, A1). If 1 ≤ q ≤ ∞ there exists an equivalent continuous representation for the
J-spaces (see [14, Definition 3.1]).

Let Ā = (A0, A1) be a Banach couple. If 1 ≤ q ≤ ∞ and A = (α0, α∞) satisfies (3),
then [14, Theorems 3.5 and 3.6] state that

(A0, A1)1,q,A =
{

(A0, A1)J1,q,A+1 if α∞ + 1/q > 0,
(A0, A1)J1,q,A+1,(0,1) if α∞ + 1/q = 0,

(5)

with equivalent norms. Here A + λ = (α0 + λ, α∞ + λ), for any λ ∈ R. If 0 < q < 1 and
A = (α0, α∞) satisfies (3), then [3, Theorem 3.2] shows that

(A0, A1)1,q,A =
{

(A∼
0 , A

∼
1 )J1,q,A+1/q if α∞ + 1/q > 0,

(A∼
0 , A

∼
1 )J1,q,A+1/q,(0,1/q) if α∞ + 1/q = 0,

(6)

with equivalent quasi-norms. In general, when α∞ + 1/q < 0 and 0 < q ≤ ∞, or α∞ = 0
and q =∞, the K-space (A0, A1)1,q,A does not admit a J-representation (see [14, Propo-
sition 3.4] and [3, Example 2.1]). In this case, the following result is useful. For a given
quasi-Banach couple Ā = (A0, A1), A = (α0, α∞) ∈ R2 and 0 < q ≤ ∞ satisfying{

α0 + 1/q < 0 and α∞ + 1/q < 0 if 0 < q <∞,
α0 < 0 and α∞ ≤ 0 if q =∞,

we see that for any α > −1/q

(A0, A1)1,q,A = (A0 +A1, A1)1,q,(α0,α), (7)

with equivalent quasi-norms. This result was proven in [14, Corollary 2.5] for Banach
couples and 1 ≤ q ≤ ∞, but the proof remains valid for quasi-Banach couples and
0 < q ≤ ∞ by just taking into account the constant in the quasi-triangle inequality.
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3. Compactness theorem. In what follows, if X and Y are quantities depending on
certain parameters, we write X . Y if X ≤ CY with a constant C independent of all
the parameters. We put X ∼ Y if X . Y and Y . X.

Let A be a quasi-Banach space. For M > 0, we put MUA = {a ∈ A : ‖a‖A ≤M} and
just UA when M = 1. If B is another quasi-Banach space, let L(A,B) denote the set of
bounded linear operators from A to B, and K(A,B) the set of linear compact operators
from A to B. If Ā = (A0, A1) and B̄ = (B0, B1) are two quasi-Banach couples, we put
T ∈ L(Ā, B̄) if T ∈ L(A0 + A1, B0 + B1) and the restrictions T : Aj → Bj are also
bounded with quasi-norm ‖T‖j , for j = 0, 1. If A0 = A1 = A or B0 = B1 = B, then we
simply write T ∈ L(A, B̄) or T ∈ L(Ā, B). For λ ∈ R, we set λ+ = max{0, λ}.

Let Ā = (A0, A1) and B̄ = (B0, B1) be quasi-Banach couples, 0 < q ≤ ∞ and
A = (α0, α∞) ∈ R2 satisfying (3). If T ∈ L(Ā, B̄), then T ∈ L

(
Ā1,q,A; B̄1,q,A

)
and the

following norm estimate holds

‖T‖Ā1,q,A;B̄1,q,A
.

{
‖T‖1

(
1 +

(
log ‖T‖0
‖T‖1

)+)α+
∞−α0 if ‖T‖j 6= 0, j = 0, 1;

‖T‖1 if ‖T‖j = 0, j = 0 or j = 1.
(8)

This result was proven in [8, Theorem 2.2] for Banach couples and 1 ≤ q ≤ ∞. The proof
remains true in our hypothesis.

Our goal in this section is to prove the compactness of the interpolated operator
T : (A0, A1)1,q,A → (B0, B1)1,q,A, for Ā a Banach couple and B̄ a quasi-Banach couple,
under the assumptions that T : A1 → B1 is compact and T : A0 → B0 is bounded.
For this purpose we establish first a simplified version of this result and some auxiliary
lemmas.

