VOL. XLV 1981 FASC. 2

CORRECTION TO THE PAPER "TWO CLASSES OF MEASURES"

BY

JAN K. PACHL (WATERLOO, ONTARIO)

As pointed out to me by Professor A. Iwanik, the example of a non-perfect measure with countably additive products ([1], p. 337) contains an error: it may not be possible to choose the points $y_{\eta}^{(n)}$ appropriately. Professor A. Iwanik also observes that the construction can be repaired if every set in [0, 1] of cardinality smaller than 2^{\aleph_0} is Lebesgue measurable.

Here I present another version of the construction for the product of two measures: there is a non-perfect measure μ such that every (indirect) product of μ with μ is countably additive. The construction needs no special set-theoretic assumptions.

Let \mathscr{B} be the Borel σ -algebra in I = [0, 1] and let ν be the Lebesgue measure on \mathscr{B} . Put

$$\mathscr{S} = \{ H \subset I \times I \mid H \subset (V \times I) \cup (I \times V) \}$$
 for some $V \subset I$ of cardinality smaller than $2^{\aleph_0} \}$.

Let Ω be the first ordinal of cardinality 2^{\aleph_0} , let $D_1, D_2, \ldots, D_{\eta}, \ldots$, $\eta < \Omega$, be all Borel subsets of $I \times I$ that are not in \mathcal{S} , and let F_1, F_2, \ldots , $F_{\eta}, \ldots, \eta < \Omega$, be all uncountable Borel subsets of I. As in [1], construct four transfinite sequences of points in I, namely $\{v_{\eta}\}, \{w_{\eta}\}, \{y_{\eta}^{(1)}\},$ and $\{y_{\eta}^{(2)}\}$, all indexed by $\eta < \Omega$, such that $v_{\eta}, w_{\eta} \in F_{\eta}, (y_{\eta}^{(1)}, y_{\eta}^{(2)}) \in D_{\eta}$, and no v_{η} belongs to the set

$$X = \{ w_{\eta} \mid \eta < \Omega \} \cup \{ y_{\eta}^{(1)} \mid \eta < \Omega \} \cup \{ y_{\eta}^{(2)} \mid \eta < \Omega \}.$$

Put $\mathscr{A} = \mathscr{B} | X$ and $\mu = \nu | X$. Since the sets X and $I \setminus X$ are ν -thick, μ is not perfect.

To show that every product of μ with μ is countably additive, it is enough to prove (cf. [1], p. 338) that if λ is a measure on $\sigma(\mathscr{B} \otimes \mathscr{B})$ such that $\lambda(E \times I) = \nu E = \lambda(I \times E)$ for each $E \in \mathscr{B}$, and if $H \in \sigma(\mathscr{B} \otimes \mathscr{B})$ and $\lambda H > 0$, then $H \cap (X \times X) \neq \emptyset$. But from the lemma below it follows that if $H \notin \mathscr{S}$, then $H = D_{\eta}$ for some $\eta < \Omega$, and $(y_{\eta}^{(1)}, y_{\eta}^{(2)}) \in H \cap (X \times X)$.

LEMMA. Let λ be a measure on $\sigma(\mathscr{B} \otimes \mathscr{B})$ such that $\lambda(E \times I) = \nu E$ = $\lambda(I \times E)$ for $E \in \mathscr{B}$. If $H \in \sigma(\mathscr{B} \otimes \mathscr{B})$ and $\lambda H > 0$, then $H \notin \mathscr{S}$.

