FUNCTION SPACES XII BANACH CENTER PUBLICATIONS, VOLUME 119 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2019

ON GENERALIZED YOUNG'S INEQUALITY

SIYU SHI

The Pennsylvania State University State College, USA E-mail: sps6229@psu.edu

ZHONGRUI SHI

Department of Mathematics, Shanghai University Shanghai, China E-mail: zshi@shu.edu.cn

Abstract. We generalize Young's inequality to Orlicz functions. The Young's inequality is widely used not only in Mathematics but also in Mechanics and Risk Management. We show that for Orlicz function Φ , its Young complementary function $\widetilde{\Phi}$ and dual complementary function Φ^* coincide.

1. Introduction. In the 1930's Young's Inequality was proved [HLP]. That is, for $f: [0, +\infty) \to [0, +\infty)$ a continuous and strictly increasing function with f(0) = 0, for all nonnegative u, v,

$$\int_{0}^{u} f(s) \, ds + \int_{0}^{v} f^{-1}(s) \, ds \ge uv$$

and the inequality turns into equality if and only if v = f(u). After that, in the last century, Jensen's Inequality was proved [BO, Jj, MPF]. That is, if $p : [0, +\infty) \to [0, +\infty)$ a right continuous and nondecreasing function with

(1) p(0) = 0;(2) p(s) > 0 if s > 0;(3) $\lim_{s \to 0} p(s) = 0$ and $\lim_{s \to +\infty} p(s) = +\infty$

2010 Mathematics Subject Classification: 46E30, 46B20, 26A51, 26A48.

Key words and phrases: Young's Inequality, Jensen's Inequality, Orlicz function.

The paper is in final form and no version of it will be published elsewhere.

then for all $u, v \in \mathbb{R}$

$$\int_0^u p(s) \, ds + \int_0^v p^*(t) \, dt \ge uv$$

and the inequality turns into equality if and only if v = p(u) or $u = p^*(v)$, where $p^*(t) = \sup\{s : p(s) \le t\}$. There is a proof using graphs [KR] with details in [WS]. These inequalities play not only a fundamental role in many fields of Mathematics [BB, Bz, MO], but also an important role in other fields [BDP]. The developing of Mechanics [FL, FS] and Risk Management [BF] lead the more functions involved. For example, in [BF], it is needed that the functions take the value of $+\infty$. In this paper, removing the above restrictions (1)–(3), we prove Young's Inequality in every detail for a right continuous and nondecreasing function $p : [0, +\infty) \rightarrow [0, +\infty]$ whose value can be $+\infty$. Such kind of functions are widely adopted [BF, FL, FS], especially in Orlicz spaces theory [HW, FHS, Mj, HM, MI]. We generalize the results of [KR, Cs, WW, WWCW]. We refer the reader to see [Cs, WW, WWCW, RR] for more details.

DEFINITION 1.1 ([KR]). $\Phi : \mathbb{R} \to [0, +\infty]$, where $+\infty$ can be a possible value, is called an *Orlicz function*, provided that it is even, convex and left continuous on $[0, +\infty)$ with $\Phi(0) = 0$. Set

$$\alpha_{\Phi} := \sup\{s \ge 0 : \Phi(s) = 0\}; \qquad \beta_{\Phi} := \sup\{s \ge 0 : \Phi(s) < \infty\}$$

where \mathbb{R} is the set of all real numbers. An interval (a, b) is called a *Structure Affine* Interval (SAI) of Φ provided that $\Phi(s)$ is affine on (a, b), and for all $\varepsilon > 0$, $\Phi(s)$ is not affine on $(a - \varepsilon, b)$ or $(a, b + \varepsilon)$. Set $S_{\Phi} := \mathbb{R} \setminus \bigcup_{i=0}^{\infty} (a_i, b_i)$, where (a_i, b_i) is a SAI of Φ and $b_0 = +\infty$.

DEFINITION 1.2 ([KR]). Let Ω be a set in \mathbb{R}^n and (Ω, Σ, μ) be a measure space [DU]. For a real valued measurable function u(t) on Ω , let $\rho_{\Phi}(u) := \int_{\Omega} \Phi(u(t)) d\mu$. We define the Orlicz function spaces L_{Φ}

 $L_{\Phi} := \{ u : \rho_{\Phi}(\lambda u) < \infty \text{ for some } \lambda > 0 \},$

equipped with the Luxemburg norm

$$\|u\|_{(\Phi)} := \inf\left\{\lambda > 0 : \rho_{\Phi}\left(\frac{u}{\lambda}\right) \le 1\right\}$$

or the Orlicz norm

$$\|u\|_{\Phi} := \sup_{\rho_{\Phi^*}(v) \le 1} \int_{\Omega} |u(t)v(t)| \, d\mu = \inf_{k>0} \frac{1}{k} [1 + \rho_{\Phi}(ku)], \quad \text{where } v \in L_{\Phi}$$

 L_{Φ} is a Banach space.

LEMMA 1.3 ([KR]). For an Orlicz function Φ , its right derivative $\Phi'_+(s)$ exists for all $s \in \mathbb{R}$, and $\Phi'_+(s)$ is nonnegative, nondecreasing and right continuous in $[0, +\infty)$. Moreover, for each $u \in \mathbb{R}$,

$$\Phi(u) = \int_0^{|u|} \Phi'_+(s) \, ds.$$

Proof. In the paper, for a convex function Φ , if s' < s'', $\Phi(s') = \Phi(s'') = +\infty$, we always assume

$$\Phi(s'') - \Phi(s') = +\infty$$

(that is to say, $\Phi'_+(s) = \infty$ for $s \ge \beta_{\Phi}$).

296

First, for $0 \le s_1 < s_2 < s_3$, since Φ is convex and $\Phi(0) = 0$, we see that

$$\frac{\Phi(s_2) - \Phi(s_1)}{s_2 - s_1} \le \frac{\Phi(s_3) - \Phi(s_1)}{s_3 - s_1} \le \frac{\Phi(s_3) - \Phi(s_2)}{s_3 - s_2} \,. \tag{(*)}$$

In fact, if $\Phi(s_3) < +\infty$, by [KR], we get (*). If $\Phi(s_2) < +\infty$, and $\Phi(s_3) = +\infty$, by the convexity of Φ , we get

$$\frac{\Phi(s_2) - \Phi(s_1)}{s_2 - s_1} \le \frac{\Phi(s_3) - \Phi(s_1)}{s_3 - s_1},$$

and

$$\frac{\Phi(s_2) - \Phi(s_1)}{s_2 - s_1} < +\infty = \frac{\Phi(s_3) - \Phi(s_2)}{s_3 - s_2}$$

so (*) is true. If $\Phi(s_1) < +\infty$, and $\Phi(s_2) = +\infty = \Phi(s_3)$, then by the assumption at the beginning of the proof

$$\frac{\Phi(s_2) - \Phi(s_1)}{s_2 - s_1} = +\infty = \frac{\Phi(s_3) - \Phi(s_1)}{s_3 - s_1} = \frac{\Phi(s_3) - \Phi(s_2)}{s_3 - s_2},$$

so (*) is true. If $\Phi(s_1) = \Phi(s_2) = \Phi(s_3) = +\infty$, then by the same assumption

$$\frac{\Phi(s_2) - \Phi(s_1)}{s_2 - s_1} = +\infty = \frac{\Phi(s_3) - \Phi(s_1)}{s_3 - s_1} = \frac{\Phi(s_3) - \Phi(s_2)}{s_3 - s_2}$$

so (*) is true.

Summarizing, for $0 \le s_1 < s_2 < s_3$, (*) holds. Secondly, for all h > 0, by (*), $f(h) = \frac{\Phi(s+h) - \Phi(s)}{h}$ is nondecreasing, so

$$\Phi'_+(s) := \lim_{h \to 0_+} \frac{\Phi(s+h) - \Phi(s)}{h},$$

exists for all $s \in [0, +\infty)$.