Lemma 3.1. Let Ā = (A0, A1) be a quasi-Banach couple and let B be a quasi-Banach
space. Take A = (α0, α∞) ∈ R2 and 0 < q ≤ ∞ satisfying (3).

1. If T ∈ L(B, Ā) with T : B → A1 compact, then T : B → (A0, A1)1,q,A is compact.
2. If T ∈ L(Ā, B) with T : A1 → B compact, then T : (A0, A1)1,q,A → B is compact.

Proof. For the first case, the proof given in [14, Lemma 4.1 (a)] is still valid. However, for
the second case, [14, Lemma 4.2 (b)] uses Hahn–Banach theorem and we have to proceed
differently. It is clear that for any m ∈ Z

sup
{
K(2m, a)
‖a‖Ā1,q,A

: a ∈ Ā1,q,A, a 6= 0
}
≤ 2m`−A(2m). (9)

Given ε > 0, we fix m < 0 such that 2m`−A(2m) ≤ ε/(4cB‖T‖A0,B). Using (9), we see
that for any a ∈ UĀ1,q,A

there exists aj ∈ Aj , j = 0, 1, such that a = a0 + a1 and

‖a0‖A0 + 2m‖a1‖A1 ≤ 2K(2m, a) ≤ 2m+1`−A(2m) ≤ ε/(2cB‖T‖A0,B).
Let M = 2−mε/(2cB‖T‖A0,B). By compactness of the operator T : A1 → B, there

exists {b1, . . . , bk} ⊂ B such that min{‖Tx − bj‖B : 1 ≤ j ≤ k} ≤ ε/(2cB), for every
x ∈ MUA1 . Consequently, for each a ∈ UĀ1,q,A

we can take j ∈ {1, . . . , k} such that
‖Ta1 − bj‖B ≤ ε/(2cB) and

‖Ta− bj‖B ≤ cB(‖Ta0‖B + ‖Ta1 − bj‖B) ≤ ε.
Therefore, T : (A0, A1)1,q,A → B is compact.
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Lemma 3.2. Let Ā = (A0, A1) be a Banach couple. Let B̄ = (B0, B1) be a quasi-Banach
couple and T ∈ L(Ā, B̄). If T : A1 → B1 is compact, then T : A∼

1 → B∼
1 is also compact.

Proof. Let ε > 0 and a ∈ UA∼
1

= {a ∈ A0 + A1 : supt>0K(t, a)/t ≤ 1}. For every n ∈ N
there exist a0n ∈ A0 and a1n ∈ A1 such that a = a0n + a1n and ‖a0n‖A0 + 1/n‖a1n‖A1 ≤
2K(1/n, a) ≤ 2/n. Note that limn→∞ Ta1n = Ta in B0 + B1, since limn→∞ a1n = a

in A0 + A1. Moreover, the sequence (a1n) is contained in 2UA1 and the operator T is
compact from A1 to B1, therefore there exists a subsequence (Ta1n′) that is convergent
in B1. Using compatibility, we deduce that Ta1n′

n′→∞−−−−→ Ta in B1 and then we can find
n′0 ∈ N such that ‖Ta1n′0 − Ta‖B1 ≤ ε/(2cB1).

Again by compactness of T : A1 → B1, there exists {b1, . . . , bk} ⊂ B1 such that
min{‖Tx − bj‖B1 : 1 ≤ j ≤ k} ≤ ε/(2cB1), for every x ∈ 2UA1 . Hence, we can take
j ∈ {1, . . . , k} such that ‖Ta1n′0 − bj‖B1 ≤ ε/(2cB1) and
‖Ta− bj‖B1 ≤ cB1

(
‖Ta− Ta1n′0‖B1 + ‖Ta1n′0 − bj‖B1

)
≤ cB1

(
ε/(2cB1) + ε/(2cB1)

)
= ε.

Thus T : A∼
1 → B1 is compact. Since B1 ↪→ B∼

1 , it follows that T : A∼
1 → B∼

1 is also
compact.