Proof. Take any $V \subset I$ of cardinality smaller than 2^{\aleph_0} . Denote the completion of ν by $\hat{\nu}$. There is a $\hat{\nu}$ -disintegration $\{(\mathscr{B}, \nu_{\nu})\}_{\nu \in I}$ of $\lambda \mid H$; that is, ν_{ν} is a measure on \mathscr{B} such that $\nu_{\nu}(I) \leq 1$ for each $\nu_{\nu}(I) \leq 1$, the function $\nu_{\nu}(I) \leq 1$ is ν -measurable for each $\nu_{\nu}(I) \leq 1$.

$$\int_{F} \nu_{y} E \, d\hat{v}(y) = \lambda (H \cap (E \times F)) \quad \text{for } E, F \in \mathcal{B}.$$

There is a set $Z \in \mathcal{B}$ such that $\nu Z = 0$ and

$$v_y\{x \in I \mid (x, y) \notin H\} = 0$$
 for $y \in I \setminus Z$.

Put

$$A = \{y \in I \mid \nu_y(I \setminus C) = 0 \text{ for a countable set } C \subseteq I\}.$$

The set A is \hat{v} -measurable because

$$A = \bigcap_{k=1}^{\infty} \bigcup_{j=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{r} \{y \mid \nu_{y}(I \setminus \bigcup_{i=1}^{j} [r_{i}, r_{i}+1/n]) \leq 1/k\},$$

where \bigcup_{r} is the union over all *j*-tuples $r = (r_1, r_2, ..., r_j)$ of rational numbers. Approximate A by $A_0 \subset A$, $A_0 \in \mathcal{B}$, such that $vA_0 = \hat{v}A$. Distinguish two cases:

Case 1. $\lambda(H \cap (I \times A_0)) = 0$.

It follows that $\hat{v}(I \setminus (A \cup Z)) > 0$, hence $I \setminus (A \cup Z)$ has cardinality 2^{\aleph_0} , and $I \setminus (A \cup Z \cup V) \neq \emptyset$. Take any $y \in I \setminus (A \cup Z \cup V)$: we have $v_y I > 0$, v_y is nonatomic, and $v_y \{x \mid (x, y) \notin H\} = 0$. Hence the cardinality of $\{x \mid (x, y) \in H\}$ is 2^{\aleph_0} , and there exists an $x \notin V$ such that $(x, y) \in H$. Therefore

(*)
$$(x, y) \in H \setminus (V \times I) \cup (I \times V) \neq \emptyset.$$

Case 2. $\lambda(H \cap (I \times A_0)) > 0$. Put

$$T = \{x \in I \mid \nu_y\{x\} > 0 \text{ for some } y \in A_0 \setminus Z\},$$

$$\varkappa_y = \nu_y | T \text{ for } y \in I, \quad \text{and} \quad \varkappa E = \int_{A_0} \varkappa_y E \, d\hat{\nu}(y) \text{ for } E \in \mathcal{B} | T.$$

By Ramachandran's result [2], the measure \varkappa on $\mathscr{B} \mid T$ is perfect (for it is a perfect mixture of discrete measures); hence there is a $T_0 \subseteq T$, $T_0 \in \mathscr{B}$, such that $\varkappa T_0 = \varkappa T$. Hence

$$u T_0 = u T = \int_{A_0}
u_y T d\hat{v}(y) = \int_{A_0}
u_y I d\hat{v}(y) = \lambda (H \cap (I \times A_0)) > 0,$$

and \varkappa is nonatomic because $\varkappa\{x\} \leqslant \nu\{x\} = 0$ for $x \in T$. Hence T_0 has cardinality 2^{\aleph_0} and, consequently, there is an $x \in T_0 \setminus V$ such that $\nu_y\{x\} = 0$ for every $y \in V$. But $\nu_y\{x\} > 0$ for some $y \in A_0 \setminus Z$, and $y \notin V$ by the choice of x. Since $y \notin Z$, the point (x, y) is in H. Therefore again (*) holds.

REFERENCES

- [1] J. K. Pachl, Two classes of measures, Colloquium Mathematicum 42 (1979), p. 331-340.
- [2] D. Ramachandran, Mixtures of perfect probability measures, The Annals of Probability 2 (1974), p. 495-500.

DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF WATERLOO WATERLOO, ONTARIO

Reçu par la Rédaction le 1. 11. 1980