ON GENERALIZED YOUNG'S INEQUALITY

SIYU SHI
The Pennsylvania State University
State College, USA
E-mail: sps6229@psu.edu
ZHONGRUI SHI
Department of Mathematics, Shanghai University
Shanghai, China
E-mail: zshi@shu.edu.cn

Abstract

We generalize Young's inequality to Orlicz functions. The Young's inequality is widely used not only in Mathematics but also in Mechanics and Risk Management. We show that for Orlicz function Φ, its Young complementary function $\widetilde{\Phi}$ and dual complementary function Φ^{*} coincide.

1. Introduction. In the 1930's Young's Inequality was proved HLP]. That is, for $f:[0,+\infty) \rightarrow[0,+\infty)$ a continuous and strictly increasing function with $f(0)=0$, for all nonnegative u, v,

$$
\int_{0}^{u} f(s) d s+\int_{0}^{v} f^{-1}(s) d s \geq u v
$$

and the inequality turns into equality if and only if $v=f(u)$. After that, in the last century, Jensen's Inequality was proved [BO, Jj, MPF]. That is, if $p:[0,+\infty) \rightarrow[0,+\infty)$ a right continuous and nondecreasing function with
(1) $p(0)=0$;
(2) $p(s)>0$ if $s>0$;
(3) $\lim _{s \rightarrow 0} p(s)=0$ and $\lim _{s \rightarrow+\infty} p(s)=+\infty$

2010 Mathematics Subject Classification: 46E30, 46B20, 26A51, 26A48.
Key words and phrases: Young's Inequality, Jensen's Inequality, Orlicz function.
The paper is in final form and no version of it will be published elsewhere.
then for all $u, v \in \mathbb{R}$

$$
\int_{0}^{u} p(s) d s+\int_{0}^{v} p^{*}(t) d t \geq u v
$$

and the inequality turns into equality if and only if $v=p(u)$ or $u=p^{*}(v)$, where $p^{*}(t)=\sup \{s: p(s) \leq t\}$. There is a proof using graphs [KR with details in WS. These inequalities play not only a fundamental role in many fields of Mathematics $\mathrm{BB}, \mathrm{Bz}, \mathrm{MO}$, but also an important role in other fields [BDP. The developing of Mechanics [FL FS] and Risk Management $[\mathrm{BF}]$ lead the more functions involved. For example, in $[\overline{\mathrm{BF}}$, it is needed that the functions take the value of $+\infty$. In this paper, removing the above restrictions (1)-(3), we prove Young's Inequality in every detail for a right continuous and nondecreasing function $p:[0,+\infty) \rightarrow[0,+\infty]$ whose value can be $+\infty$. Such kind of functions are widely adopted BF FL, FS, especially in Orlicz spaces theory HW FHS, Mj, HM, M1]. We generalize the results of [KR, Cs, WW, WWCW]. We refer the reader to see Cs, WW WWCW RR] for more details.
Definition $1.1([\boxed{K R}) . \Phi: \mathbb{R} \rightarrow[0,+\infty]$, where $+\infty$ can be a possible value, is called an Orlicz function, provided that it is even, convex and left continuous on $[0,+\infty)$ with $\Phi(0)=0$. Set

$$
\alpha_{\Phi}:=\sup \{s \geq 0: \Phi(s)=0\} ; \quad \beta_{\Phi}:=\sup \{s \geq 0: \Phi(s)<\infty\}
$$

where \mathbb{R} is the set of all real numbers. An interval (a, b) is called a Structure Affine Interval (SAI) of Φ provided that $\Phi(s)$ is affine on (a, b), and for all $\varepsilon>0, \Phi(s)$ is not affine on $(a-\varepsilon, b)$ or $(a, b+\varepsilon)$. Set $S_{\Phi}:=\mathbb{R} \backslash \bigcup_{i=0}^{\infty}\left(a_{i}, b_{i}\right)$, where $\left(a_{i}, b_{i}\right)$ is a SAI of Φ and $b_{0}=+\infty$.
Definition $1.2(\underline{\mathrm{KR}})$. Let Ω be a set in \mathbb{R}^{n} and (Ω, Σ, μ) be a measure space DU. For a real valued measurable function $u(t)$ on Ω, let $\rho_{\Phi}(u):=\int_{\Omega} \Phi(u(t)) d \mu$. We define the Orlicz function spaces L_{Φ}

$$
L_{\Phi}:=\left\{u: \rho_{\Phi}(\lambda u)<\infty \text { for some } \lambda>0\right\}
$$

equipped with the Luxemburg norm

$$
\|u\|_{(\Phi)}:=\inf \left\{\lambda>0: \rho_{\Phi}\left(\frac{u}{\lambda}\right) \leq 1\right\}
$$

or the Orlicz norm

$$
\|u\|_{\Phi}:=\sup _{\rho_{\Phi^{*}}(v) \leq 1} \int_{\Omega}|u(t) v(t)| d \mu=\inf _{k>0} \frac{1}{k}\left[1+\rho_{\Phi}(k u)\right], \quad \text { where } v \in L_{\Phi^{*}}
$$

L_{Φ} is a Banach space.
Lemma 1.3 ($[\overline{\mathrm{KR}}])$. For an Orlicz function Φ, its right derivative $\Phi_{+}^{\prime}(s)$ exists for all $s \in \mathbb{R}$, and $\Phi_{+}^{\prime}(s)$ is nonnegative, nondecreasing and right continuous in $[0,+\infty)$. Moreover, for each $u \in \mathbb{R}$,

$$
\Phi(u)=\int_{0}^{|u|} \Phi_{+}^{\prime}(s) d s
$$

Proof. In the paper, for a convex function Φ, if $s^{\prime}<s^{\prime \prime}, \Phi\left(s^{\prime}\right)=\Phi\left(s^{\prime \prime}\right)=+\infty$, we always assume

$$
\Phi\left(s^{\prime \prime}\right)-\Phi\left(s^{\prime}\right)=+\infty
$$

(that is to say, $\Phi_{+}^{\prime}(s)=\infty$ for $\left.s \geq \beta_{\Phi}\right)$.

First, for $0 \leq s_{1}<s_{2}<s_{3}$, since Φ is convex and $\Phi(0)=0$, we see that

$$
\begin{equation*}
\frac{\Phi\left(s_{2}\right)-\Phi\left(s_{1}\right)}{s_{2}-s_{1}} \leq \frac{\Phi\left(s_{3}\right)-\Phi\left(s_{1}\right)}{s_{3}-s_{1}} \leq \frac{\Phi\left(s_{3}\right)-\Phi\left(s_{2}\right)}{s_{3}-s_{2}} \tag{*}
\end{equation*}
$$

In fact, if $\Phi\left(s_{3}\right)<+\infty$, by [KR], we get $(*)$. If $\Phi\left(s_{2}\right)<+\infty$, and $\Phi\left(s_{3}\right)=+\infty$, by the convexity of Φ, we get

$$
\frac{\Phi\left(s_{2}\right)-\Phi\left(s_{1}\right)}{s_{2}-s_{1}} \leq \frac{\Phi\left(s_{3}\right)-\Phi\left(s_{1}\right)}{s_{3}-s_{1}}
$$

and

$$
\frac{\Phi\left(s_{2}\right)-\Phi\left(s_{1}\right)}{s_{2}-s_{1}}<+\infty=\frac{\Phi\left(s_{3}\right)-\Phi\left(s_{2}\right)}{s_{3}-s_{2}}
$$

so $(*)$ is true. If $\Phi\left(s_{1}\right)<+\infty$, and $\Phi\left(s_{2}\right)=+\infty=\Phi\left(s_{3}\right)$, then by the assumption at the beginning of the proof

$$
\frac{\Phi\left(s_{2}\right)-\Phi\left(s_{1}\right)}{s_{2}-s_{1}}=+\infty=\frac{\Phi\left(s_{3}\right)-\Phi\left(s_{1}\right)}{s_{3}-s_{1}}=\frac{\Phi\left(s_{3}\right)-\Phi\left(s_{2}\right)}{s_{3}-s_{2}},
$$

so $(*)$ is true. If $\Phi\left(s_{1}\right)=\Phi\left(s_{2}\right)=\Phi\left(s_{3}\right)=+\infty$, then by the same assumption

$$
\frac{\Phi\left(s_{2}\right)-\Phi\left(s_{1}\right)}{s_{2}-s_{1}}=+\infty=\frac{\Phi\left(s_{3}\right)-\Phi\left(s_{1}\right)}{s_{3}-s_{1}}=\frac{\Phi\left(s_{3}\right)-\Phi\left(s_{2}\right)}{s_{3}-s_{2}},
$$

so $(*)$ is true.
Summarizing, for $0 \leq s_{1}<s_{2}<s_{3}$, (*) holds.
Secondly, for all $h>0$, by $(*), f(h)=\frac{\Phi(s+h)-\Phi(s)}{h}$ is nondecreasing, so

$$
\Phi_{+}^{\prime}(s):=\lim _{h \rightarrow 0_{+}} \frac{\Phi(s+h)-\Phi(s)}{h}
$$

exists for all $s \in[0,+\infty)$.
We claim that $\Phi_{+}^{\prime}(s)$ is nondecreasing on $[0,+\infty)$. In fact, for $0 \leq s_{1}<s_{2}$, and $h>0$ small enough, by (*)

$$
\begin{aligned}
\frac{\Phi\left(s_{1}+h\right)-\Phi\left(s_{1}\right)}{h} & \leq \frac{\Phi\left(s_{2}-h\right)-\Phi\left(s_{1}+h\right)}{s_{2}-s_{1}-2 h} \\
& \leq \frac{\Phi\left(s_{2}\right)-\Phi\left(s_{2}-h\right)}{h} \leq \frac{\Phi\left(s_{2}+h\right)-\Phi\left(s_{2}\right)}{h},
\end{aligned}
$$

so

$$
\frac{\Phi\left(s_{1}+h\right)-\Phi\left(s_{1}\right)}{h} \leq \frac{\Phi\left(s_{2}\right)-\Phi\left(s_{2}-h\right)}{h} \leq \frac{\Phi\left(s_{2}+h\right)-\Phi\left(s_{2}\right)}{h} .
$$

