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A Jarník-type theorem for a problem of
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1. Introduction. Classical Diophantine approximation investigates the
density of the rational numbers in the set of real numbers, starting with
Dirichlet’s theorem, which states that for any real number x there are in-
finitely many pairs (p, q) ∈ Z× Z \ {0} such that

|qx− p| < 1/q.

This is in a sense optimal, since by Hurwitz’s theorem,

|qϕ− p| < 1

cq

has at most finitely many solutions (p, q) as above when c >
√
5 and ϕ =

(
√
5 − 1)/2 (see [6, Theorem 194] for a proof). However, Khinchin’s and

Jarník’s theorems tell us—in a very precise way—how likely it is that a
randomly chosen real number can be approximated by rationals up to a
certain accuracy, which is given in terms of a decreasing function of the
denominators.

More precisely, let ψ : R+ → R+ be such a function, called an approxi-
mation function, and define

Wn(ψ) :=
{
x ∈ Rn : |q · x− p| < ψ(|q|) for i.m. (p, q) ∈ Z× Zn \ {0}

}
where |q| = max|qi| and “i.m.” is shorthand for “infinitely many”. Here and in
what follows, Hs denotes the usual s-dimensional Hausdorff measure, which
we recall in the next section.
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Theorem 1.1 (Jarník). In the above setting, for any s ≥ 0 we have

Hs(W1(ψ)) =

{
0 if

∑∞
q=1 ψ(q)

sq1−s <∞,
∞ otherwise.

Furthermore, with some extra hypotheses (detailed in Corollary 1.3 be-
low) Jarník’s theorem can be generalised to Hausdorff g-measures Hg, and
this gives a pretty accurate description of the geometry of the set W1(ψ).
A more general approximation problem consists in looking at the set L n(w)
of real numbers x such that

|P (x)| < H(P )−w

for infinitely many integer polynomials P with degree bounded above by n,
where w > 0 is given and H(P ) denotes the height of P , i.e. the maximum
absolute value of its coefficients. This is related to, but subtly different from,
the problem of approximating x by algebraic numbers of bounded degree;
we refer the interested reader to [4, Chapter 3, in particular the last part of
Section 3.4].

The study of this problem dates back to Mahler. With Minkowski’s linear
forms theorem one can prove that L n(w) has full Lebesgue measure for any
w ≤ n, and in 1932 Mahler [12] conjectured that L n(w) has measure 0 for
every w > n. In 1969 Sprindžuk [14] proved this in full generality, although
the cases n = 2 and n = 3 had already been settled by Kubilius, Kasch, and
Volkmann (see [15] for more details).

The picture for Hausdorff measures, on the other hand, is a bit less clear.
In 1983 Bernik [3] proved that L n(w) has Hausdorff dimension n+1

w+1 , and in
2006 Beresnevich, Dickinson, and Velani proved [2, Theorem 18], which spe-
cialises to the divergence part of a Jarník-type theorem for Mahler’s problem.
Interestingly, though, the convergence case is not quite as straightforward
as for Jarník’s theorem and the only results so far in this direction are for
n = 2; these were the work of Hussain [8] and Huang [7], who gave a more
general proof for the case of non-degenerate C2 plane curves.

1.1. Hausdorff measures and dimension. Let X be a subset of Rn
and let g : R+ → R+ be a dimension function, i.e. a continuous, increasing
function such that g(r) → 0 as r → 0. Given ρ > 0, a ρ-cover of X is
a (possibly countable) collection {Bi} of balls of Rn such that the radius
r(Bi) of each ball Bi lies in (0, ρ] and X ⊆

⋃
Bi. Now define

Hgρ(X) := inf
{∑

g(r(Bi)) : {Bi} is a ρ-cover of X
}

and note that this is increasing as ρ→ 0. Therefore the limit

Hg(X) := lim
ρ→0+

Hgρ(X) = sup
ρ>0
Hgρ(X)
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exists, and is called the Hausdorff g-measure of X. When g(r) = rs for some
s ≥ 0, it is customary to write Hs(X) for Hg(X), which is then called the
s-dimensional Hausdorff measure of X. Moreover, if s is an integer, then Hs
is just a constant multiple of the Lebesgue measure on Rs.

If h, g are two dimension functions, a straightforward standard argument
shows that if h(r)/g(r)→ 0 when r → 0, then

Hh(X) = 0 whenever Hg(X) <∞.
In particular, this implies that if s > t ≥ 0 andHt(X) <∞, thenHs(X) = 0.
We can then define the Hausdorff dimension of X as

dimH(X) := inf {s ≥ 0 : Hs(X) = 0} = sup {s ≥ 0 : Hs(X) =∞} .
Finally, note that if dimH is an integer, then it coincides with the usual
“naive” notion of dimension.