We claim that $\Phi'_+(s)$ is nondecreasing on $[0, +\infty)$. In fact, for $0 \le s_1 < s_2$, and h > 0 small enough, by (*)

$$\frac{\Phi(s_1+h) - \Phi(s_1)}{h} \le \frac{\Phi(s_2-h) - \Phi(s_1+h)}{s_2 - s_1 - 2h}$$
$$\le \frac{\Phi(s_2) - \Phi(s_2-h)}{h} \le \frac{\Phi(s_2+h) - \Phi(s_2)}{h}$$

 \mathbf{SO}

$$\frac{\Phi(s_1+h) - \Phi(s_1)}{h} \le \frac{\Phi(s_2) - \Phi(s_2-h)}{h} \le \frac{\Phi(s_2+h) - \Phi(s_2)}{h}.$$

Let $h \to 0$. We get

$$\Phi'_+(s_1) \le \Phi'_-(s_2) \le \Phi'_+(s_2).$$

Finally, $\Phi'_+(s)$ is right continuous on $[0, +\infty)$. Since $\Phi'_+(s)$ is nondecreasing, we get

$$\lim_{s'\to s^+}\Phi_+'(s')\geq \Phi_+'(s).$$

If $\Phi'_+(s) = +\infty$, we have $+\infty \ge \lim_{s' \to s^+} \Phi'_+(s') \ge \Phi'_+(s) = +\infty$, i.e. $\lim_{s' \to s^+} \Phi'_+(s') = \Phi'_+(s)$.

If $\Phi'_+(s) < +\infty$, for any $\varepsilon > 0$, there exists h > 0 such that

$$\Phi'_+(s) \le \frac{\Phi(s+h) - \Phi(s)}{h} \le \Phi'_+(s) + \varepsilon.$$

,

For s < s' < s + h

$$\Phi'_+(s) \le \Phi'_+(s') < \Phi'_-(s+h) \le \frac{\Phi(s+h) - \Phi(s)}{h} + \varepsilon \le \Phi'_+(s) + 2\varepsilon$$

so $\Phi'_+(s) \leq \lim_{s' \to s_+} \Phi'_+(s') \leq \Phi'_+(s) + 2\varepsilon$, since ε is arbitrary, we get $\lim_{s' \to s_+} \Phi'_+(s') = \Phi'_+(s)$.

Summarizing, for all $s \in [0, +\infty)$, $\lim_{s' \to s_+} \Phi'_+(s') = \Phi'_+(s)$, i.e. $\Phi'_+(s)$ is right continuous on $[0, +\infty)$.

For each $u \in \mathbb{R}$, since $\Phi(u)$ is even, we can assume $u \ge 0$.

As $u < \beta_{\Phi}$, then there exists a positive number M such that $\Phi'_+(s) \leq M$, for all $s \leq u$. By [Ni], we get

$$\Phi(u) = \int_0^u \Phi'_+(s) \, ds.$$

As $u = \beta_{\Phi}$, since $\Phi'_{+}(s)$ is nondecreasing and nonnegative, by the left continuity of $\Phi(u)$ and the Levy Theorem, we have

$$\Phi(\beta_{\Phi}) = \lim_{u \to \beta_{\Phi}^{-}} \Phi(u) = \lim_{u \to \beta_{\Phi}^{-}} \int_{0}^{|u|} \Phi'_{+}(s) \, ds = \int_{0}^{\beta_{\Phi}} \Phi'_{+}(s) \, ds$$

As $u > \beta_{\Phi}$, $\Phi(u) = +\infty$. By the assumption, we get $+\infty = \int_{\beta_{\Phi}}^{u} \Phi'_{+}(s) ds \le \int_{0}^{u} \Phi'_{+}(s) ds$, so $\Phi(u) = +\infty = \int_{\beta_{\Phi}}^{u} \Phi'_{+}(s) ds \le \int_{0}^{u} \Phi'_{+}(s) ds$.

In summary, for all $u \in \mathbb{R}$,

$$\Phi(u) = \int_0^{|u|} \Phi'_+(s) \, ds. \quad \bullet$$

REMARK 1.4 ([KR]). For an Orlicz function Φ , there exists a nonnegative, nondecreasing and right continuous function p on $[0, +\infty)$ such that for each $u \in \mathbb{R}$,

$$\Phi(u) = \int_0^{|u|} p(s) \, ds.$$

For simplicity, we rewrite $\Phi'_+(s)$ as p(s) and $\Phi'_-(s)$ as $p_-(s)$.

Obviously, we have

REMARK 1.5 ([Cs]). An interval (a, b) is SAI of Φ if and only if p(s) is constant on (a, b). DEFINITION 1.6 ([KR]). For $p: [0, +\infty) \to [0, +\infty]$ a nondecreasing function, set

$$p^{*}(t) := \sup\{s \ge 0 : p(s) \le t\} = \inf\{s \ge 0 : p(s) > t\},\$$

$$p^{*}_{-}(t) := \sup\{s \ge 0 : p(s) < t\} = \inf\{s \ge 0 : p(s) \ge t\},\$$

$$\Phi^{*}(v) := \int_{0}^{|v|} p^{*}(t) dt.$$

REMARK 1.7. If $p(s) \equiv 0$, $\Phi(u) \equiv 0$, $L_{\Phi} = L_0 := \{\text{all measurable functions}\}$, but for all $u \in L_{\Phi}$, $||u||_{(\Phi)} = \inf \{\lambda > 0 : \rho_{\Phi}(\frac{u}{\lambda}) \le 1\} = 0$, so $(L_{\Phi}, ||.||)$ is not a normed space. If $p^*(t) = \sup\{s \ge 0 : p(s) \le t\} = +\infty$, $\Phi^*(v) \equiv +\infty$, then $L_{\Phi^*} = \{\theta\}$, a trivial space. Also the converse is true, i.e. if $p \equiv +\infty$, $p^* \equiv 0$.

Hence we further assume $p \not\equiv 0$ and $p \not\equiv +\infty$, i.e. $\alpha_{\Phi} < +\infty$ and $\beta_{\Phi} > 0$.

DEFINITION 1.8 (Young's sense complementary function [KR]).

$$\Phi(v) := \sup\{u|v| - \Phi(u) : u \in \mathbb{R}\}.$$

2. Main results

LEMMA 2.1 ([KR]). If $p: [0, +\infty) \to [0, +\infty]$ is nondecreasing and right continuous, then $p^*: [0, +\infty) \to [0, +\infty]$ is nondecreasing and right continuous, and for all $\varepsilon > 0$,

- (1) $p^*(p(s)) \ge s;$ (2) $p^*(p(s)) \ge s;$ if
- (2) $p^*(p(s) + \varepsilon) > s$, if $p(s) < +\infty$;
- (3) $p^*(p(s) \varepsilon) \le s$, if $p(s) < +\infty$.

Proof. For $t \in [0, +\infty)$, first by the definition $p^*(t) = \sup\{s \ge 0 : p(s) \le t\} \ge 0$. Next for $0 \le t' < t''$, we see that

$$p^*(t') = \sup\{s \ge 0 : p(s) \le t'\} \le \sup\{s \ge 0 : p(s) \le t''\} = p^*(t'').$$

Suppose that for some $t \ge 0$, $p^*(t) < p^*(t_+) := \lim_{h \to 0, h > 0} p^*(t + h)$. Take $p^*(t) < s' < s'' < p^*(t_+)$. By $p^*(t_+) \le p^*(t + h)$ for all h > 0, from the definition of p^* and since p is nondecreasing, we see $p(s'') \le t + h$. Since h is arbitrary, $p(s'') \le t$, we obtain a contradiction: $t < p(s') \le p(s'') \le t$.

We see that $p^*(p(s)) = \sup\{s' \ge 0 : p(s') \le p(s)\} \ge s$, hence (1) is true.