Let $h \rightarrow 0$. We get

$$
\Phi_{+}^{\prime}\left(s_{1}\right) \leq \Phi_{-}^{\prime}\left(s_{2}\right) \leq \Phi_{+}^{\prime}\left(s_{2}\right)
$$

Finally, $\Phi_{+}^{\prime}(s)$ is right continuous on $[0,+\infty)$. Since $\Phi_{+}^{\prime}(s)$ is nondecreasing, we get

$$
\lim _{s^{\prime} \rightarrow s^{+}} \Phi_{+}^{\prime}\left(s^{\prime}\right) \geq \Phi_{+}^{\prime}(s)
$$

If $\Phi_{+}^{\prime}(s)=+\infty$, we have $+\infty \geq \lim _{s^{\prime} \rightarrow s^{+}} \Phi_{+}^{\prime}\left(s^{\prime}\right) \geq \Phi_{+}^{\prime}(s)=+\infty$, i.e. $\lim _{s^{\prime} \rightarrow s^{+}} \Phi_{+}^{\prime}\left(s^{\prime}\right)=$ $\Phi_{+}^{\prime}(s)$.

If $\Phi_{+}^{\prime}(s)<+\infty$, for any $\varepsilon>0$, there exists $h>0$ such that

$$
\Phi_{+}^{\prime}(s) \leq \frac{\Phi(s+h)-\Phi(s)}{h} \leq \Phi_{+}^{\prime}(s)+\varepsilon .
$$

For $s<s^{\prime}<s+h$

$$
\Phi_{+}^{\prime}(s) \leq \Phi_{+}^{\prime}\left(s^{\prime}\right)<\Phi_{-}^{\prime}(s+h) \leq \frac{\Phi(s+h)-\Phi(s)}{h}+\varepsilon \leq \Phi_{+}^{\prime}(s)+2 \varepsilon
$$

so $\Phi_{+}^{\prime}(s) \leq \lim _{s^{\prime} \rightarrow s_{+}} \Phi_{+}^{\prime}\left(s^{\prime}\right) \leq \Phi_{+}^{\prime}(s)+2 \varepsilon$, since ε is arbitrary, we get $\lim _{s^{\prime} \rightarrow s_{+}} \Phi_{+}^{\prime}\left(s^{\prime}\right)=$ $\Phi_{+}^{\prime}(s)$.

Summarizing, for all $s \in[0,+\infty), \lim _{s^{\prime} \rightarrow s_{+}} \Phi_{+}^{\prime}\left(s^{\prime}\right)=\Phi_{+}^{\prime}(s)$, i.e. $\Phi_{+}^{\prime}(s)$ is right continuous on $[0,+\infty)$.

For each $u \in \mathbb{R}$, since $\Phi(u)$ is even, we can assume $u \geq 0$.
As $u<\beta_{\Phi}$, then there exists a positive number M such that $\Phi_{+}^{\prime}(s) \leq M$, for all $s \leq u$. By Ni], we get

$$
\Phi(u)=\int_{0}^{u} \Phi_{+}^{\prime}(s) d s
$$

As $u=\beta_{\Phi}$, since $\Phi_{+}^{\prime}(s)$ is nondecreasing and nonnegative, by the left continuity of $\Phi(u)$ and the Levy Theorem, we have

$$
\Phi\left(\beta_{\Phi}\right)=\lim _{u \rightarrow \beta_{\Phi}^{-}} \Phi(u)=\lim _{u \rightarrow \beta_{\Phi}^{-}} \int_{0}^{|u|} \Phi_{+}^{\prime}(s) d s=\int_{0}^{\beta_{\Phi}} \Phi_{+}^{\prime}(s) d s
$$

As $u>\beta_{\Phi}, \Phi(u)=+\infty$. By the assumption, we get $+\infty=\int_{\beta_{\Phi}}^{u} \Phi_{+}^{\prime}(s) d s \leq \int_{0}^{u} \Phi_{+}^{\prime}(s) d s$, so $\Phi(u)=+\infty=\int_{\beta_{\Phi}}^{u} \Phi_{+}^{\prime}(s) d s \leq \int_{0}^{u} \Phi_{+}^{\prime}(s) d s$.

In summary, for all $u \in \mathbb{R}$,

$$
\Phi(u)=\int_{0}^{|u|} \Phi_{+}^{\prime}(s) d s
$$

REmark 1.4 ($\widehat{K R})$. For an Orlicz function Φ, there exists a nonnegative, nondecreasing and right continuous function p on $[0,+\infty)$ such that for each $u \in \mathbb{R}$,

$$
\Phi(u)=\int_{0}^{|u|} p(s) d s
$$

For simplicity, we rewrite $\Phi_{+}^{\prime}(s)$ as $p(s)$ and $\Phi_{-}^{\prime}(s)$ as $p_{-}(s)$.
Obviously, we have
Remark 1.5 (Cs). An interval (a, b) is SAI of Φ if and only if $p(s)$ is constant on (a, b).
Definition $1.6([\underline{K R}])$. For $p:[0,+\infty) \rightarrow[0,+\infty]$ a nondecreasing function, set

$$
\begin{gathered}
p^{*}(t):=\sup \{s \geq 0: p(s) \leq t\}=\inf \{s \geq 0: p(s)>t\} \\
p_{-}^{*}(t):=\sup \{s \geq 0: p(s)<t\}=\inf \{s \geq 0: p(s) \geq t\} \\
\Phi^{*}(v):=\int_{0}^{|v|} p^{*}(t) d t
\end{gathered}
$$

REmARK 1.7. If $p(s) \equiv 0, \Phi(u) \equiv 0, L_{\Phi}=L_{0}:=\{$ all measurable functions $\}$, but for all $u \in L_{\Phi},\|u\|_{(\Phi)}=\inf \left\{\lambda>0: \rho_{\Phi}\left(\frac{u}{\lambda}\right) \leq 1\right\}=0$, so $\left(L_{\Phi},\|\cdot\|\right)$ is not a normed space. If $p^{*}(t)=\sup \{s \geq 0: p(s) \leq t\}=+\infty, \Phi^{*}(v) \equiv+\infty$, then $L_{\Phi^{*}}=\{\theta\}$, a trivial space. Also the converse is true, i.e. if $p \equiv+\infty, p^{*} \equiv 0$.

Hence we further assume $p \not \equiv 0$ and $p \not \equiv+\infty$, i.e. $\alpha_{\Phi}<+\infty$ and $\beta_{\Phi}>0$.
Definition 1.8 (Young's sense complementary function [KR]).

$$
\tilde{\Phi}(v):=\sup \{u|v|-\Phi(u): u \in \mathbb{R}\}
$$

2. Main results

Lemma $2.1(\boxed{\mathrm{KR}})$. If $p:[0,+\infty) \rightarrow[0,+\infty]$ is nondecreasing and right continuous, then $p^{*}:[0,+\infty) \rightarrow[0,+\infty]$ is nondecreasing and right continuous, and for all $\varepsilon>0$,
(1) $p^{*}(p(s)) \geq s$;
(2) $p^{*}(p(s)+\varepsilon)>s$, if $p(s)<+\infty$;
(3) $p^{*}(p(s)-\varepsilon) \leq s$, if $p(s)<+\infty$.

Proof. For $t \in[0,+\infty)$, first by the definition $p^{*}(t)=\sup \{s \geq 0: p(s) \leq t\} \geq 0$. Next for $0 \leq t^{\prime}<t^{\prime \prime}$, we see that

$$
p^{*}\left(t^{\prime}\right)=\sup \left\{s \geq 0: p(s) \leq t^{\prime}\right\} \leq \sup \left\{s \geq 0: p(s) \leq t^{\prime \prime}\right\}=p^{*}\left(t^{\prime \prime}\right)
$$

Suppose that for some $t \geq 0, p^{*}(t)<p^{*}\left(t_{+}\right):=\lim _{h \rightarrow 0, h>0} p^{*}(t+h)$. Take $p^{*}(t)<s^{\prime}<$ $s^{\prime \prime}<p^{*}\left(t_{+}\right)$. By $p^{*}\left(t_{+}\right) \leq p^{*}(t+h)$ for all $h>0$, from the definition of p^{*} and since p is nondecreasing, we see $p\left(s^{\prime \prime}\right) \leq t+h$. Since h is arbitrary, $p\left(s^{\prime \prime}\right) \leq t$, we obtain a contradiction: $t<p\left(s^{\prime}\right) \leq p\left(s^{\prime \prime}\right) \leq t$.