The previous lemma for Banach couples and compactness on the restriction
T : A0 → B0 was given in [7, Theorem 2.2]. The formulation of the next two lemmas corre-
sponds to [6, Lemma 2.3 and Corollary 2.2] in the Banach case. The proofs can be found in
[9, Lemma 3.2 and Lemma 3.3] for quasi-Banach spaces and bilinear operators.

Lemma 3.3. Let A,B,Z be quasi-Banach spaces, D a dense subspace of A and
T ∈ K(A,B). Let (Sn)n∈N ⊂ L(B,Z) such that M := sup{‖Sn‖B,Z : n ≥ 1} < ∞.
If limn→∞ ‖SnTu‖Z = 0 for all u ∈ D then limn→∞ ‖SnT‖A,Z = 0.

Lemma 3.4. Let Ā = (A0, A1) and B̄ = (B0, B1) be quasi-Banach couples and let
A,B be intermediate spaces with respect to Ā and B̄, respectively. Assume that T ∈
L(A0 +A1, B0 +B1)∩K(A,B). Let X be a quasi-Banach space and (Rn)n∈N ⊂ L(X,A)
such that M := sup{‖Rn‖X,A : n ≥ 1} < ∞ and limn→∞ ‖TRn‖X,B0+B1 = 0. Then
limn→∞ ‖TRn‖X,B = 0.

Let (λm) be a sequence of positive numbers and (Wm) a sequence of quasi-Banach
spaces with the same constant c ≥ 1 in the quasi-triangle inequality. For any 0 < q ≤ ∞,
we put

`q(λmWm) =
{
w = (wm)m∈Z : wm ∈Wm and (λm‖wm‖Wm) ∈ `q

}
.

The quasi-norm in `q(λmWm) is given by ‖w‖`q(λmWm) = ‖(λm‖wm‖Wm
)m∈Z‖`q .

Now we establish the analogous results to [14, Lemma 4.2].

Lemma 3.5. Let (Wm)m∈N be a sequence of quasi-Banach spaces with constant c ≥ 1 in
the quasi-triangle inequality. Let A = (α0, α∞) ∈ R2 and 0 < q ≤ ∞ satisfying (3). Then(

`∞(Wm), `∞(2−mWm)
)

1,q,A ↪→ `q(2−m`A(2m)Wm).

Proof. Let x = (xm) ∈
(
`∞(Wm), `∞(2−mWm)

)
1,q,A. Given any decomposition x = y+z

with y = (ym) ∈ `∞(Wm) and z = (zm) ∈ `∞(2−m(Wm)), we have
‖xk‖Wk

≤ c(‖yk‖Wk
+ ‖zk‖Wk

) ≤ c
(
‖y‖`∞(Wm) + 2k‖z‖`∞(2−mWm)

)
, k ∈ Z.
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Then ‖xk‖Wk
≤ cK

(
2k, x; `∞(Wm), `∞(2−mWm)

)
for every k ∈ Z, which yields that

‖x‖`q(2−m`A(2m)Wm) ≤ c‖x‖(`∞(Wm),`∞(2−mWm))1,q,A .
For a sequence of Banach spaces we also have the following result.

Lemma 3.6. Let (Wm)m∈N be a sequence of Banach spaces. Let A = (α0, α∞) ∈ R2 and
0 < q ≤ 1 satisfying (3).
1. If α∞ + 1/q > 0, then

`q
(
2−m`A+1/q(2m)Wm

)
↪→
(
`1(Wm), `1(2−mWm)

)
1,q,A.

2. If α∞ + 1/q = 0, then
`q
(
2−m`A+1/q(2m)``(0,1/q)(2m)Wm

)
↪→
(
`1(Wm), `1(2−mWm)

)
1,q,A.