For any $s \ge 0$, $\varepsilon > 0$, $p(s) < +\infty$, since p(s) is right continuous, there exists s' > s such that $p(s') < p(s) + \varepsilon$, so $p^*(p(s) + \varepsilon) = \sup\{s' \ge 0 : p(s') \le p(s) + \varepsilon\} \ge s' > s$, thus (2) holds.

For $p(s) < +\infty$, $p^*(p(s) - \varepsilon) = \sup\{s' \ge 0 : p(s') \le p(s) - \varepsilon\} = \inf\{s' \ge 0 : p(s') > p(s) - \varepsilon\} \le s$. Thus (3) is satisfied. \blacksquare

By the Levy Theorem and p^* being nondecreasing and nonnegative on $[0, +\infty)$, it is easy to see the following

REMARK 2.2 ([KR]). For p^* of Lemma 2.1, $\Phi^*(v) = \int_0^{|v|} p^*(t) dt$ is an Orlicz function, i.e. $\Phi^* : \mathbb{R} \to [0, +\infty]$ is even, convex and left continuous on $[0, +\infty)$ with $\Phi^*(0) = 0$.

PROPOSITION 2.3. For an Orlicz function Φ

$$\alpha_{\Phi^*} = p(0_-) := \lim_{s \to 0_+} p_-(s) = \lim_{s \to 0_+} p(s)$$

$$\beta_{\Phi^*} = p(+\infty) := \lim_{s \to +\infty} p_-(s) = \lim_{s \to +\infty} p(s).$$

Proof. Let $\alpha = \lim_{s \to 0_+} p(s) = \lim_{s \to 0, s \to 0} p(s)$, by the assumption $p \not\equiv \infty$, we get $\alpha < +\infty$. For any h > 0, there is $\delta > 0$ such that for all $0 \le s \le \delta$, $p(s) < \alpha + h$. From $\alpha_{\Phi^*} = \sup\{v \ge 0 : \Phi^*(v) = 0\} = \inf\{t \ge 0 : p^*(t) > 0\}$ and $p^*(\alpha + h) = \sup\{s \ge 0 : p(s) \le \alpha + h\} \ge \delta > 0$, we see that $\alpha_{\Phi^*} \le \alpha + h$. Since h > 0 is arbitrary, we deduce that $\alpha_{\Phi^*} \le \alpha$. If $\alpha = 0$, we get $\alpha_{\Phi^*} = \alpha$. If $\alpha > 0$, since p(s) is nondecreasing, we see that $p^*(t) = \sup\{s \ge 0 : p(s) \le t\} \le 0$ for all $0 \le t < \alpha$, moreover $\alpha_{\Phi^*} = \sup\{v \ge 0 : \Phi^*(v) = 0\} = \sup\{t \ge 0 : p^*(t) \le 0\} \ge t$. Since t is arbitrary, we deduce $\alpha_{\Phi^*} \ge \alpha$, hence $\alpha_{\Phi^*} = \alpha$.

Put $\beta = \lim_{s \to +\infty} p_-(s) = \lim_{s \to +\infty} p(s).$

A. Consider the case $\beta_{\Phi} < +\infty$ and $p(+\infty) = +\infty$. For all n > 0, $p^*(n) = \sup\{s \ge 0 : p(s) \le n\} \le \beta_{\Phi}$ and $\beta_{\Phi^*} = \sup\{v \ge 0 : \Phi^*(v) < +\infty\} = \sup\{t \ge 0 : p^*(t) < +\infty\} \ge n$. Since *n* is arbitrary, we get $\beta_{\Phi^*} = +\infty = p(+\infty)$.

B. The case $\beta_{\Phi} = +\infty$.

B-1. If $\beta = +\infty$, then for all n > 0, there exists $+\infty > s' > 0$ such that p(s') > n, so $p^*(n) = \sup\{s \ge 0 : p(s) \le n\} = \inf\{s \ge 0 : p(s) > n\} \le s' < +\infty$, moreover $\beta_{\Phi^*} = \sup\{t \ge 0 : p^*(t) < +\infty\} \ge n$. Since n is arbitrary, we get $\beta_{\Phi^*} \ge +\infty = \beta = p(+\infty)$.

B-2. If
$$\beta < +\infty$$
, for all $h > 0$, $p^*(\beta + h) = \sup\{s \ge 0 : p(s) \le \beta + h\} = +\infty$,

$$\beta_{\Phi^*} = \sup\{t \ge 0 : p^*(t) < +\infty\} = \inf\{t \ge 0 : p^*(t) = +\infty\} \le \beta + h$$

Since h is arbitrary, we get $\beta_{\Phi^*} \leq \beta$.

B-2-i. If $0 = \beta$, combining $\beta_{\Phi^*} \leq \beta$ and $\beta_{\Phi^*} \geq 0$, we get $\beta_{\Phi^*} = 0 = \beta = p(+\infty)$.

B-2-ii. If $0 < \beta$, for all h > 0 there exists $0 \le s' < +\infty$ such that $+\infty > p(s') > \beta - h$. Thus $p^*(\beta - h) = \inf\{s \ge 0 : p(s) > \beta - h\} \le s' < +\infty$. Moreover $\beta_{\Phi^*} = \sup\{t \ge 0 : p^*(t) < +\infty\} \ge \beta - h$. Since h is arbitrary, we get $\beta_{\Phi^*} \ge \beta$, and therefore $\beta_{\Phi^*} = \beta = p(+\infty)$.

LEMMA 2.4 ([KR]). If $p: [0, +\infty) \to [0, +\infty]$ is nondecreasing and right continuous, then $p^{**} = p$. Moreover $\Phi^{**} = \Phi$.

Proof. Let $s \in [0, +\infty)$. If $p(s) < +\infty$, $s < \beta_{\Phi}$, then for any $\varepsilon > 0$, by Lemma 2.1 $p^*[p(s) - \varepsilon] \leq s$, so

$$p^{**}(s) = \sup\{t \ge 0 : p^*(t) \le s\} \ge p(s) - \varepsilon.$$

Since ε is arbitrary, we get $p^{**}(s) \ge p(s)$.

On the other hand, by Lemma 2.1 $p^*[p(s) + \varepsilon] > s$, so

$$p^{**}(s) = \sup\{t \ge 0 : p^*(t) \le s\} = \inf\{t \ge 0 : p^*(t) > s\} \le p(s) + \varepsilon.$$

Since ε is arbitrary, we get $p^{**}(s) \le p(s)$. So $p^{**}(s) = p(s)$.

If $p(s) = +\infty$, then $s \ge \beta_{\Phi}$, for all n > 0, $p^*(n) = \sup\{s \ge 0 : p(s) \le n\} \le \beta_{\Phi} < +\infty$. $p^{**}(s) = \sup\{t \ge 0 : p^*(t) \le s\} \ge \sup\{t \ge 0 : p^*(t) \le \beta_{\Phi}\} \ge n$. Since *n* is arbitrary, we get $p^{**}(s) = +\infty = p(s)$.

LEMMA 2.5. Given a nonnegative and nondecreasing function p(s), p(s) is strictly increasing on $[0, +\infty)$ implies that p^* is continuous on $[0, +\infty)$, and p(s) is continuous on $[0, +\infty)$ implies that p^* is strictly increasing on $[0, p(+\infty)]$.

Proof. First, we prove that p(s) is strictly increasing implies that $p^*(t)$ is continuous.

Suppose that $p^*(t)$ is not continuous. Since $p^*(t)$ is right continuous, we have $p^*(t_-) < p^*(t)$ for some $t \in (0, +\infty)$. Take $s', s'' \in \mathbb{R}$ such that $p^*(t_-) < s' < s'' < p^*(t)$. By Lemma 2.4, $p(s) = p^{**}(s)$ and by Lemma 2.1, we see that for all t' < t, there exists $\varepsilon' > 0$ such that $p(s') = p^{**}(s') = p^{**}(p^*(t') + \varepsilon') > t'$. By the arbitrariness of $t', p(s') \ge t$. On the other hand, by Lemma 2.1, $p(s'') = p^{**}(s'') = \inf\{t \ge 0 : p^*(t) > s''\} \le t$, so $p(s'') \le t \le p(s')$, and since p is nondecreasing, $p(s'') \ge p(s')$, hence p(s'') = p(s'). This is a contradiction to p(s') < p(s'').