We see that $p^{*}(p(s))=\sup \left\{s^{\prime} \geq 0: p\left(s^{\prime}\right) \leq p(s)\right\} \geq s$, hence (1) is true.
For any $s \geq 0, \varepsilon>0, p(s)<+\infty$, since $p(s)$ is right continuous, there exists $s^{\prime}>s$ such that $p\left(s^{\prime}\right)<p(s)+\varepsilon$, so $p^{*}(p(s)+\varepsilon)=\sup \left\{s^{\prime} \geq 0: p\left(s^{\prime}\right) \leq p(s)+\varepsilon\right\} \geq s^{\prime}>s$, thus (2) holds.

For $p(s)<+\infty, p^{*}(p(s)-\varepsilon)=\sup \left\{s^{\prime} \geq 0: p\left(s^{\prime}\right) \leq p(s)-\varepsilon\right\}=\inf \left\{s^{\prime} \geq 0: p\left(s^{\prime}\right)>\right.$ $p(s)-\varepsilon\} \leq s$. Thus (3) is satisfied.

By the Levy Theorem and p^{*} being nondecreasing and nonnegative on $[0,+\infty)$, it is easy to see the following
REmARK $2.2(\boxed{\mathrm{KR}})$. For p^{*} of Lemma 2.1, $\Phi^{*}(v)=\int_{0}^{|v|} p^{*}(t) d t$ is an Orlicz function, i.e. $\Phi^{*}: \mathbb{R} \rightarrow[0,+\infty]$ is even, convex and left continuous on $[0,+\infty)$ with $\Phi^{*}(0)=0$.

Proposition 2.3. For an Orlicz function Φ

$$
\begin{gathered}
\alpha_{\Phi^{*}}=p\left(0_{-}\right):=\lim _{s \rightarrow 0_{+}} p_{-}(s)=\lim _{s \rightarrow 0_{+}} p(s) \\
\beta_{\Phi^{*}}=p(+\infty):=\lim _{s \rightarrow+\infty} p_{-}(s)=\lim _{s \rightarrow+\infty} p(s) .
\end{gathered}
$$

Proof. Let $\alpha=\lim _{s \rightarrow 0_{+}} p(s)=\lim _{s>0, s \rightarrow 0} p(s)$, by the assumption $p \not \equiv \infty$, we get $\alpha<+\infty$. For any $h>0$, there is $\delta>0$ such that for all $0 \leq s \leq \delta, p(s)<\alpha+h$. From $\alpha_{\Phi^{*}}=\sup \left\{v \geq 0: \Phi^{*}(v)=0\right\}=\inf \left\{t \geq 0: p^{*}(t)>0\right\}$ and $p^{*}(\alpha+h)=$ $\sup \{s \geq 0: p(s) \leq \alpha+h\} \geq \delta>0$, we see that $\alpha_{\Phi^{*}} \leq \alpha+h$. Since $h>0$ is arbitrary, we deduce that $\alpha_{\Phi^{*}} \leq \alpha$. If $\alpha=0$, we get $\alpha_{\Phi^{*}}=\alpha$. If $\alpha>0$, since $p(s)$ is nondecreasing, we see that $p^{*}(t)=\sup \{s \geq 0: p(s) \leq t\} \leq 0$ for all $0 \leq t<\alpha$, moreover $\alpha_{\Phi^{*}}=\sup \left\{v \geq 0: \Phi^{*}(v)=0\right\}=\sup \left\{t \geq 0: p^{*}(t) \leq 0\right\} \geq t$. Since t is arbitrary, we deduce $\alpha_{\Phi^{*}} \geq \alpha$, hence $\alpha_{\Phi^{*}}=\alpha$.

Put $\beta=\lim _{s \rightarrow+\infty} p_{-}(s)=\lim _{s \rightarrow+\infty} p(s)$.
A. Consider the case $\beta_{\Phi}<+\infty$ and $p(+\infty)=+\infty$. For all $n>0, p^{*}(n)=$ $\sup \{s \geq 0: p(s) \leq n\} \leq \beta_{\Phi}$ and $\beta_{\Phi^{*}}=\sup \left\{v \geq 0: \Phi^{*}(v)<+\infty\right\}=\sup \{t \geq 0:$ $\left.p^{*}(t)<+\infty\right\} \geq n$. Since n is arbitrary, we get $\beta_{\Phi^{*}}=+\infty=p(+\infty)$.
B. The case $\beta_{\Phi}=+\infty$.

B-1. If $\beta=+\infty$, then for all $n>0$, there exists $+\infty>s^{\prime}>0$ such that $p\left(s^{\prime}\right)>n$, so $p^{*}(n)=\sup \{s \geq 0: p(s) \leq n\}=\inf \{s \geq 0: p(s)>n\} \leq s^{\prime}<+\infty$, moreover $\beta_{\Phi^{*}}=\sup \left\{t \geq 0: p^{*}(t)<+\infty\right\} \geq n$. Since n is arbitrary, we get $\beta_{\Phi^{*}} \geq+\infty=\beta=p(+\infty)$.
B-2. If $\beta<+\infty$, for all $h>0, p^{*}(\beta+h)=\sup \{s \geq 0: p(s) \leq \beta+h\}=+\infty$,

$$
\beta_{\Phi^{*}}=\sup \left\{t \geq 0: p^{*}(t)<+\infty\right\}=\inf \left\{t \geq 0: p^{*}(t)=+\infty\right\} \leq \beta+h
$$

Since h is arbitrary, we get $\beta_{\Phi^{*}} \leq \beta$.
B-2-i. If $0=\beta$, combining $\beta_{\Phi^{*}} \leq \beta$ and $\beta_{\Phi^{*}} \geq 0$, we get $\beta_{\Phi^{*}}=0=\beta=p(+\infty)$.
B-2-ii. If $0<\beta$, for all $h>0$ there exists $0 \leq s^{\prime}<+\infty$ such that $+\infty>p\left(s^{\prime}\right)>\beta-h$. Thus $p^{*}(\beta-h)=\inf \{s \geq 0: p(s)>\beta-h\} \leq s^{\prime}<+\infty$. Moreover $\beta_{\Phi^{*}}=$ $\sup \left\{t \geq 0: p^{*}(t)<+\infty\right\} \geq \beta-h$. Since h is arbitrary, we get $\beta_{\Phi^{*}} \geq \beta$, and therefore $\beta_{\Phi^{*}}=\beta=p(+\infty)$.

Lemma $2.4(\boxed{\mathrm{KR}})$. If $p:[0,+\infty) \rightarrow[0,+\infty]$ is nondecreasing and right continuous, then $p^{* *}=p$. Moreover $\Phi^{* *}=\Phi$.
Proof. Let $s \in[0,+\infty)$. If $p(s)<+\infty, s<\beta_{\Phi}$, then for any $\varepsilon>0$, by Lemma 2.1 $p^{*}[p(s)-\varepsilon] \leq s$, so

$$
p^{* *}(s)=\sup \left\{t \geq 0: p^{*}(t) \leq s\right\} \geq p(s)-\varepsilon
$$

Since ε is arbitrary, we get $p^{* *}(s) \geq p(s)$.
On the other hand, by Lemma $2.1 p^{*}[p(s)+\varepsilon]>s$, so

$$
p^{* *}(s)=\sup \left\{t \geq 0: p^{*}(t) \leq s\right\}=\inf \left\{t \geq 0: p^{*}(t)>s\right\} \leq p(s)+\varepsilon
$$

Since ε is arbitrary, we get $p^{* *}(s) \leq p(s)$. So $p^{* *}(s)=p(s)$.
If $p(s)=+\infty$, then $s \geq \beta_{\Phi}$, for all $n>0, p^{*}(n)=\sup \{s \geq 0: p(s) \leq n\} \leq \beta_{\Phi}<+\infty$. $p^{* *}(s)=\sup \left\{t \geq 0: p^{*}(t) \leq s\right\} \geq \sup \left\{t \geq 0: p^{*}(t) \leq \beta_{\Phi}\right\} \geq n$. Since n is arbitrary, we get $p^{* *}(s)=+\infty=p(s)$.

Lemma 2.5. Given a nonnegative and nondecreasing function $p(s), p(s)$ is strictly increasing on $[0,+\infty)$ implies that p^{*} is continuous on $[0,+\infty)$, and $p(s)$ is continuous on $[0,+\infty)$ implies that p^{*} is strictly increasing on $[0, p(+\infty)]$.