Proof.
1. Let x = (xm) ∈ `q(2−m`A+1/q(2m)Wm) and let δkm the Kronecker delta. We set

uk = (δkmxk)m∈Z ∈ `1(Wm) ∩ `1(2−mWm) ↪→ `1(Wm)∼ ∩ `1(2−mWm)∼. Using (6), we
now derive that

‖x‖(`1(Wm),`1(2−mWm))1,q,A ∼ ‖x‖(`1(Wm)∼,`1(2−mWm)∼)J1,q,A+1/q

≤
( ∞∑
k=−∞

[
2−k`A+1/q(2k)J(2k, uk; `1(Wm)∼, `1(2−mWm)∼)

]q)1/q

≤
( ∞∑
k=−∞

[
2−k`A+1/q(2k)J(2k, uk; `1(Wm), `1(2−mWm))

]q)1/q

= ‖x‖`q(2−k`A+1/q(2k)).

2. This case can be handled as the previous one but using the appropriate equality
of (6).

We now prove the main result of this section.
Theorem 3.7. Let Ā = (A0, A1) be a Banach couple. Let B̄ = (B0, B1) be a quasi-
Banach couple and T ∈ L(Ā, B̄) such that T : A1 → B1 is compact. For any A =
(α0, α∞) ∈ R2 and 0 < q ≤ ∞ satisfying (3),

T : (A0, A1)1,q,A → (B0, B1)1,q,A

is also compact.
Proof. Step 1. Let 0 < q ≤ 1 and assume that α∞ + 1/q ≥ 0. For m ∈ Z, let

Gm = (A∼
0 ∩A∼

1 , J(2m, · ;A∼
0 , A

∼
1 )) and

Fm = (B∼
0 +B∼

1 ,K(2m, · ;B∼
0 , B

∼
1 )).

We define µm = 2−m`A(2m) and

λm =
{

2−m`A+1/q(2m) if α∞ + 1/q > 0,
2−m`A+1/q(2m)``(0,1/q)(2m) if α∞ + 1/q = 0.

By (1) and (6), we have
(A∼

0 , A
∼
1 )`q(µm) = (A0, A1)`q(µm) = (A∼

0 , A
∼
1 )J`q(λm)

with equivalent quasi-norms.
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Consider the operators π(u) =
∑
m um and jb = (. . . , b, b, b, . . . ). Observe that

π : `q(λmGm)→ (A∼
0 , A

∼
1 )`q(µm)

is a metric surjection if we consider on (A∼
0 , A

∼
1 )`q(µm) the J-quasi-norm. Moreover, re-

strictions π : `1(2mjGm)→ A∼
j , j = 0, 1, are bounded operators with norm ≤ 1. On the

other hand,
j : (B∼

0 , B
∼
1 )1,q,A → `q(µmFm)

is a metric injection and restrictions j : B∼
j → `∞(2−mjFm), j = 0, 1, are bounded with

quasi-norm ≤ 1. Applying Lemma 3.5 and Lemma 3.6 we obtain the following diagram
that illustrates the situation

`1(Gm) π−−−→ A∼
0

T−−−→ B∼
0

j−−→ `∞(Fm)
`1(2−mGm) π−−−→ A∼

1
T−−−→ B∼

1
j−−→ `∞(2−mFm)

¯̀1(Gm)1,q,A
π−−−→ (A∼

0 , A
∼
1 )1,q,A

T−−−→ (B∼
0 , B

∼
1 )1,q,A

j−−→ ¯̀∞(Fm)1,q,A,

↪→ ←
↩

`q(λmGm) `q(µmFm)
where

¯̀1(Gm)1,q,A := (`1(Gm), `1(2−mGm))1,q,A and
¯̀∞(Fm)1,q,A := (`∞(Fm), `∞(2−mFm))1,q,A.

Let T̂ = jTπ. Properties of π and j yield that compactness of T : (A0, A1)1,q,A →
(B0, B1)1,q,A is equivalent to compactness of T̂ : `q(λmGm) → `q(µmFm). Observe that
by Lemma 3.2, T : A∼

1 → B∼
1 is compact and so T̂ : `1(2−mGm) → `∞(2−mFm) is also

compact. We shall check the compactness of T̂ with the help of the following projections.
For n ∈ N we define

Qn(um) = (. . . , 0, 0, u−n, . . . , un, 0, 0, . . . ),
Q+
n (um) = (. . . , 0, 0, un+1, un+2, . . . ),

Q−n (um) = (. . . , u−n−2, u−n−1, 0, 0, . . . ).