Secondly, we prove that p(s) is continuous implies $p^*(t)$ is strictly increasing. Suppose that for some $t', t'' \in (0, p(+\infty)], t' < t''$ with $p^*(t') = p^*(t'') := s$. Then

$$p(s) = p^{**}(s) = \sup\{t : p^*(t) \le s\} \ge t'' > t'.$$

On the other hand, for all s' < s, since $p^*(t)$ is nondecreasing,

$$p(s') = p^{**}(s') = \sup\{t \ge 0 : p^*(t) \le s'\} = \inf\{t \ge 0 : p^*(t) > s'\} \le t' < t'',$$

so $p(s_{-}) = \lim_{s' \to s_{-}} p(s') \le t' < t'' \le p(s)$, a contradiction to the continuity of p.

LEMMA 2.6. Given a nonnegative and nondecreasing function p, for any $\varepsilon > 0$, if

$$(1-\varepsilon)p(s) \le p^{\varepsilon}(s) \le (1+\varepsilon)p(s) \quad \forall s \ge 0,$$

then

$$p^*\left(\frac{t}{1+\varepsilon}\right) \le p^{\varepsilon^*}(t) \le p^*\left(\frac{t}{1-\varepsilon}\right) \quad \forall t \ge 0,$$
$$(1+\varepsilon)\Phi^*\left(\frac{v}{1+\varepsilon}\right) \le \Phi^{\varepsilon^*}(v) \le (1-\varepsilon)\Phi^*\left(\frac{v}{1-\varepsilon}\right) \quad \forall v \ge 0.$$

Proof. Since $(1 - \varepsilon)p(s) \le p^{\varepsilon}(s) \le (1 + \varepsilon)p(s)$, we get

$$p^{\varepsilon^*}(t) = \sup\{s \ge 0 : p^{\varepsilon}(s) \le t\} \le \sup\{s \ge 0 : (1-\varepsilon)p(s) \le t\}$$
$$= \sup\left\{s \ge 0 : p(s) \le \frac{t}{1-\varepsilon}\right\} = p^*\left(\frac{t}{1-\varepsilon}\right)$$

and

$$p^{\varepsilon^*}(t) = \sup\{s \ge 0 : p^{\varepsilon}(s) \le t\} \ge \sup\{s \ge 0 : (1+\varepsilon)p(s) \le t\}$$
$$= \sup\left\{s \ge 0 : p(s) \le \frac{t}{1+\varepsilon}\right\} = p^*\left(\frac{t}{1+\varepsilon}\right)$$

Thus $p^*\left(\frac{t}{1+\varepsilon}\right) \le p^{\varepsilon*}(t) \le p^*\left(\frac{t}{1-\varepsilon}\right)$. Hence

$$\begin{split} \Phi^{\varepsilon*}(v) &= \int_0^{|v|} p^{\varepsilon*}(t) \, dt \leq \int_0^{|v|} p^* \Big(\frac{t}{1-\varepsilon}\Big) \, dt \\ &= (1-\varepsilon) \int_0^{|v|} p^* \Big(\frac{t}{1-\varepsilon}\Big) \, d\frac{t}{1-\varepsilon} = (1-\varepsilon) \Phi^* \Big(\frac{v}{1-\varepsilon}\Big) \\ \Phi^{\varepsilon*}(v) &= \int_0^{|v|} p^{\varepsilon*}(t) \, dt \geq \int_0^{|v|} p^* \Big(\frac{t}{1+\varepsilon}\Big) \, dt \\ &= (1+\varepsilon) \int_0^{|v|} p^* \Big(\frac{t}{1+\varepsilon}\Big) \, d\frac{t}{1+\varepsilon} = (1+\varepsilon) \Phi^* \Big(\frac{v}{1+\varepsilon}\Big), \end{split}$$

 \mathbf{SO}

$$(1+\varepsilon)\Phi^*\left(\frac{v}{1+\varepsilon}\right) \le \Phi^{\varepsilon*}(v) \le (1-\varepsilon)\Phi^*\left(\frac{v}{1-\varepsilon}\right).$$

LEMMA 2.7 ([Cs]). Given an Orlicz function Φ , for any $\varepsilon > 0$, there exists a strictly convex Orlicz function Φ^{ε} with $p^{\varepsilon}(s)$ strictly increasing such that $\alpha_{\Phi^{\varepsilon}} = 0$, $p^{\varepsilon}(0) = 0$ and

$$(1-\varepsilon)p(s) - \varepsilon \le p^{\varepsilon}(s) \le (1+\varepsilon)p(s) + \varepsilon \quad \forall s \ge 0$$

$$(1-\varepsilon)\Phi(u) - \varepsilon \le \Phi^{\varepsilon}(u) \le (1+\varepsilon)\Phi(u) + \varepsilon \quad \forall u \in \mathbb{R}$$

and
$$(1+\varepsilon)\Phi^*\left(\frac{v}{1+\varepsilon}\right) - \varepsilon \le \Phi^{\varepsilon*}(v) \le (1-\varepsilon)\Phi^*\left(\frac{v}{1-\varepsilon}\right) + \varepsilon \quad \forall v \in \mathbb{R}.$$

If $\alpha_{\Phi} = 0$ and p(0) = 0

$$\begin{aligned} (1-\varepsilon)p(s) &\leq p^{\varepsilon}(s) \leq (1+\varepsilon)p(s) \quad \forall s \geq 0\\ (1-\varepsilon)\Phi(u) &\leq \Phi^{\varepsilon}(u) \leq (1+\varepsilon)\Phi(u) \quad \forall u \in \mathbb{R} \end{aligned}$$

and
$$(1+\varepsilon)\Phi^*\left(\frac{v}{1+\varepsilon}\right) \leq \Phi^{\varepsilon*}(v) \leq (1-\varepsilon)\Phi^*\left(\frac{v}{1-\varepsilon}\right) \quad \forall v \in \mathbb{R} \end{aligned}$$

Proof.

Case 1. Assume that $\alpha_{\Phi} = 0$ and p(0) = 0.

A. For (a_1, b_1) :

A-I. If $p(a_1) = p(b_1)$, by the right continuity of p, take $b'_1 > b_1$ such that $p(b_1) < p(b'_1) < (1 + \varepsilon)p(b_1)$ and take $a'_1 = a_1$, define $p^{\varepsilon}(a'_1) = p(a_1)$, $p^{\varepsilon}(b'_1) = p(b'_1)$. For $s \in (a'_1, b'_1)$, $p^{\varepsilon}(s)$ is defined as a line connecting $(a'_1, p(a'_1))$ and $(b'_1, p(b'_1))$.

A-II. If $p(a_1) < p(b_1)$. Take $a'_1 = a_1$ and $b'_1 = b_1$, define $p^{\varepsilon}(a'_1) = p(a_1)$, $c = \min\{p(b'_1), (1+\varepsilon)p(a_1)\}$ and $p^{\varepsilon}(s)$ is defined as a line that connects $(a'_1, p(a'_1))$ and (b'_1, c) for $s \in (a'_1, b'_1)$.

Thus we see that $p^{\varepsilon}(s)$ is nonnegative and strictly increasing on (a'_1, b'_1) and for all $s \in (a'_1, b'_1), (1-\varepsilon)p(s) \leq \frac{p(s)}{(1+\varepsilon)} \leq \frac{(1+\varepsilon)}{(1+\varepsilon)}p(a_1) = p(a_1) \leq p^{\varepsilon}(s) \leq (1+\varepsilon)p(a_1) \leq (1+\varepsilon)p(s)$. B. For (a_2, b_2) :

B-I. In the case of $S_2 = (a_2, b_2) \cap [a'_1, b'_1) = \emptyset$, repeating arguments as in Case A, we define $p^{\varepsilon}(s)$.