Proof. First, we prove that $p(s)$ is strictly increasing implies that $p^{*}(t)$ is continuous.
Suppose that $p^{*}(t)$ is not continuous. Since $p^{*}(t)$ is right continuous, we have $p^{*}\left(t_{-}\right)<$ $p^{*}(t)$ for some $t \in(0,+\infty)$. Take $s^{\prime}, s^{\prime \prime} \in \mathbb{R}$ such that $p^{*}\left(t_{-}\right)<s^{\prime}<s^{\prime \prime}<p^{*}(t)$. By Lemma 2.4, $p(s)=p^{* *}(s)$ and by Lemma 2.1. we see that for all $t^{\prime}<t$, there exists $\varepsilon^{\prime}>0$ such that $p\left(s^{\prime}\right)=p^{* *}\left(s^{\prime}\right)=p^{* *}\left(p^{*}\left(t^{\prime}\right)+\varepsilon^{\prime}\right)>t^{\prime}$. By the arbitrariness of $t^{\prime}, p\left(s^{\prime}\right) \geq t$. On the other hand, by Lemma 2.1 $p\left(s^{\prime \prime}\right)=p^{* *}\left(s^{\prime \prime}\right)=\inf \left\{t \geq 0: p^{*}(t)>s^{\prime \prime}\right\} \leq t$, so $p\left(s^{\prime \prime}\right) \leq t \leq p\left(s^{\prime}\right)$, and since p is nondecreasing, $p\left(s^{\prime \prime}\right) \geq p\left(s^{\prime}\right)$, hence $p\left(s^{\prime \prime}\right)=p\left(s^{\prime}\right)$. This is a contradiction to $p\left(s^{\prime}\right)<p\left(s^{\prime \prime}\right)$.

Secondly, we prove that $p(s)$ is continuous implies $p^{*}(t)$ is strictly increasing. Suppose that for some $t^{\prime}, t^{\prime \prime} \in(0, p(+\infty)], t^{\prime}<t^{\prime \prime}$ with $p^{*}\left(t^{\prime}\right)=p^{*}\left(t^{\prime \prime}\right):=s$. Then

$$
p(s)=p^{* *}(s)=\sup \left\{t: p^{*}(t) \leq s\right\} \geq t^{\prime \prime}>t^{\prime}
$$

On the other hand, for all $s^{\prime}<s$, since $p^{*}(t)$ is nondecreasing,

$$
p\left(s^{\prime}\right)=p^{* *}\left(s^{\prime}\right)=\sup \left\{t \geq 0: p^{*}(t) \leq s^{\prime}\right\}=\inf \left\{t \geq 0: p^{*}(t)>s^{\prime}\right\} \leq t^{\prime}<t^{\prime \prime}
$$

so $p\left(s_{-}\right)=\lim _{s^{\prime} \rightarrow s_{-}} p\left(s^{\prime}\right) \leq t^{\prime}<t^{\prime \prime} \leq p(s)$, a contradiction to the continuity of p.
Lemma 2.6. Given a nonnegative and nondecreasing function p, for any $\varepsilon>0$, if

$$
(1-\varepsilon) p(s) \leq p^{\varepsilon}(s) \leq(1+\varepsilon) p(s) \quad \forall s \geq 0
$$

then

$$
\begin{aligned}
& p^{*}\left(\frac{t}{1+\varepsilon}\right) \leq p^{\varepsilon *}(t) \leq p^{*}\left(\frac{t}{1-\varepsilon}\right) \quad \forall t \geq 0, \\
& (1+\varepsilon) \Phi^{*}\left(\frac{v}{1+\varepsilon}\right) \leq \Phi^{\varepsilon^{*}}(v) \leq(1-\varepsilon) \Phi^{*}\left(\frac{v}{1-\varepsilon}\right) \quad \forall v \geq 0 .
\end{aligned}
$$

Proof. Since $(1-\varepsilon) p(s) \leq p^{\varepsilon}(s) \leq(1+\varepsilon) p(s)$, we get

$$
\begin{aligned}
p^{\varepsilon *}(t) & =\sup \left\{s \geq 0: p^{\varepsilon}(s) \leq t\right\} \leq \sup \{s \geq 0:(1-\varepsilon) p(s) \leq t\} \\
& =\sup \left\{s \geq 0: p(s) \leq \frac{t}{1-\varepsilon}\right\}=p^{*}\left(\frac{t}{1-\varepsilon}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
p^{\varepsilon *}(t) & =\sup \left\{s \geq 0: p^{\varepsilon}(s) \leq t\right\} \geq \sup \{s \geq 0:(1+\varepsilon) p(s) \leq t\} \\
& =\sup \left\{s \geq 0: p(s) \leq \frac{t}{1+\varepsilon}\right\}=p^{*}\left(\frac{t}{1+\varepsilon}\right)
\end{aligned}
$$

Thus $p^{*}\left(\frac{t}{1+\varepsilon}\right) \leq p^{\varepsilon *}(t) \leq p^{*}\left(\frac{t}{1-\varepsilon}\right)$. Hence

$$
\begin{aligned}
\Phi^{\varepsilon *}(v) & =\int_{0}^{|v|} p^{\varepsilon *}(t) d t \leq \int_{0}^{|v|} p^{*}\left(\frac{t}{1-\varepsilon}\right) d t \\
& =(1-\varepsilon) \int_{0}^{|v|} p^{*}\left(\frac{t}{1-\varepsilon}\right) d \frac{t}{1-\varepsilon}=(1-\varepsilon) \Phi^{*}\left(\frac{v}{1-\varepsilon}\right) \\
\Phi^{\varepsilon *}(v) & =\int_{0}^{|v|} p^{\varepsilon *}(t) d t \geq \int_{0}^{|v|} p^{*}\left(\frac{t}{1+\varepsilon}\right) d t \\
& =(1+\varepsilon) \int_{0}^{|v|} p^{*}\left(\frac{t}{1+\varepsilon}\right) d \frac{t}{1+\varepsilon}=(1+\varepsilon) \Phi^{*}\left(\frac{v}{1+\varepsilon}\right)
\end{aligned}
$$

so

$$
(1+\varepsilon) \Phi^{*}\left(\frac{v}{1+\varepsilon}\right) \leq \Phi^{\varepsilon *}(v) \leq(1-\varepsilon) \Phi^{*}\left(\frac{v}{1-\varepsilon}\right)
$$

Lemma 2.7 ($\overline{\mathrm{Cs}}$). Given an Orlicz function Φ, for any $\varepsilon>0$, there exists a strictly convex Orlicz function Φ^{ε} with $p^{\varepsilon}(s)$ strictly increasing such that $\alpha_{\Phi^{\varepsilon}}=0, p^{\varepsilon}(0)=0$ and

$$
\begin{aligned}
(1-\varepsilon) p(s)-\varepsilon & \leq p^{\varepsilon}(s) \leq(1+\varepsilon) p(s)+\varepsilon \quad \forall s \geq 0 \\
(1-\varepsilon) \Phi(u)-\varepsilon & \leq \Phi^{\varepsilon}(u) \leq(1+\varepsilon) \Phi(u)+\varepsilon \quad \forall u \in \mathbb{R} \\
\text { and } \quad(1+\varepsilon) \Phi^{*}\left(\frac{v}{1+\varepsilon}\right)-\varepsilon & \leq \Phi^{\varepsilon *}(v) \leq(1-\varepsilon) \Phi^{*}\left(\frac{v}{1-\varepsilon}\right)+\varepsilon \quad \forall v \in \mathbb{R} .
\end{aligned}
$$

If $\alpha_{\Phi}=0$ and $p(0)=0$

$$
\begin{aligned}
(1-\varepsilon) p(s) \leq p^{\varepsilon}(s) & \leq(1+\varepsilon) p(s) \quad \forall s \geq 0 \\
(1-\varepsilon) \Phi(u) & \leq \Phi^{\varepsilon}(u) \leq(1+\varepsilon) \Phi(u) \quad \forall u \in \mathbb{R} \\
\text { and } \quad(1+\varepsilon) \Phi^{*}\left(\frac{v}{1+\varepsilon}\right) & \leq \Phi^{\varepsilon *}(v) \leq(1-\varepsilon) \Phi^{*}\left(\frac{v}{1-\varepsilon}\right) \quad \forall v \in \mathbb{R} .
\end{aligned}
$$

Proof.
Case 1. Assume that $\alpha_{\Phi}=0$ and $p(0)=0$.
A. For $\left(a_{1}, b_{1}\right)$:

A-I. If $p\left(a_{1}\right)=p\left(b_{1}\right)$, by the right continuity of p, take $b_{1}^{\prime}>b_{1}$ such that $p\left(b_{1}\right)<p\left(b_{1}^{\prime}\right)<$ $(1+\varepsilon) p\left(b_{1}\right)$ and take $a_{1}^{\prime}=a_{1}$, define $p^{\varepsilon}\left(a_{1}^{\prime}\right)=p\left(a_{1}\right), p^{\varepsilon}\left(b_{1}^{\prime}\right)=p\left(b_{1}^{\prime}\right)$. For $s \in\left(a_{1}^{\prime}, b_{1}^{\prime}\right)$, $p^{\varepsilon}(s)$ is defined as a line connecting $\left(a_{1}^{\prime}, p\left(a_{1}^{\prime}\right)\right)$ and $\left(b_{1}^{\prime}, p\left(b_{1}^{\prime}\right)\right)$.

A-II. If $p\left(a_{1}\right)<p\left(b_{1}\right)$. Take $a_{1}^{\prime}=a_{1}$ and $b_{1}^{\prime}=b_{1}$, define $p^{\varepsilon}\left(a_{1}^{\prime}\right)=p\left(a_{1}\right), c=$ $\min \left\{p\left(b_{1}^{\prime}\right),(1+\varepsilon) p\left(a_{1}\right)\right\}$ and $p^{\varepsilon}(s)$ is defined as a line that connects $\left(a_{1}^{\prime}, p\left(a_{1}^{\prime}\right)\right)$ and $\left(b_{1}^{\prime}, c\right)$ for $s \in\left(a_{1}^{\prime}, b_{1}^{\prime}\right)$.