The identity operator on `1(Gm) + `1(2−mGm) can be written as I = Qn + Q+
n + Q−n .

These projections have the following properties:

‖Qn‖E,E = ‖Q+
n ‖E,E = ‖Q−n ‖E,E = 1 for E = `1(Gm), `1(2−mGm), `q(λmGm), (10)

‖Qn‖`1(2−mGm),`1(Gm) = ‖Qn‖`1(Gm),`1(2−mGm) = 2n, n ≥ 1, (11)

‖Q+
n ‖`1(Gm),`1(2−mGm) = 2−(n+1), n ≥ 1, (12)

‖Q−n ‖`1(2−mGm),`1(Gm) = 2−(n+1), n ≥ 1. (13)

On the couple (`∞(Fm), `∞(2−mFm)) we can define similar projections Pn, P+
n , P

−
n sat-

isfying analogous properties.
We have

T̂ = T̂Qn + T̂Q−n + T̂Q+
n = T̂Qn + T̂Q−n + PnT̂Q

+
n + P−n T̂Q

+
n + P+

n T̂Q
+
n .

Next we show that T̂Qn, PnT̂Q+
n , and P−n T̂Q+

n are compact from `q(λmGm) to `q(µmFm)
and that the quasi-norms of the other two operators converge to 0.



COMPACTNESS FOR LOGARITHMIC INTERPOLATION 41

Using (11) and Lemma 3.6, we have the factorization

`1(Gm) `∞(Fm)

`q(λmGm) `1(Gm) + `1(2−mGm)

`1(2−mGm) `∞(2−mFm),

Qn
T̂

Qn
T̂

which allows applying Lemma 3.1 to obtain the compactness of

T̂Qn : `q(λmGm)→
(
`∞(Fm), `∞(2−mFm)

)
1,q,A.

Now from Lemma 3.5, we conclude that T̂Qn : `q(λmGm)→ `q(µmFm) is compact.
Considering (10), (12), the analogous properties to (10) and (11) for the operator Pn

and Lemma 3.5, we have the factorization

`1(Gm)

`1(2−mGm) `∞(2−mFm) `∞(Fm) ∩ `∞(2−mFm) ↪→ `q(µmFm).

`1(2−mGm)

Q+
n

Q+
n

T̂ Pn

Thus, by Lemma 3.1 and Lemma 3.6, the operator PnT̂Q+
n : `q(λmGm) → `q(µmFm) is

compact.
For P−n T̂Q+

n , we first use (10) and (12) to get the next diagram

`1(Gm)

`1(2−mGm) `∞(2−mFm).

`1(2−mGm)

Q+
n

Q+
n

T̂

Again from Lemma 3.1 and Lemma 3.6, we infer the compactness of TQ+
n : `q(λmGm)→

`∞(2−mFm). Now using the analogous property to (13) for the operator P−n , we have the
factorization

`∞(Fm)

`q(λmGm) `∞(2−mFm)

`∞(2−mFm).

T̂Q+
n

P−n

P−n

Applying again Lemma 3.1 and Lemma 3.5, we deduce that P−n T̂Q+
n : `q(λmGm) →

`q(µmFm) is compact.
We shall now prove that ‖T̂Q−n ‖`q(λmGm),`q(µmFm)

n→∞−−−−→ 0. Using (13) we get

‖T̂Q−n ‖`1(2−mGm),`∞(Fm)+`∞(2−mFm) ≤ 2−(n+1)‖T̂‖`1(Gm),`∞(Fm)+`∞(2−mFm)
n→∞−−−−→ 0.

Then Lemma 3.4 implies that ‖T̂Q−n ‖`1(2−mGm),`∞(2−mFm)
n→∞−−−−→ 0. Note also that

‖T̂Q−n ‖`1(Gm),`∞(Fm) ≤ ‖T̂‖`1(Gm),`∞(Fm) for every n ∈ N.
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Thus, using (8), Lemma 3.5 and Lemma 3.6, we conclude that

lim
n→∞

‖T̂Q−n ‖`q(λmGm),`q(µmFm) . lim
n→∞

‖T̂Q−n ‖¯̀1(Gm)1,q,A;¯̀∞(Fm)1,q,A

. lim
n→∞

‖T̂Q−n ‖1
(

1 +
(

log ‖T̂Q
−
n ‖0

‖T̂Q−n ‖1

)+)α+
∞−α0

= 0.