B-II. In the case of $S_2 = (a_2, b_2) \cap [a'_1, b'_1) \neq \emptyset$, we see that $a_2 < a'_1 < b_2$ or $a_2 < b'_1 < b_2$. B-II-1. Since $(a_1, b_1) \cap (a_2, b_2) = \emptyset$ and $a_1 = a'_1$, the inequality $a_2 < a'_1 < b_2$ is impossible. B-II-2. If $b'_1 < b_2$, take $a'_2 = b'_1$. Repeating the arguments of Case A, we define $p^{\varepsilon}(s)$.

C. For (a_3, b_3) :

C-I. In the case of $S_3 = (a_3, b_3) \cap ([a'_1, b'_1) \cup [a'_2, b'_2)) = \emptyset$, repeating the arguments of Case A, we define $p^{\varepsilon}(s)$.

C-II. In the case of $S_3 = (a_3, b_3) \cap ([a'_1, b'_1) \cup [a'_2, b'_2)) \neq \emptyset$.

C-II-1. If $(a_3, b_3) \subseteq ([a'_1, b'_1) \cup [a'_2, b'_2)), p^{\varepsilon}(s)$ has been well defined.

C-II-2. If $(a_3, b_3) \not\subseteq ([a'_1, b'_1) \cup [a'_2, b'_2))$, combining that $(a_1, b_1), (a_2, b_2)$ and (a_3, b_3) are mutually disjoint, and (a'_1, b'_1) and (a'_2, b'_2) are disjoint, we see that there exists one and only one *i* such that $a'_i < a_3 < b'_i < b_3$. Repeating arguments of Case B-II-2, we define $p^{\varepsilon}(s)$.

Assume that for (a_k, b_k) , there exist mutually disjoint $\{(a'_i, b'_i)\}_{i=1}^k$ with $\bigcup_{i=1}^k (a_i, b_i) \subseteq \bigcup_{i=1}^k (a'_i, b'_i)$ such that $p^{\varepsilon}(s)$ is positive and strictly increasing with

$$(1-\varepsilon)p(s) \le p^{\varepsilon}(s) \le (1+\varepsilon)p(s) \quad \forall s \in \bigcup_{i=1}^{k} (a'_i, b'_i).$$

For (a_{k+1}, b_{k+1}) , we see that

D-I. In the case of $S_{k+1} = (a_{k+1}, b_{k+1}) \cap (\bigcup_{i=1}^{k} [a'_i, b'_i)) = \emptyset$, repeating the arguments of Case A, we define $p^{\varepsilon}(s)$.

D-II. In the case of $S_{k+1} = (a_{k+1}, b_{k+1}) \cap (\bigcup_{i=1}^{k} [a'_i, b'_i)) \neq \emptyset$. D-II-1. If $(a_{k+1}, b_{k+1}) \subseteq (\bigcup_{i=1}^{k} [a'_i, b'_i))$, $p^{\varepsilon}(s)$ has been defined previously. D-II-2. If $(a_{k+1}, b_{k+1}) \not\subseteq (\bigcup_{i=1}^{k} [a'_i, b'_i))$, combining that $\{(a_i, b_i)\}_{i=1}^k$ are mutually disjoint and $\{(a'_i, b'_i)\}_{i=1}^k$ are mutually disjoint, we see that there exists one and only one i such that $a'_i < a_{k+1} < b'_i < b_{k+1}$. Repeating arguments of Case B-II-2, we define $p^{\varepsilon}(s)$. Hence $p^{\varepsilon}(s)$ is positive and strictly increasing with

$$(1-\varepsilon)p(s) \le p^{\varepsilon}(s) \le (1+\varepsilon)p(s) \quad \forall s \in \bigcup_{i=1}^{k+1} (a'_i, b'_i).$$

By induction, we define $p^{\varepsilon}(s)$ on $\bigcup_{i=1}^{\infty} (a_i, b_i)$ such that $p^{\varepsilon}(s)$ is positive and strictly increasing with

$$(1-\varepsilon)p(s) \le p^{\varepsilon}(s) \le (1+\varepsilon)p(s) \quad \forall s \ge 0.$$

In the case of $(a_0, b_0) = (a, +\infty) \neq \emptyset$, if $+\infty > p(a) > 0$, define

$$p^{\varepsilon}(s) = \begin{cases} (1 + (1 - \frac{1}{2^n})\varepsilon)p(a), & s = a + n, \ n = 0, 1, 2, \dots \\ \text{connected by line,} & s \in (a + n, a + n + 1), \ n = 0, 1, 2, \dots \end{cases}$$

then for $s \in (a, +\infty)$, there exists n such that for $s \in [a + n, a + n + 1)$, we have

$$p(s) \le \left(1 + \left(1 - \frac{1}{2^n}\right)\varepsilon\right)p(a) \le p^\varepsilon(s)$$
$$\le \left(1 + \left(1 - \frac{1}{2^{n+1}}\right)\varepsilon\right)p(a) \le (1 + \varepsilon)p(a) = (1 + \varepsilon)p(s).$$

If $p(a) = +\infty$, we define $p^{\varepsilon}(s) = p(s) = +\infty$, $s \in [a_0, +\infty)$.

If p(a) = 0, by the monotonicity, we see that $(a_0, +\infty) = (0, +\infty)$, then $p \equiv 0$, which contradicts the assumption.

Hence we define $p^{\varepsilon}(s)$ well as $s \in \bigcup_{i=0}^{\infty} (a_i, b_i)$, and define $p^{\varepsilon}(s) = p(s)$ as $s \notin \bigcup_{i=0}^{\infty} (a_i, b_i)$. Then for any $\varepsilon > 0$, there exists a strictly convex Orlicz function Φ^{ε} such that $p^{\varepsilon}(s)$ is strictly increasing with $\alpha_{\Phi^{\varepsilon}} = 0$, $p^{\varepsilon}(0) = 0$ and

$$\begin{split} (1-\varepsilon)p(s) &\leq p^{\varepsilon}(s) \leq (1+\varepsilon)p(s) \quad \forall s \geq 0\\ (1-\varepsilon)\Phi(u) &\leq \Phi^{\varepsilon}(u) \leq (1+\varepsilon)\Phi(u) \quad \forall u \in \mathbb{R}\\ \text{and} \quad (1+\varepsilon)\Phi^*\Big(\frac{v}{1+\varepsilon}\Big) \leq \Phi^{\varepsilon*}(v) \leq (1-\varepsilon)\Phi^*\Big(\frac{v}{1-\varepsilon}\Big) \quad \forall v \in \mathbb{R}. \end{split}$$

Case 2. $\alpha_{\Phi} > 0$ or p(0) > 0.