Thus we see that $p^{\varepsilon}(s)$ is nonnegative and strictly increasing on $\left(a_{1}^{\prime}, b_{1}^{\prime}\right)$ and for all $s \in\left(a_{1}^{\prime}, b_{1}^{\prime}\right),(1-\varepsilon) p(s) \leq \frac{p(s)}{(1+\varepsilon)} \leq \frac{(1+\varepsilon)}{(1+\varepsilon)} p\left(a_{1}\right)=p\left(a_{1}\right) \leq p^{\varepsilon}(s) \leq(1+\varepsilon) p\left(a_{1}\right) \leq(1+\varepsilon) p(s)$.
B. For $\left(a_{2}, b_{2}\right)$:

B-I. In the case of $S_{2}=\left(a_{2}, b_{2}\right) \cap\left[a_{1}^{\prime}, b_{1}^{\prime}\right)=\emptyset$, repeating arguments as in Case A, we define $p^{\varepsilon}(s)$.

B-II. In the case of $S_{2}=\left(a_{2}, b_{2}\right) \cap\left[a_{1}^{\prime}, b_{1}^{\prime}\right) \neq \emptyset$, we see that $a_{2}<a_{1}^{\prime}<b_{2}$ or $a_{2}<b_{1}^{\prime}<b_{2}$. B-II-1. Since $\left(a_{1}, b_{1}\right) \cap\left(a_{2}, b_{2}\right)=\emptyset$ and $a_{1}=a_{1}^{\prime}$, the inequality $a_{2}<a_{1}^{\prime}<b_{2}$ is impossible. B-II-2. If $b_{1}^{\prime}<b_{2}$, take $a_{2}^{\prime}=b_{1}^{\prime}$. Repeating the arguments of Case A, we define $p^{\varepsilon}(s)$.
C. For $\left(a_{3}, b_{3}\right)$:

C-I. In the case of $S_{3}=\left(a_{3}, b_{3}\right) \cap\left(\left[a_{1}^{\prime}, b_{1}^{\prime}\right) \cup\left[a_{2}^{\prime}, b_{2}^{\prime}\right)\right)=\emptyset$, repeating the arguments of Case A, we define $p^{\varepsilon}(s)$.

C-II. In the case of $S_{3}=\left(a_{3}, b_{3}\right) \cap\left(\left[a_{1}^{\prime}, b_{1}^{\prime}\right) \cup\left[a_{2}^{\prime}, b_{2}^{\prime}\right)\right) \neq \emptyset$.
C-II-1. If $\left(a_{3}, b_{3}\right) \subseteq\left(\left[a_{1}^{\prime}, b_{1}^{\prime}\right) \cup\left[a_{2}^{\prime}, b_{2}^{\prime}\right)\right), p^{\varepsilon}(s)$ has been well defined.
C-II-2. If $\left(a_{3}, b_{3}\right) \nsubseteq\left(\left[a_{1}^{\prime}, b_{1}^{\prime}\right) \cup\left[a_{2}^{\prime}, b_{2}^{\prime}\right)\right)$, combining that $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)$ and $\left(a_{3}, b_{3}\right)$ are mutually disjoint, and $\left(a_{1}^{\prime}, b_{1}^{\prime}\right)$ and $\left(a_{2}^{\prime}, b_{2}^{\prime}\right)$ are disjoint, we see that there exists one and only one i such that $a_{i}^{\prime}<a_{3}<b_{i}^{\prime}<b_{3}$. Repeating arguments of Case B-II-2, we define $p^{\varepsilon}(s)$.

Assume that for $\left(a_{k}, b_{k}\right)$, there exist mutually disjoint $\left\{\left(a_{i}^{\prime}, b_{i}^{\prime}\right)\right\}_{i=1}^{k}$ with $\bigcup_{i=1}^{k}\left(a_{i}, b_{i}\right) \subseteq$ $\bigcup_{i=1}^{k}\left(a_{i}^{\prime}, b_{i}^{\prime}\right)$ such that $p^{\varepsilon}(s)$ is positive and strictly increasing with

$$
(1-\varepsilon) p(s) \leq p^{\varepsilon}(s) \leq(1+\varepsilon) p(s) \quad \forall s \in \bigcup_{i=1}^{k}\left(a_{i}^{\prime}, b_{i}^{\prime}\right)
$$

For $\left(a_{k+1}, b_{k+1}\right)$, we see that
D-I. In the case of $S_{k+1}=\left(a_{k+1}, b_{k+1}\right) \cap\left(\bigcup_{i=1}^{k}\left[a_{i}^{\prime}, b_{i}^{\prime}\right)\right)=\emptyset$, repeating the arguments of Case A, we define $p^{\varepsilon}(s)$.
D-II. In the case of $S_{k+1}=\left(a_{k+1}, b_{k+1}\right) \cap\left(\bigcup_{i=1}^{k}\left[a_{i}^{\prime}, b_{i}^{\prime}\right)\right) \neq \emptyset$.
D-II-1. If $\left(a_{k+1}, b_{k+1}\right) \subseteq\left(\bigcup_{j=1}^{k}\left[a_{i}^{\prime}, b_{i}^{\prime}\right)\right), p^{\varepsilon}(s)$ has been defined previously.
D-II-2. If $\left(a_{k+1}, b_{k+1}\right) \nsubseteq\left(\bigcup_{i=1}^{k}\left[a_{i}^{\prime}, b_{i}^{\prime}\right)\right)$, combining that $\left\{\left(a_{i}, b_{i}\right)\right\}_{i=1}^{k}$ are mutually disjoint and $\left\{\left(a_{i}^{\prime}, b_{i}^{\prime}\right)\right\}_{i=1}^{k}$ are mutually disjoint, we see that there exists one and only one i such
that $a_{i}^{\prime}<a_{k+1}<b_{i}^{\prime}<b_{k+1}$. Repeating arguments of Case B-II-2, we define $p^{\varepsilon}(s)$. Hence $p^{\varepsilon}(s)$ is positive and strictly increasing with

$$
(1-\varepsilon) p(s) \leq p^{\varepsilon}(s) \leq(1+\varepsilon) p(s) \quad \forall s \in \bigcup_{i=1}^{k+1}\left(a_{i}^{\prime}, b_{i}^{\prime}\right)
$$

By induction, we define $p^{\varepsilon}(s)$ on $\bigcup_{i=1}^{\infty}\left(a_{i}, b_{i}\right)$ such that $p^{\varepsilon}(s)$ is positive and strictly increasing with

$$
(1-\varepsilon) p(s) \leq p^{\varepsilon}(s) \leq(1+\varepsilon) p(s) \quad \forall s \geq 0
$$

In the case of $\left(a_{0}, b_{0}\right)=(a,+\infty) \neq \emptyset$, if $+\infty>p(a)>0$, define

$$
p^{\varepsilon}(s)= \begin{cases}\left(1+\left(1-\frac{1}{2^{n}}\right) \varepsilon\right) p(a), & s=a+n, n=0,1,2, \ldots \\ \text { connected by line, } & s \in(a+n, a+n+1), n=0,1,2, \ldots\end{cases}
$$

then for $s \in(a,+\infty)$, there exists n such that for $s \in[a+n, a+n+1)$, we have

$$
\begin{aligned}
p(s) & \leq\left(1+\left(1-\frac{1}{2^{n}}\right) \varepsilon\right) p(a) \leq p^{\varepsilon}(s) \\
& \leq\left(1+\left(1-\frac{1}{2^{n+1}}\right) \varepsilon\right) p(a) \leq(1+\varepsilon) p(a)=(1+\varepsilon) p(s)
\end{aligned}
$$

If $p(a)=+\infty$, we define $p^{\varepsilon}(s)=p(s)=+\infty, s \in\left[a_{0},+\infty\right)$.
If $p(a)=0$, by the monotonicity, we see that $\left(a_{0},+\infty\right)=(0,+\infty)$, then $p \equiv 0$, which contradicts the assumption.