Now we show that limn→∞ ‖P+
n T̂Q

+
n ‖`q(λmGm),`q(µmFm) = 0. We define

D =
{
u = (um)∞m=−∞ : um ∈ Gm with a finite number of no-null coordinates

}
.

Since D is dense in `1(2−mGm) and for any u ∈ D,

‖P+
n T̂ u‖`∞(2−mFm) ≤ 2−(n+1)‖T̂‖`1(Gm),`∞(Fm)‖u‖`1(Gm)

n→∞−−−−→ 0,

by Lemma 3.3 we deduce that

lim
n→∞

‖P+
n T̂Q

+
n ‖`1(2−mGm),`∞(2−mFm) ≤ lim

n→∞
‖P+

n T̂‖`1(2−mGm),`∞(2−mFm) = 0.

Then, proceeding as in the previous case we infer that

lim
n→∞

‖P+
n T̂Q

+
n ‖`q(λmGm),`q(λmFm) = 0.

Step 2. Let 0 < q ≤ 1 and suppose now that α∞ + 1/q < 0. Take α > −1/q. By (7),
we get (A0, A1)1,q,A = (A0 +A1, A1)1,q,(α0,α) and (B0, B1)1,q,A = (B0 +B1, B1)1,q,(α0,α).
Applying the previous case we prove the compactness of

T : (A0, A1)1,q,A = (A0 +A1, A1)1,q,(α0,α) → (B0 +B1, B1)1,q,(α0,α) = (B0, B1)1,q,A.

Step 3. Assume now that 1 < q ≤ ∞. In this case we can proceed as when 0 < q ≤ 1
but defining

λm =
{

2−m`A+1(2m) if α∞ + 1/q > 0,
2−m`A+1(2m)``(0,1)(2m) if α∞ + 1/q = 0 and 1 < q <∞,

and using (5) instead of (6) and [14, Lemma 4.2] instead of Lemma 3.1.
This completes the proof.

The corresponding result for the 0, q,A-method is a consequence of (2) and reads as
follows.

Corollary 3.8. Let Ā = (A0, A1) be a Banach couple. Let B̄ = (B0, B1) be a quasi-
Banach couple and T ∈ L(Ā, B̄) such that T : A0 → B0 is compact. For any A =
(α0, α∞) ∈ R2 and 0 < q ≤ ∞ such that{

α∞ + 1/q < 0 if q <∞,
α∞ < 0 if q =∞,

we see that T : (A0, A1)0,q,A → (B0, B1)0,q,A is also compact.

4. Applications to Lorentz–Zygmund spaces. Let (R,µ) be a σ-finite measure
space. For f a µ-measurable function on R, let f∗ be the non-increasing rearrangement
of f defined by

f∗(t) = inf
{
s > 0 : µ({x ∈ R : |f(x)| > s}) ≤ t

}
.
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Let 0 < p, q ≤ ∞ and A = (α0, α∞) ∈ R2. The generalized Lorentz–Zygmund space
Lp,q,A(R,µ) is formed of all the (classes of) µ-measurable functions f on R having a
finite quasi-norm

‖f‖p,q,A =
(∫ µ(R)

0

[
t1/p`A(t)f∗(t)

]q dt
t

)1/q
.

See [22, 16].
Now we are going to extend the result given in [14, Corollary 4.5] to the case 0 < q <∞

and 0 < q0 < q1 ≤ ∞.
Theorem 4.1. Let (R,µ) and (S, ν) be σ-finite measure spaces. Take 1 < p0 < p1 ≤ ∞,
0 < q0 < q1 ≤ ∞, 0 < q <∞ and A = (α0, α∞) ∈ R2 with α∞+ 1/q < 0 < α0 + 1/q. Let
T be a linear operator such that

T : Lp0(R)→ Lq0(S) is compact and
T : Lp1(R)→ Lq1(S) is bounded.