2-I. If $\alpha_{\Phi} > 0$, then without loss of generality, assume p(s) is strictly increasing for $s > \alpha_{\Phi}$. We can make the arguments in Case 1 once more if p(s) is not strictly increasing for $s > \alpha_{\Phi}$. By the assumption $\alpha_{\Phi} < +\infty$, since p is right continuous, there exists a number α , $\alpha > \alpha_{\Phi} > 0$ such that $\alpha c \leq \varepsilon$ for some $c \leq \min\{p(\alpha), \varepsilon\}$. Define $p^{\varepsilon}(s) = \frac{c}{\alpha}s$ as $s \leq \alpha$ and $p^{\varepsilon}(s) = p(s)$ as $s > \alpha$. Then $p^{\varepsilon}(s)$ is strictly increasing with $\alpha_{\Phi^{\varepsilon}} = 0$, $p^{\varepsilon}(0) = 0$. And as $0 \leq t \leq c$, $p^{\varepsilon*}(t) = \sup\{s \geq 0 : p^{\varepsilon}(s) \leq t\} = \sup\{s \geq 0 : p^{\varepsilon}(s) \leq t\} = p^{*}(t)$. Thus $\alpha_{\Phi^{*}} = 0$, and

$$\Phi^{\varepsilon}(u) \le \Phi^{\varepsilon}(\alpha) = \frac{c}{\alpha} \frac{\alpha^2}{2} = \frac{\alpha c}{2} \le \frac{\varepsilon}{2}, \quad 0 \le u \le \alpha,$$

$$\Phi^{\varepsilon^*}(v) \le \Phi^{\varepsilon^*}(c) = \frac{\alpha}{c} \frac{c^2}{2} = \frac{\alpha c}{2} \le \frac{\varepsilon}{2}, \quad 0 \le v \le c.$$

In summary, $p^{\varepsilon}(s)$ is strictly increasing with $\alpha_{\Phi^{\varepsilon}} = 0$, $p^{\varepsilon}(0) = 0$ and

$$(1-\varepsilon)p(s) - \varepsilon \le p^{\varepsilon}(s) \le (1+\varepsilon)p(s) + \varepsilon \quad \forall s \ge 0$$

$$(1-\varepsilon)\Phi(u) - \varepsilon \le \Phi^{\varepsilon}(u) \le (1+\varepsilon)\Phi(u) + \varepsilon \quad \forall u \in \mathbb{R}$$

and
$$(1+\varepsilon)\Phi^*\left(\frac{v}{1+\varepsilon}\right) - \varepsilon \le \Phi^{\varepsilon*}(v) \le (1-\varepsilon)\Phi^*\left(\frac{v}{1-\varepsilon}\right) + \varepsilon \quad \forall v \in \mathbb{R}.$$

2-II. If p(0) > 0 then since p is nondecreasing, $\alpha_{\Phi} = 0$. Since $\beta_{\Phi} > 0$, take $\beta_{\Phi} > \alpha > \alpha_{\Phi} = 0$ such that $\alpha p(\alpha) \leq \varepsilon$. Repeating the arguments of Case 2-I, we get $p^{\varepsilon}(s)$ of 2-I.

THEOREM 2.8 (Young's Inequality [KR]). If Φ is an Orlicz function, then for all $u, v \in \mathbb{R}$,

$$\Phi(u) + \Phi^*(v) \ge |u| \, |v| \ge uv.$$

Proof. Let $u, v \in \mathbb{R}$.

A. $\Phi : \mathbb{R} \to [0, +\infty]$ and p(s) is continuous and strictly increasing on $[0, +\infty)$. Let $t = p(s) \leftrightarrow s = p^{-1}(t)$, then $p : [0, +\infty) \to [0, +\infty]$, $s = 0 \leftrightarrow t = p(0) := \alpha^*$ and $s = u \leftrightarrow t = p(u)$. Therefore $p^{-1} : p([0, +\infty)) \to [0, +\infty)$, i.e. $p^{-1} : [p(0), p(+\infty)) \to [0, +\infty)$. Then $p^* : [0, +\infty) \to [0, +\infty]$, and for $0 \le t < \alpha^*$, $p^*(t) = \sup\{s \ge 0 : p(s) \le t\} \le \sup\{s \ge 0 : p(s) < \alpha^*\} = 0$. Hence for all $u, v \in \mathbb{R}$

$$\int_{0}^{|u|} p(s) \, ds = sp(s)|^{|u|} - \int_{0}^{|u|} s \, dp(s) = |u|p(u) - \int_{\alpha^{*}}^{p(u)} p^{-1}(t) \, dt$$
$$\int_{0}^{|v|} p^{*}(t) \, dt = \int_{0}^{\alpha^{*}} p^{*}(t) \, dt + \int_{\alpha^{*}}^{|v|} p^{*}(t) \, dt = \int_{\alpha^{*}}^{|v|} p^{-1}(t) \, dt$$
$$\Phi(u) + \Phi^{*}(v) = \int_{0}^{|u|} p(s) \, ds + \int_{0}^{|v|} p^{*}(t) \, dt$$
$$= |u|p(u) - \int_{\alpha^{*}}^{p(u)} p^{-1}(t) \, dt + \int_{\alpha^{*}}^{|v|} p^{-1}(t) \, dt = |u|p(u) + \int_{p(u)}^{|v|} p^{-1}(t) \, dt$$
$$= |u||v| + |u|(p(u) - |v|) + \int_{p(u)}^{|v|} p^{-1}(t) \, dt$$

If |v| = p(u),

$$\Phi(u) + \Phi^*(v) = |u| |v|.$$

If |v| > p(u),

$$\Phi(u) + \Phi^*(v) = |u| |v| + |u|(p(u) - |v|) + \int_{p(u)}^{|v|} p^{-1}(t) dt$$

$$\geq |u| |v| + |u|(p(u) - |v|) + p^{-1}(p(u))(|v| - p(u)) = |u| |v|$$

If |v| < p(u),

$$\Phi(u) + \Phi^*(v) = |u| |v| + |u|(p(u) - |v|) + \int_{p(u)}^{|v|} p^{-1}(t) dt$$

= $|u| |v| + |u|(p(u) - |v|) - \int_{|v|}^{p(u)} p^{-1}(t) dt$
 $\geq |u| |v| + |u|(p(u) - |v|) - p^{-1}(p(u))(p(u) - |v|) = |u| |v|.$

In summary, for all $u, v \in \mathbb{R}$

$$\Phi(u) + \Phi^*(v) = |u| |v| \ge uv.$$

B. For an Orlicz function Φ , by Lemma 2.7, we get a strictly convex function Φ^{ε} with a strictly increasing p^{ε} . By Lemma 2.5, $p^{\varepsilon*}$ is continuous, and by Lemma 2.7 once more we get an Orlicz function $\Phi^{\varepsilon*\varepsilon}$ with a continuous strictly increasing $p^{\varepsilon*\varepsilon}$. Hence for all $u, v \in \mathbb{R}$, let $u' = u(1 - \varepsilon)$, $v' = v(1 - \varepsilon)$, by the result A, we get

$$\Phi^{\varepsilon*\varepsilon}(v') + \Phi^{\varepsilon*\varepsilon*}(u') \ge |u'| |v'|.$$

By Lemmas 2.4, 2.5, 2.7 and 2.6, we get

$$\Phi^{\varepsilon*\varepsilon}(v') \le (1+\varepsilon)\Phi^{\varepsilon*}(v') + \varepsilon \le (1+\varepsilon)(1-\varepsilon)\Phi^*\left(\frac{v'}{1-\varepsilon}\right) + 2\varepsilon$$

and

$$\Phi^{\varepsilon*\varepsilon*}(u') \le (1-\varepsilon)\Phi^{\varepsilon**}\left(\frac{u'}{1-\varepsilon}\right) = (1-\varepsilon)\Phi^{\varepsilon}\left(\frac{u'}{1-\varepsilon}\right) \le (1-\varepsilon)(1+\varepsilon)\Phi\left(\frac{u'}{1-\varepsilon}\right) + \varepsilon.$$

Hence

$$(1 - \varepsilon^2)\Phi(u) + (1 - \varepsilon^2)\Phi^*(v) + 3\varepsilon = (1 - \varepsilon^2)\Phi\left(\frac{u'}{1 - \varepsilon}\right) + (1 - \varepsilon^2)\Phi^*\left(\frac{v'}{1 - \varepsilon}\right) + 3\varepsilon$$
$$\ge |u'| |v'| = (1 - \varepsilon)^2 |u| |v|,$$

 \mathbf{SO}

$$(1 - \varepsilon^2)\Phi(u) + (1 - \varepsilon^2)\Phi^*(v) + 3\varepsilon \ge (1 - \varepsilon)^2 |u| |v|.$$

Letting $\varepsilon \to 0$, we have

$$\Phi(u) + \Phi^*(v) \ge |u| \, |v| \ge uv. \blacksquare$$

PROPOSITION 2.9. Given an Orlicz function Φ , the following are equivalent: for $u, v \in \mathbb{R}$

(1) $|v| = p(u) \text{ or } |u| = p^*(v);$ (2) $|v| \in [p_-(u), p(u)];$ (3) $|u| \in [p^*_-(v), p^*(v)].$

Proof. $(1) \Longrightarrow (2)$. Otherwise,

1-I.
$$|v| = p(u)$$
 or $|u| = p^*(v)$, $|v| < p_-(u)$ or

1-II.
$$|v| = p(u)$$
 or $|u| = p^*(v), |v| > p(u)$.