Hence we define $p^{\varepsilon}(s)$ well as $s \in \bigcup_{i=0}^{\infty}\left(a_{i}, b_{i}\right)$, and define $p^{\varepsilon}(s)=p(s)$ as $s \notin$ $\bigcup_{i=0}^{\infty}\left(a_{i}, b_{i}\right)$. Then for any $\varepsilon>0$, there exists a strictly convex Orlicz function Φ^{ε} such that $p^{\varepsilon}(s)$ is strictly increasing with $\alpha_{\Phi^{\varepsilon}}=0, p^{\varepsilon}(0)=0$ and

$$
\begin{aligned}
& (1-\varepsilon) p(s) \leq p^{\varepsilon}(s) \leq(1+\varepsilon) p(s) \quad \forall s \geq 0 \\
& (1-\varepsilon) \Phi(u) \leq \Phi^{\varepsilon}(u) \leq(1+\varepsilon) \Phi(u) \quad \forall u \in \mathbb{R} \\
& \text { and } \quad(1+\varepsilon) \Phi^{*}\left(\frac{v}{1+\varepsilon}\right) \leq \Phi^{\varepsilon *}(v) \leq(1-\varepsilon) \Phi^{*}\left(\frac{v}{1-\varepsilon}\right) \quad \forall v \in \mathbb{R} \text {. }
\end{aligned}
$$

Case 2. $\alpha_{\Phi}>0$ or $p(0)>0$.
2-I. If $\alpha_{\Phi}>0$, then without loss of generality, assume $p(s)$ is strictly increasing for $s>\alpha_{\Phi}$. We can make the arguments in Case 1 once more if $p(s)$ is not strictly increasing for $s>\alpha_{\Phi}$. By the assumption $\alpha_{\Phi}<+\infty$, since p is right continuous, there exists a number $\alpha, \alpha>\alpha_{\Phi}>0$ such that $\alpha c \leq \varepsilon$ for some $c \leq \min \{p(\alpha), \varepsilon\}$. Define $p^{\varepsilon}(s)=\frac{c}{\alpha} s$ as $s \leq \alpha$ and $p^{\varepsilon}(s)=p(s)$ as $s>\alpha$. Then $p^{\varepsilon}(s)$ is strictly increasing with $\alpha_{\Phi^{\varepsilon}}=0$, $p^{\varepsilon}(0)=0$. And as $0 \leq t \leq c, p^{\varepsilon *}(t)=\sup \left\{s \geq 0: p^{\varepsilon}(s) \leq t\right\}=\sup \left\{s \geq 0: \frac{c}{\alpha} s \leq t\right\}=\frac{\alpha}{c} t ;$ as $t>c, p^{\varepsilon *}(t)=\sup \left\{s \geq 0: p^{\varepsilon}(s) \leq t\right\}=\sup \{s \geq 0: p(s) \leq t\}=p^{*}(t)$. Thus $\alpha_{\Phi^{*}}=0$, and

$$
\begin{aligned}
\Phi^{\varepsilon}(u) \leq \Phi^{\varepsilon}(\alpha)=\frac{c}{\alpha} \frac{\alpha^{2}}{2}=\frac{\alpha c}{2} \leq \frac{\varepsilon}{2}, & 0 \leq u \leq \alpha \\
\Phi^{\varepsilon *}(v) \leq \Phi^{\varepsilon *}(c)=\frac{\alpha}{c} \frac{c^{2}}{2}=\frac{\alpha c}{2} \leq \frac{\varepsilon}{2}, & 0 \leq v \leq c
\end{aligned}
$$

In summary, $p^{\varepsilon}(s)$ is strictly increasing with $\alpha_{\Phi^{\varepsilon}}=0, p^{\varepsilon}(0)=0$ and

$$
\begin{aligned}
(1-\varepsilon) p(s)-\varepsilon \leq p^{\varepsilon}(s) & \leq(1+\varepsilon) p(s)+\varepsilon & & \forall s \geq 0 \\
(1-\varepsilon) \Phi(u)-\varepsilon \leq \Phi^{\varepsilon}(u) & \leq(1+\varepsilon) \Phi(u)+\varepsilon & & \forall u \in \mathbb{R}
\end{aligned}
$$

$$
\text { and } \quad(1+\varepsilon) \Phi^{*}\left(\frac{v}{1+\varepsilon}\right)-\varepsilon \leq \Phi^{\varepsilon *}(v) \leq(1-\varepsilon) \Phi^{*}\left(\frac{v}{1-\varepsilon}\right)+\varepsilon \quad \forall v \in \mathbb{R}
$$

2-II. If $p(0)>0$ then since p is nondecreasing, $\alpha_{\Phi}=0$. Since $\beta_{\Phi}>0$, take $\beta_{\Phi}>\alpha>$ $\alpha_{\Phi}=0$ such that $\alpha p(\alpha) \leq \varepsilon$. Repeating the arguments of Case 2-I, we get $p^{\varepsilon}(s)$ of 2-I. ■ Theorem 2.8 (Young's Inequality [KR]). If Φ is an Orlicz function, then for all $u, v \in \mathbb{R}$,

$$
\Phi(u)+\Phi^{*}(v) \geq|u||v| \geq u v
$$

Proof. Let $u, v \in \mathbb{R}$.
A. $\Phi: \mathbb{R} \rightarrow[0,+\infty]$ and $p(s)$ is continuous and strictly increasing on $[0,+\infty)$. Let $t=p(s) \leftrightarrow s=p^{-1}(t)$, then $p:[0,+\infty) \rightarrow[0,+\infty], s=0 \leftrightarrow t=p(0):=\alpha^{*}$ and $s=$ $u \leftrightarrow t=p(u)$. Therefore $p^{-1}: p([0,+\infty)) \rightarrow[0,+\infty)$, i.e. $p^{-1}:[p(0), p(+\infty)) \rightarrow[0,+\infty)$. Then $p^{*}:[0,+\infty) \rightarrow[0,+\infty]$, and for $0 \leq t<\alpha^{*}, p^{*}(t)=\sup \{s \geq 0: p(s) \leq t\} \leq$ $\sup \left\{s \geq 0: p(s)<\alpha^{*}\right\}=0$. Hence for all $u, v \in \mathbb{R}$

$$
\begin{aligned}
& \quad \int_{0}^{|u|} p(s) d s=\left.s p(s)\right|^{|u|}-\int_{0}^{|u|} s d p(s)=|u| p(u)-\int_{\alpha^{*}}^{p(u)} p^{-1}(t) d t \\
& \int_{0}^{|v|} p^{*}(t) d t=\int_{0}^{\alpha^{*}} p^{*}(t) d t+\int_{\alpha^{*}}^{|v|} p^{*}(t) d t=\int_{\alpha^{*}}^{|v|} p^{-1}(t) d t \\
& \Phi(u)+\Phi^{*}(v)=\int_{0}^{|u|} p(s) d s+\int_{0}^{|v|} p^{*}(t) d t \\
& =|u| p(u)-\int_{\alpha^{*}}^{p(u)} p^{-1}(t) d t+\int_{\alpha^{*}}^{|v|} p^{-1}(t) d t=|u| p(u)+\int_{p(u)}^{|v|} p^{-1}(t) d t \\
& =|u||v|+|u|(p(u)-|v|)+\int_{p(u)}^{|v|} p^{-1}(t) d t
\end{aligned}
$$

If $|v|=p(u)$,

$$
\Phi(u)+\Phi^{*}(v)=|u||v| .
$$

If $|v|>p(u)$,

$$
\begin{aligned}
\Phi(u)+\Phi^{*}(v) & =|u||v|+|u|(p(u)-|v|)+\int_{p(u)}^{|v|} p^{-1}(t) d t \\
& \geq|u||v|+|u|(p(u)-|v|)+p^{-1}(p(u))(|v|-p(u))=|u||v|
\end{aligned}
$$

If $|v|<p(u)$,

$$
\begin{aligned}
\Phi(u)+\Phi^{*}(v) & =|u||v|+|u|(p(u)-|v|)+\int_{p(u)}^{|v|} p^{-1}(t) d t \\
& =|u||v|+|u|(p(u)-|v|)-\int_{|v|}^{p(u)} p^{-1}(t) d t \\
& \geq|u||v|+|u|(p(u)-|v|)-p^{-1}(p(u))(p(u)-|v|)=|u||v|
\end{aligned}
$$

In summary, for all $u, v \in \mathbb{R}$

$$
\Phi(u)+\Phi^{*}(v)=|u||v| \geq u v
$$

B. For an Orlicz function Φ, by Lemma 2.7, we get a strictly convex function Φ^{ε} with a strictly increasing p^{ε}. By Lemma 2.5. $p^{\varepsilon *}$ is continuous, and by Lemma 2.7 once more we get an Orlicz function $\Phi^{\varepsilon * \varepsilon}$ with a continuous strictly increasing $p^{\varepsilon * \varepsilon}$. Hence for all $u, v \in \mathbb{R}$, let $u^{\prime}=u(1-\varepsilon), v^{\prime}=v(1-\varepsilon)$, by the result A , we get

$$
\Phi^{\varepsilon * \varepsilon}\left(v^{\prime}\right)+\Phi^{\varepsilon * \varepsilon *}\left(u^{\prime}\right) \geq\left|u^{\prime}\right|\left|v^{\prime}\right| .
$$

By Lemmas 2.4, 2.5, 2.7 and 2.6, we get

$$
\Phi^{\varepsilon * \varepsilon}\left(v^{\prime}\right) \leq(1+\varepsilon) \Phi^{\varepsilon *}\left(v^{\prime}\right)+\varepsilon \leq(1+\varepsilon)(1-\varepsilon) \Phi^{*}\left(\frac{v^{\prime}}{1-\varepsilon}\right)+2 \varepsilon
$$

and

$$
\Phi^{\varepsilon * \varepsilon *}\left(u^{\prime}\right) \leq(1-\varepsilon) \Phi^{\varepsilon * *}\left(\frac{u^{\prime}}{1-\varepsilon}\right)=(1-\varepsilon) \Phi^{\varepsilon}\left(\frac{u^{\prime}}{1-\varepsilon}\right) \leq(1-\varepsilon)(1+\varepsilon) \Phi\left(\frac{u^{\prime}}{1-\varepsilon}\right)+\varepsilon .
$$