Then T : Lp0,q,A+1/min(p0,q)(R)→ Lq0,q,A+1/max(q0,q)(S) is also compact.
Proof. By Corollary 3.8,

T : (Lp0(R), Lp1(R))0,q,A → (Lq0(S), Lq1(S))0,q,A

is compact. On the other hand, according to [2, Theorem 5.2.1] for any r < q0 we have
Lp0(R) = (L1(R), L∞(R))1−1/p0,p0 ,

Lp1(R) = (L1(R), L∞(R))1−1/p1,p1 ,

Lq0(S) = (Lr(S), L∞(S))1−r/q0,q0 ,

Lq1(S) = (Lr(S), L∞(S))1−r/q1,q1 .

It follows from [18, Theorem 4.7 and Theorem 5.9]
(L1(R), L∞(R))1−1/p0,q,A+1/min(p0,q) ↪→ (Lp0(R), Lp1(R))0,q,A,

(Lq0(S), Lq1(S))0,q,A ↪→ (Lr(S), L∞(S))1−r/q0,q,A+1/max(q,q0).

Besides by [18, Corollary 8.4] we have
Lp0,q,A+1/min(p0,q) = (L1(R), L∞(R))1−1/p0,q,A+1/min(p0,q),

Lq0,q,A+1/max(q0,q) = (Lr(S), L∞(S))1−r/q0,q,A+1/max(q,q0).

Consequently, the operator

T : Lp0,q,A+1/min(p0,q) ↪→ (Lp0(R), Lp1(R))0,q,A

→ (Lq0(S), Lq1(S))0,q,A ↪→ Lq0,q,A+1/max(q0,q)

is compact.
Next we consider the case of compactness on the second restriction.

Corollary 4.2. Let (R,µ) and (S, ν) be σ-finite measure spaces. Take 1 ≤ p0 < p1 <∞,
0 < q0 < q1 <∞, 0 < q <∞ and A = (α0, α∞) ∈ R2 with α0 + 1/q < 0 < α∞+ 1/q. Let
T be a linear operator such that

T : Lp0(R)→ Lq0(S) is bounded and T : Lp1(R)→ Lq1(S) is compact.
Then T : Lp1,q,A+1/min(p1,q)(R)→ Lq1,q,A+1/max(q1,q)(S) is also compact.
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Proof. By Theorem 3.7 and (2),
T : (Lp1(R), Lp0(R))0,q,(α∞,α0) → (Lq1(S), Lq0(S))0,q,(α∞,α0)

is compact.
Using [2, Theorem 5.2.1 and Theorem 3.4.1 (a)], for any r < q0 we get

Lp0(R) = (L∞(R), L1(R))1/p0,p0 if p0 > 1,
Lp1(R) = (L∞(R), L1(R))1/p1,p1 ,

Lq0(S) = (L∞(S), Lr(S))r/q0,q0 ,

Lq1(S) = (L∞(S), Lr(S))r/q1,q1 .

It follows from [18, Theorem 4.7 and Theorem 5.9] that
(L∞(R), L1(R))1/p1,q,(α∞,α0)+1/min(p1,q) ↪→ (Lp1(R), Lp0(R))0,q,(α∞,α0) and
(Lq1(S), Lq0(S))0,q,(α∞,α0) ↪→ (L∞(S), Lr(S))r/q1,q,(α∞,α0)+1/max(q,q1).

If p0 = 1, these inclusions also follow from [18, Theorem 4.7 and Theorem 5.9]. Further-
more, according to [18, Corollary 8.4] and (2) we have

Lp1,q,A+1/min(p1,q) = (L∞(R), L1(R))1/p1,q,(α∞,α0)+1/min(p1,q),

Lq1,q,A+1/max(q1,q) = (L∞(S), Lr(S))r/q1,q,(α∞,α0)+1/max(q,q1).

Consequently, the operator

T : Lp1,q,A+1/min(p1,q) ↪→ (Lp0(R), Lp1(R))1,q,A

→ (Lq0(S), Lq1(S))1,q,A ↪→ Lq1,q,A+1/max(q1,q)

is compact.
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