- 1-I-i. $|v| = p(u), |v| < p_{-}(u)$. We deduce $|v| < p_{-}(u) \le p(u)$, a contradiction with |v| = p(u).
- 1-I-ii. $|u| = p^*(v), |v| < p_-(u)$. Since $p_-(u) = \sup\{t \ge 0 : p^*(t) < |u|\} = \inf\{t \ge 0 : p^*(t) \ge |u|\}$, we deduce that $p^*(v) < |u|$, a contradiction with $|u| = p^*(v)$.
- 1-II-i. |v| = p(u), |v| > p(u). A contradiction.
- 1-II-ii. $|u| = p^*(v), |v| > p(u)$. By Lemma 2.1, $p^*(v) = p^*(p(u) + \varepsilon) > |u|$, a contradiction with $|u| = p^*(v)$.

(2)
$$\Longrightarrow$$
 (1). Otherwise, $|v| \in [p_-(u), p(u)], |v| \neq p(u), |u| \neq p^*(v)$.

2-I.
$$|v| \in [p_{-}(u), p(u)], |v| \neq p(u), |u| > p^{*}(v).$$

2-I-i. $|v| \in [p_{-}(u), p(u)], |v| > p(u), |u| > p^{*}(v). v \le p(u)$ is contradictory to |v| > p(u).

2-I-ii. $|v| \in [p_-(u), p(u)], |v| < p(u), |u| > p^*(v)$. From $p_-(u) = p_-(p^*(v) + \varepsilon)$, since p^* is right continuous, there exists v' > |v| such that $p^*(v') < p^*(v) + \varepsilon$, we deduce $p_-(u) = p_-(p^*(v) + \varepsilon) = \sup\{t \ge 0 : p^*(t) < p^*(v) + \varepsilon\} \ge v' > |v|$, a contradiction to $|v| \ge p_-(u)$).

- 2-II. $|v| \in [p_{-}(u), p(u)], |v| \neq p(u), |u| < p^{*}(v).$
- 2-II-i. $|v| \in [p_{-}(u), p(u)], |v| > p(u), |u| < p^{*}(v), |v| \le p(u)$ is contradictory to |v| > p(u).
- 2-II-ii. $|v| \in [p_{-}(u), p(u)], |v| < p(u), |u| < p^{*}(v)$. By Lemma 2.1, we deduce $p(u) = p(p^{*}(v) \varepsilon) \le |v|$, a contradiction to |v| < p(u).

In summary, $(1) \iff (2)$.

Replacing Φ by Ψ^* and u by v, using Lemma 2.4, repeating the arguments of $(1) \Leftrightarrow (2)$, we get $(1) \Leftrightarrow (3)$.

THEOREM 2.10 (Young's Equality [KR]). If Φ is an Orlicz function, then for all $u, v \in \mathbb{R}$

$$\Phi(u) + \Phi^*(v) = uv \quad \Longleftrightarrow \quad |v| = p(u) \text{ or } |u| = p^*(v).$$

Proof. Necessity. Set $f : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$, $f(u,v) := \Phi(u) + \Phi^*(v) - uv$. By Theorem 2.8, it follows that $f(u,v) \ge 0$. If $f(u_0,v_0) = 0$ then $f(u_0,v_0) = \min f(u,v)$, $\frac{\partial f}{\partial u_-}(u_0,v_0) := \lim_{u \to u_0^-} \frac{f(u,v_0) - f(u_0,v_0)}{u - u_0} \le 0$ and $\frac{\partial f}{\partial u_+}(u_0,v_0) := \lim_{u \to u_0^+} \frac{f(u,v_0) - f(u_0,v_0)}{u - u_0} \ge 0$. We get

$$p_{-}(u_0) - v_0 \le 0, \qquad p(u_0) - v_0 \ge 0,$$

 \mathbf{SO}

$$p_-(u_0) \le v_0, \qquad p(u_0) \ge v_0$$

i.e. by Proposition 2.9

$$p_{-}(u_0) \le v_0 \le p(u_0) \iff |v_0| = p(u_0) \text{ or } |u_0| = p^*(v_0).$$

Sufficiency. For $u, v \in \mathbb{R}$, |v| = p(u) or $|u| = p^*(v)$. We shall discuss two cases: A. |v| = p(u) and B. $|u| = p^*(v)$.

A. |v| = p(u), then $p(u) = |v| < +\infty$.

A-1. If $|u| < \beta_{\Phi}$, $p(u) < +\infty$, for ε small enough $\frac{(1+\varepsilon)u}{1-\varepsilon} < \beta_{\Phi}$, by Lemmas 2.6, 2.4 and 2.7

$$p^{\varepsilon * \varepsilon *}((1+\varepsilon)u) \le p^{\varepsilon * *} \left(\frac{(1+\varepsilon)u}{1-\varepsilon}\right)$$
$$= p^{\varepsilon} \left(\frac{(1+\varepsilon)u}{1-\varepsilon}\right) \le (1+\varepsilon)p\left(\frac{(1+\varepsilon)u}{1-\varepsilon}\right) + \varepsilon < +\infty,$$

we get $p^{\varepsilon * \varepsilon *}((1 + \varepsilon)u) \in \mathbb{R}$. By Theorem 2.8-A

$$(1+\varepsilon)|u|p^{\varepsilon*\varepsilon*}((1+\varepsilon)u) = \Phi^{\varepsilon*\varepsilon*}((1+\varepsilon)u) + \Phi^{\varepsilon*\varepsilon}(p^{\varepsilon*\varepsilon*}((1+\varepsilon)u)).$$

By Lemmas 2.6, 2.4 and 2.7 again

$$\Phi^{\varepsilon*\varepsilon*}((1+\varepsilon)u) \ge (1+\varepsilon)\Phi^{\varepsilon**}\left[\frac{(1+\varepsilon)u}{1+\varepsilon}\right](1+\varepsilon)\Phi^{\varepsilon}(u) \ge (1-\varepsilon^2)\Phi(u) - \varepsilon$$

and

$$\begin{split} &\Phi^{\varepsilon*\varepsilon} \left(p^{\varepsilon*\varepsilon*} ((1+\varepsilon)u) \right) \\ &\geq (1-\varepsilon) \Phi^{\varepsilon*} \left(p^{\varepsilon*\varepsilon*} ((1+\varepsilon)u) \right) \geq (1-\varepsilon) (1+\varepsilon) \Phi^* \left[\frac{p^{\varepsilon*\varepsilon*} ((1+\varepsilon)u)}{1+\varepsilon} \right] - \varepsilon \\ &\geq (1-\varepsilon^2) \Phi^* \left[\frac{p^{\varepsilon**}(u)}{1+\varepsilon} \right] - \varepsilon = (1-\varepsilon^2) \Phi^* \left[\frac{p^{\varepsilon}(u)}{1+\varepsilon} \right] - \varepsilon \\ &\geq (1-\varepsilon^2) \Phi^* \left[\frac{(1-\varepsilon)p(u)-\varepsilon}{1+\varepsilon} \right] - \varepsilon. \end{split}$$

Hence,

$$(1+\varepsilon)|u|\left((1+\varepsilon)p\left[\frac{(1+\varepsilon)u}{1-\varepsilon}\right]+\varepsilon\right)$$

$$\geq (1-\varepsilon^2)\Phi(u) + (1-\varepsilon^2)\Phi^*\left[\frac{(1-\varepsilon)p(u)-\varepsilon}{1+\varepsilon}\right] - 2\varepsilon.$$