Hence

$$
\begin{aligned}
\left(1-\varepsilon^{2}\right) \Phi(u)+\left(1-\varepsilon^{2}\right) \Phi^{*}(v)+3 \varepsilon & =\left(1-\varepsilon^{2}\right) \Phi\left(\frac{u^{\prime}}{1-\varepsilon}\right)+\left(1-\varepsilon^{2}\right) \Phi^{*}\left(\frac{v^{\prime}}{1-\varepsilon}\right)+3 \varepsilon \\
& \geq\left|u^{\prime}\right|\left|v^{\prime}\right|=(1-\varepsilon)^{2}|u||v|
\end{aligned}
$$

so

$$
\left(1-\varepsilon^{2}\right) \Phi(u)+\left(1-\varepsilon^{2}\right) \Phi^{*}(v)+3 \varepsilon \geq(1-\varepsilon)^{2}|u||v| .
$$

Letting $\varepsilon \rightarrow 0$, we have

$$
\Phi(u)+\Phi^{*}(v) \geq|u||v| \geq u v .
$$

Proposition 2.9. Given an Orlicz function Φ, the following are equivalent: for $u, v \in \mathbb{R}$
(1) $|v|=p(u)$ or $|u|=p^{*}(v)$;
(2) $|v| \in\left[p_{-}(u), p(u)\right]$;
(3) $|u| \in\left[p_{-}^{*}(v), p^{*}(v)\right]$.

Proof. (1) $\Longrightarrow(2)$. Otherwise,
1-I. $|v|=p(u)$ or $|u|=p^{*}(v),|v|<p_{-}(u)$ or
1-II. $|v|=p(u)$ or $|u|=p^{*}(v),|v|>p(u)$.
1-I-i. $|v|=p(u),|v|<p_{-}(u)$. We deduce $|v|<p_{-}(u) \leq p(u)$, a contradiction with $|v|=p(u)$.
1-I-ii. $|u|=p^{*}(v),|v|<p_{-}(u)$. Since $p_{-}(u)=\sup \left\{t \geq 0: p^{*}(t)<|u|\right\}=\inf \{t \geq 0$: $\left.p^{*}(t) \geq|u|\right\}$, we deduce that $p^{*}(v)<|u|$, a contradiction with $|u|=p^{*}(v)$.
1-II-i. $|v|=p(u),|v|>p(u)$. A contradiction.
1-II-ii. $|u|=p^{*}(v),|v|>p(u)$. By Lemma 2.1 $p^{*}(v)=p^{*}(p(u)+\varepsilon)>|u|$, a contradiction with $|u|=p^{*}(v)$.
$(2) \Longrightarrow(1)$. Otherwise, $|v| \in\left[p_{-}(u), p(u)\right],|v| \neq p(u),|u| \neq p^{*}(v)$.
2-I. $|v| \in\left[p_{-}(u), p(u)\right],|v| \neq p(u),|u|>p^{*}(v)$.
2-I-i. $|v| \in\left[p_{-}(u), p(u)\right],|v|>p(u),|u|>p^{*}(v) . v \leq p(u)$ is contradictory to $|v|>p(u)$.

2-I-ii. $|v| \in\left[p_{-}(u), p(u)\right],|v|<p(u),|u|>p^{*}(v)$. From $p_{-}(u)=p_{-}\left(p^{*}(v)+\varepsilon\right)$, since p^{*} is right continuous, there exists $v^{\prime}>|v|$ such that $p^{*}\left(v^{\prime}\right)<p^{*}(v)+\varepsilon$, we deduce $p_{-}(u)=p_{-}\left(p^{*}(v)+\varepsilon\right)=\sup \left\{t \geq 0: p^{*}(t)<p^{*}(v)+\varepsilon\right\} \geq v^{\prime}>|v|$, a contradiction to $\left.|v| \geq p_{-}(u)\right)$.
2-II. $|v| \in\left[p_{-}(u), p(u)\right],|v| \neq p(u),|u|<p^{*}(v)$.
2-II-i. $|v| \in\left[p_{-}(u), p(u)\right],|v|>p(u),|u|<p^{*}(v) .|v| \leq p(u)$ is contradictory to $|v|>p(u)$.
2-II-ii. $|v| \in\left[p_{-}(u), p(u)\right],|v|<p(u),|u|<p^{*}(v)$. By Lemma 2.1. we deduce $p(u)=$ $p\left(p^{*}(v)-\varepsilon\right) \leq|v|$, a contradiction to $|v|<p(u)$.

In summary, $(1) \Longleftrightarrow(2)$.
Replacing Φ by Ψ^{*} and u by v, using Lemma 2.4 repeating the arguments of $(1) \Leftrightarrow(2)$, we get $(1) \Leftrightarrow(3)$.

Theorem 2.10 (Young's Equality [KR]). If Φ is an Orlicz function, then for all $u, v \in \mathbb{R}$

$$
\Phi(u)+\Phi^{*}(v)=u v \quad \Longleftrightarrow \quad|v|=p(u) \text { or }|u|=p^{*}(v)
$$

Proof. Necessity. Set $f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}, f(u, v):=\Phi(u)+\Phi^{*}(v)-u v$. By Theorem 2.8 it follows that $f(u, v) \geq 0$. If $f\left(u_{0}, v_{0}\right)=0$ then $f\left(u_{0}, v_{0}\right)=\min f(u, v), \frac{\partial f}{\partial u}{ }_{-}\left(u_{0}, v_{0}\right):=$ $\lim _{u \rightarrow u_{0}^{-}} \frac{f\left(u, v_{0}\right)-f\left(u_{0}, v_{0}\right)}{u-u_{0}} \leq 0$ and $\frac{\partial f}{\partial u}\left(u_{0}, v_{0}\right):=\lim _{u \rightarrow u_{0}^{+}} \frac{f\left(u, v_{0}\right)-f\left(u_{0}, v_{0}\right)}{u-u_{0}} \geq 0$. We get

$$
p_{-}\left(u_{0}\right)-v_{0} \leq 0, \quad p\left(u_{0}\right)-v_{0} \geq 0
$$

so

$$
p_{-}\left(u_{0}\right) \leq v_{0}, \quad p\left(u_{0}\right) \geq v_{0}
$$

i.e. by Proposition 2.9

$$
p_{-}\left(u_{0}\right) \leq v_{0} \leq p\left(u_{0}\right) \quad \Longleftrightarrow \quad\left|v_{0}\right|=p\left(u_{0}\right) \text { or }\left|u_{0}\right|=p^{*}\left(v_{0}\right) .
$$

Sufficiency. For $u, v \in \mathbb{R},|v|=p(u)$ or $|u|=p^{*}(v)$. We shall discuss two cases: A. $|v|=p(u)$ and B. $|u|=p^{*}(v)$.
A. $|v|=p(u)$, then $p(u)=|v|<+\infty$.

A-1. If $|u|<\beta_{\Phi}, p(u)<+\infty$, for ε small enough $\frac{(1+\varepsilon) u}{1-\varepsilon}<\beta_{\Phi}$, by Lemmas 2.6, 2.4 and 2.7

$$
\begin{aligned}
p^{\varepsilon * \varepsilon *}((1+\varepsilon) u) & \leq p^{\varepsilon * *}\left(\frac{(1+\varepsilon) u}{1-\varepsilon}\right) \\
& =p^{\varepsilon}\left(\frac{(1+\varepsilon) u}{1-\varepsilon}\right) \leq(1+\varepsilon) p\left(\frac{(1+\varepsilon) u}{1-\varepsilon}\right)+\varepsilon<+\infty
\end{aligned}
$$

we get $p^{\varepsilon * \varepsilon *}((1+\varepsilon) u) \in \mathbb{R}$. By Theorem 2.8A A

$$
(1+\varepsilon)|u| p^{\varepsilon * \varepsilon *}((1+\varepsilon) u)=\Phi^{\varepsilon * \varepsilon *}((1+\varepsilon) u)+\Phi^{\varepsilon * \varepsilon}\left(p^{\varepsilon * \varepsilon *}((1+\varepsilon) u)\right)
$$

By Lemmas 2.6, 2.4 and 2.7 again

$$
\Phi^{\varepsilon * \varepsilon *}((1+\varepsilon) u) \geq(1+\varepsilon) \Phi^{\varepsilon * *}\left[\frac{(1+\varepsilon) u}{1+\varepsilon}\right](1+\varepsilon) \Phi^{\varepsilon}(u) \geq\left(1-\varepsilon^{2}\right) \Phi(u)-\varepsilon
$$

and

$$
\begin{aligned}
& \Phi^{\varepsilon * \varepsilon}\left(p^{\varepsilon * \varepsilon *}((1+\varepsilon) u)\right) \\
& \geq(1-\varepsilon) \Phi^{\varepsilon *}\left(p^{\varepsilon * \varepsilon *}((1+\varepsilon) u)\right) \geq(1-\varepsilon)(1+\varepsilon) \Phi^{*}\left[\frac{p^{\varepsilon * \varepsilon *}((1+\varepsilon) u)}{1+\varepsilon}\right]-\varepsilon \\
& \geq\left(1-\varepsilon^{2}\right) \Phi^{*}\left[\frac{p^{\varepsilon * *}(u)}{1+\varepsilon}\right]-\varepsilon=\left(1-\varepsilon^{2}\right) \Phi^{*}\left[\frac{p^{\varepsilon}(u)}{1+\varepsilon}\right]-\varepsilon \\
& \geq\left(1-\varepsilon^{2}\right) \Phi^{*}\left[\frac{(1-\varepsilon) p(u)-\varepsilon}{1+\varepsilon}\right]-\varepsilon
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& (1+\varepsilon)|u|\left((1+\varepsilon) p\left[\frac{(1+\varepsilon) u}{1-\varepsilon}\right]+\varepsilon\right) \\
& \geq\left(1-\varepsilon^{2}\right) \Phi(u)+\left(1-\varepsilon^{2}\right) \Phi^{*}\left[\frac{(1-\varepsilon) p(u)-\varepsilon}{1+\varepsilon}\right]-2 \varepsilon
\end{aligned}
$$

By the left continuity of Φ^{*} and the right continuity of p and $\beta_{\Phi^{*}}>0$, we get

$$
|u| p(u) \geq \Phi(u)+\Phi^{*}[p(u)] .
$$

By Theorem 2.8, we see that for $u \in \mathbb{R},|u|<\beta_{\Phi}$

$$
|u| p(u)=\Phi(u)+\Phi^{*}[p(u)] .
$$

A-2. For $u, v \in \mathbb{R},|u|=\beta_{\Phi}<+\infty$. By the right continuity of $p(s)$, we get $p(u)=$ $p\left(\beta_{\Phi}\right)=\lim _{s^{\prime} \rightarrow \beta_{\Phi+}} p(s)=+\infty$. By the assumption $\beta_{\Phi}>0$, we see that $|u| p(u)=+\infty$. Also by the assumption $\alpha_{\Phi^{*}}<+\infty, \Phi^{*}\left[p\left(\beta_{\Phi}\right)\right]=\Phi^{*}[+\infty]=+\infty$. So $\Phi\left(\beta_{\Phi}\right)+\Phi^{*}\left[p\left(\beta_{\Phi}\right)\right] \geq$ $\Phi^{*}\left[p\left(\beta_{\Phi}\right)\right]=+\infty$, thus for $|u|=\beta_{\Phi}<+\infty$ we have

$$
|u| p(u)=\Phi(u)+\Phi^{*}[p(u)] .
$$

A-3. For $u, v \in \mathbb{R},|u|>\beta_{\Phi}<+\infty$. Then $|u| p(u)=+\infty$ and $\Phi(u) \geq \int_{\beta_{\Phi}}^{|u|} p(s) d s=$ $+\infty$, so

$$
|u| p(u)=\Phi(u)+\Phi^{*}[p(u)] .
$$

Summarizing for $u \in \mathbb{R}$,

$$
|u| p(u)=\Phi(u)+\Phi^{*}[p(u)] .
$$

B. $|u|=p^{*}(v)$. By Lemma 2.4, exchanging positions of v and u, Φ and $\Phi^{*}\left(p\right.$ and $\left.p^{*}\right)$, and repeating the arguments of A , we get for $v \in \mathbb{R}$,

$$
|v| p^{*}(v)=\Phi\left(p^{*}(v)\right)+\Phi^{*}(v)
$$

Theorem $2.11([\boxed{K R}])$. Given an Orlicz function Φ, then for all $v \in \mathbb{R}$

$$
\Phi^{*}(v)=\tilde{\Phi}(v)
$$

Proof. For all $u, v \in \mathbb{R}$. By Theorem 2.8 .

$$
\Phi(u)+\Phi^{*}(v) \geq u|v|, \quad \text { i.e. } \quad \Phi^{*}(v) \geq u|v|-\Phi(u)
$$

so for all $v \in \mathbb{R}$

$$
\Phi^{*}(v) \geq \sup \{u|v|-\Phi(u): u \in \mathbb{R}\}=\tilde{\Phi}(v)
$$

On the other hand, if $0 \leq p^{*}(v)<+\infty$, by Theorem 2.10

$$
\Phi^{*}(v)=p^{*}(v)|v|-\Phi\left(p^{*}(v)\right) \leq \sup \{u|v|-\Phi(u): u \in \mathbb{R}\}=\tilde{\Phi}(v)
$$

if $p^{*}(v)=+\infty,|v| \geq \beta_{\Phi^{*}}>0,|v| p^{*}(v)=+\infty$, by the assumption $\alpha_{\Phi}<+\infty$ and $\Phi\left(p^{*}(v)\right)=\Phi(+\infty)=+\infty$, so

$$
|v| p^{*}(v)=\Phi^{*}(v)+\Phi\left(p^{*}(v)\right),
$$

thus

$$
\Phi^{*}(v)=\sup \{u|v|-\Phi(u): u \in \mathbb{R}\}=\tilde{\Phi}(v)
$$

By Remark 2.2, we get
Remark $2.12([\boxed{K R}]) . \tilde{\Phi}$ is an Orlicz function, i.e. $\tilde{\Phi}: \mathbb{R} \rightarrow[0,+\infty]$ is even, convex and left continuous on $[0,+\infty)$ with $\tilde{\Phi}(0)=0$.

By Remark 2.12 and Lemma 1.3 , we have
Proposition 2.13 ($\overline{\mathrm{KR}]})$. For an Orlicz function Φ, $\tilde{\Phi}=\Phi$.
Acknowledgments. This work was partially supported by NSFC grant No. 11771273.

References

[BB] E. Beckenbach, R. Bellman, Inequalities, Ergeb. Math. Grenzgeb. (2) 30, Springer, Berlin, 1961.
[BF] S. Biagini, M. Frittelli, A unified framework for utility maximization problems: an Orlicz space approach, Ann. Appl. Probab. 18 (2008), 929-969.
[Bz] Z. Birnbaum, An inequality for Mill's ratio, Ann. Math. Statistics 13 (1942), 245-246.
[BO] Z. Birnbaum, W. Orlicz, Über die Verallgemeinerung des Begrifffes der zueinander konjugierten Potenzen, Studia Math. 3 (1931), 1-67.
[BDP] I. Budimir, S. Dragomir, J. Pečarić, Further reverse results for Jensen's discrete inequality and applications in information theory, JIPAM. J. Inequal. Pure Appl. Math. 2 (2001), art. 5.
[Cs] S. Chen, Geometry of Orlicz spaces, Dissertationes Math. (Rozprawy Mat.) 356 (1996).
[DU] J. Diestel, J. J. Uhl, Jr., Vector Measures, with a foreword by B. J. Pettis, Mathematical Surveys 15, Amer. Math. Soc., Providence, RI, 1977.
[FHS] P. Foralewski, H. Hudzik, L. Szymaszkiewicz, Local rotundity structure of generalized Orlicz-Lorentz sequence spaces, Nonlinear Anal. 68 (2008), 2709-2718.
[FL] M. Fuchs, G. Li, L^{∞}-bounds for elliptic equations on Orlicz-Sobolev spaces, Arch. Math. (Basel) 72 (1999), 293-297.
[FS] M. Fuchs, G. Seregin, A regularity theory for variational integrals with $L \ln L$-growth, Calc. Var. Partial Differential Equations 6 (1998), 171-187.
[HLP] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, The University Press, Cambridge, 1934.
[HM] H. Hudzik, L. Maligranda, Amemiya norm equals Orlicz norm in general, Indag. Math. (N.S.) 11 (2000), 573-585.
[HW] H. Hudzik, B. Wang, Approximative compactness in Orlicz spaces, J. Approx. Theory 95 (1998), 82-89.
[Jj] J. L. Jensen, Sur le functions convexes et les inégalités entre les valeurs moyennes, Acta Math. 30 (1906), 175-193.
[KR] M. A. Krasnosel'skii, Ya. B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff, Groningen 1961.
[M1] L. Maligranda, Orlicz Spaces and Interpolation, Sem. Math. 5, Campinas SP, Univ. of Campinas, Brazil, 1989.
[MPF] D. Mitrinović, J. Pečarić, A. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Math. Appl. (East European Ser.) 53, Kluwer, Dordrecht, 1991.
[Mj] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin, 1983.
[MO] J. Musielak, W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65.
[Ni] I. P. Natanson, Theory of Functions of a Real Variable, Higher Education Press, Beijing, 2010.
[RR] M. M. Rao, Z. D. Ren, Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math. 146, Dekker, New York, 1991.
[ST] M. A. Smith, B. Turett, Rotundity in Lebesgue-Bochner Function Spaces, Trans. Amer. Math. Soc. 257 (1980), 105-118.
[WW] C. Wu, T. Wang, Orlicz Spaces and Their Application, Heilongjiang Press of Sci. Tech., Harbin, 1983 (in Chinese).
[WWCW] C. Wu, T. Wang, S. Chen, Y. Wang, Geometric Theory of Orlicz Spaces, H.I.T. Press, Harbin, 1986 (in Chinese).
[WS] S. Wu, Z. Shi, A class of extension of the Young inequality, J. Shanghai Univ. (Nat. Sci.) 22 (2016), 461-468 (in Chinese).