By the left continuity of Φ^* and the right continuity of p and $\beta_{\Phi^*} > 0$, we get

 $|u|p(u) \ge \Phi(u) + \Phi^*[p(u)].$

By Theorem 2.8, we see that for $u \in \mathbb{R}$, $|u| < \beta_{\Phi}$

$$|u|p(u) = \Phi(u) + \Phi^*[p(u)].$$

A-2. For $u, v \in \mathbb{R}$, $|u| = \beta_{\Phi} < +\infty$. By the right continuity of p(s), we get $p(u) = p(\beta_{\Phi}) = \lim_{s' \to \beta_{\Phi+}} p(s) = +\infty$. By the assumption $\beta_{\Phi} > 0$, we see that $|u|p(u) = +\infty$. Also by the assumption $\alpha_{\Phi^*} < +\infty$, $\Phi^*[p(\beta_{\Phi})] = \Phi^*[+\infty] = +\infty$. So $\Phi(\beta_{\Phi}) + \Phi^*[p(\beta_{\Phi})] \ge \Phi^*[p(\beta_{\Phi})] = +\infty$, thus for $|u| = \beta_{\Phi} < +\infty$ we have

$$|u|p(u) = \Phi(u) + \Phi^*[p(u)].$$

A-3. For $u, v \in \mathbb{R}$, $|u| > \beta_{\Phi} < +\infty$. Then $|u|p(u) = +\infty$ and $\Phi(u) \ge \int_{\beta_{\Phi}}^{|u|} p(s) ds = +\infty$, so

$$|u|p(u) = \Phi(u) + \Phi^*[p(u)].$$

Summarizing for $u \in \mathbb{R}$,

$$|u|p(u) = \Phi(u) + \Phi^*[p(u)].$$

B. $|u| = p^*(v)$. By Lemma 2.4, exchanging positions of v and u, Φ and Φ^* (p and p^*), and repeating the arguments of A, we get for $v \in \mathbb{R}$,

$$|v|p^*(v) = \Phi(p^*(v)) + \Phi^*(v).$$

THEOREM 2.11 ([KR]). Given an Orlicz function Φ , then for all $v \in \mathbb{R}$

$$\Phi^*(v) = \Phi(v).$$

Proof. For all $u, v \in \mathbb{R}$. By Theorem 2.8,

$$\Phi(u) + \Phi^*(v) \ge u|v|, \quad \text{ i.e. } \quad \Phi^*(v) \ge u|v| - \Phi(u),$$

so for all $v \in \mathbb{R}$

$$\Phi^*(v) \ge \sup\{u|v| - \Phi(u) : u \in \mathbb{R}\} = \Phi(v).$$

On the other hand, if $0 \le p^*(v) < +\infty$, by Theorem 2.10,

$$\Phi^*(v) = p^*(v)|v| - \Phi(p^*(v)) \le \sup\{u|v| - \Phi(u) : u \in \mathbb{R}\} = \tilde{\Phi}(v).$$

if $p^*(v) = +\infty$, $|v| \ge \beta_{\Phi^*} > 0$, $|v|p^*(v) = +\infty$, by the assumption $\alpha_{\Phi} < +\infty$ and $\Phi(p^*(v)) = \Phi(+\infty) = +\infty$, so

$$|v|p^{*}(v) = \Phi^{*}(v) + \Phi(p^{*}(v)),$$

thus

$$\Phi^*(v) = \sup\{u|v| - \Phi(u) : u \in \mathbb{R}\} = \tilde{\Phi}(v). \blacksquare$$

By Remark 2.2, we get

REMARK 2.12 ([KR]). Φ is an Orlicz function, i.e. $\Phi : \mathbb{R} \to [0, +\infty]$ is even, convex and left continuous on $[0, +\infty)$ with $\tilde{\Phi}(0) = 0$.

By Remark 2.12 and Lemma 1.3, we have

PROPOSITION 2.13 ([KR]). For an Orlicz function Φ , $\tilde{\tilde{\Phi}} = \Phi$.

Acknowledgments. This work was partially supported by NSFC grant No. 11771273.

References

- [BB] E. Beckenbach, R. Bellman, *Inequalities*, Ergeb. Math. Grenzgeb. (2) 30, Springer, Berlin, 1961.
- [BF] S. Biagini, M. Frittelli, A unified framework for utility maximization problems: an Orlicz space approach, Ann. Appl. Probab. 18 (2008), 929–969.
- [Bz] Z. Birnbaum, An inequality for Mill's ratio, Ann. Math. Statistics 13 (1942), 245–246.
- [BO] Z. Birnbaum, W. Orlicz, Über die Verallgemeinerung des Begrifffes der zueinander konjugierten Potenzen, Studia Math. 3 (1931), 1–67.
- [BDP] I. Budimir, S. Dragomir, J. Pečarić, Further reverse results for Jensen's discrete inequality and applications in information theory, JIPAM. J. Inequal. Pure Appl. Math. 2 (2001), art. 5.
- [Cs] S. Chen, Geometry of Orlicz spaces, Dissertationes Math. (Rozprawy Mat.) 356 (1996).
- [DU] J. Diestel, J. J. Uhl, Jr., Vector Measures, with a foreword by B. J. Pettis, Mathematical Surveys 15, Amer. Math. Soc., Providence, RI, 1977.
- [FHS] P. Foralewski, H. Hudzik, L. Szymaszkiewicz, Local rotundity structure of generalized Orlicz-Lorentz sequence spaces, Nonlinear Anal. 68 (2008), 2709–2718.
- [FL] M. Fuchs, G. Li, L[∞]-bounds for elliptic equations on Orlicz–Sobolev spaces, Arch. Math. (Basel) 72 (1999), 293–297.
- [FS] M. Fuchs, G. Seregin, A regularity theory for variational integrals with L ln L-growth, Calc. Var. Partial Differential Equations 6 (1998), 171–187.
- [HLP] G. H. Hardy, J. E. Littlewood, G. Pólya, *Inequalities*, The University Press, Cambridge, 1934.
- [HM] H. Hudzik, L. Maligranda, Amemiya norm equals Orlicz norm in general, Indag. Math. (N.S.) 11 (2000), 573–585.
- [HW] H. Hudzik, B. Wang, Approximative compactness in Orlicz spaces, J. Approx. Theory 95 (1998), 82–89.

- -
- [Jj] J. L. Jensen, Sur le functions convexes et les inégalités entre les valeurs moyennes, Acta Math. 30 (1906), 175–193.
- [KR] M. A. Krasnosel'skii, Ya. B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff, Groningen 1961.
- [MI] L. Maligranda, Orlicz Spaces and Interpolation, Sem. Math. 5, Campinas SP, Univ. of Campinas, Brazil, 1989.
- [MPF] D. Mitrinović, J. Pečarić, A. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Math. Appl. (East European Ser.) 53, Kluwer, Dordrecht, 1991.
- [Mj] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin, 1983.
- [MO] J. Musielak, W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49–65.
- [Ni] I. P. Natanson, Theory of Functions of a Real Variable, Higher Education Press, Beijing, 2010.
- [RR] M. M. Rao, Z. D. Ren, Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math. 146, Dekker, New York, 1991.
- [ST] M. A. Smith, B. Turett, Rotundity in Lebesgue-Bochner Function Spaces, Trans. Amer. Math. Soc. 257 (1980), 105–118.
- [WW] C. Wu, T. Wang, Orlicz Spaces and Their Application, Heilongjiang Press of Sci. Tech., Harbin, 1983 (in Chinese).
- [WWCW] C. Wu, T. Wang, S. Chen, Y. Wang, Geometric Theory of Orlicz Spaces, H.I.T. Press, Harbin, 1986 (in Chinese).
- [WS] S. Wu, Z. Shi, A class of extension of the Young inequality, J. Shanghai Univ. (Nat. Sci.) 22 (2016), 461–468 (in Chinese).