1.2. Our setting. From here on we will make heavy use of Vinogradov’s
notation � and �, where a� b means that a ≤ cb for some constant c > 0,
while a � b means that both a � b and b � a. We will also use subscripts
to emphasise the dependence of the implied constant on certain quantities;
for example, a �n b means that the implied constant c depends on n. For
later convenience, define

Pn := {P ∈ Z[X] : deg(P ) ≤ n},
An(ψ) := {x ∈ R : |P (x)| ≤ ψ(H(P )) for i.m. P ∈ Pn}.

Theorem 1.2 (Beresnevich, Dickinson, Velani [2, Theorem 18]). LetM
be a non-degenerate submanifold of Rn of dimension m. Let ψ be an approx-
imation function, and let g be a dimension function such that q−mg(q) is
decreasing and q−mg(q)→∞ as q → 0. Furthermore, suppose that q1−mg(q)
is increasing. Then

Hg(Wn(ψ) ∩M) =∞ if
∞∑
q=1

g

(
ψ(q)

q

)
ψ(q)1−mqm+n−1 =∞.

Corollary 1.3. Let ψ be an approximation function and consider an
increasing dimension function g such that q−1g(q) is decreasing and q−1g(q)
→∞ as q → 0. Then

Hg(An(ψ)) =∞ if
∞∑
q=1

g

(
ψ(q)

q

)
qn =∞.

Recall that the discriminant of an integer polynomial P of degree n is
defined as

D(P ) := a2n−2n

∏
1≤i<j≤n

(αi − αj)2
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where α1, . . . , αn are the (possibly complex) roots of P , counted with multi-
plicity, and an is the leading coefficient of P . Furthermore, it can be shown
that D(P ) is a homogeneous polynomial of degree 2n− 2 in the coefficients
of P , and its value is bounded above by cnH(P )2n−2 for some constant cn
that depends only on n.

Now, for any given 0 < λ ≤ n− 1 and fixed 0 < τ ≤ cn, consider

Pλn := {P ∈ Pn : |D(P )| ≥ τ H(P )2(n−1−λ)},
Aλn(ψ) := {x ∈ R : |P (x)| ≤ ψ(H(P )) for i.m. P ∈ Pλn}.

In this paper we will examine the case n = 3 of the convergence equivalent
of Corollary 1.3 and provide a partial result for general n; moreover, our
conclusions do not depend on the choice of τ . Namely, we will prove the
following:

Theorem 1.4. Let ψ and g be as in Corollary 1.3. Then for any 0 <
λ < 1 we have

Hg(Aλn(ψ)) = 0 if
∞∑
q=1

g

(
ψ(q)

q

)
qn <∞.

For the counterpart, set

Pn,λ := {P ∈ Pn : |D(P )| < τ H(P )2(n−1−λ)},
An,λ(ψ) := {x ∈ R : |P (x)| ≤ ψ(H(P )) for i.m. P ∈ Pn,λ}.

Theorem 1.5. Consider ψ and g as in Corollary 1.3. Let P∗3,λ be the
set of irreducible polynomials in P3,λ and let A∗3,λ(ψ) be the corresponding
lim sup set. Further assume that 0 ≤ λ < 9/20. Then

Hg(A∗3,λ(ψ)) = 0 if
∞∑
q=1

g

(
ψ(q)

q

)
q3−2λ/3 <∞.

Corollary 1.6. Suppose that ψ(q) = q−w for some w > 0 and that
0 ≤ λ < 9/20. As is customary, write A3,λ(w) for A3,λ(ψ). Then

Hg(A3,λ(w)) = 0 if
∞∑
q=1

g(q−w−1)q3−2λ/3 <∞.

Note that the condition 0 ≤ λ < 9/20 stems from the fact that our
proof is based on the discriminant estimate from [10, Corollary 2], much
like Volkmann’s proof of the cubic case of Mahler’s conjecture [15] relied
on a similar estimate by Davenport [5]. As a special case, for λ = 0 we
recover Bernik’s result for n = 3, namely that the Hausdorff dimension of
L3(w) = A3,0(w) is 4

w+1 .
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2. A few lemmas on polynomials. In this section we will collect some
lemmas that we will use later in this paper. Some we prove here, while others
are taken from [14], often restated in a slightly simpler way that is enough
for our purpose.

Lemma 2.1 ([16, Hilfssatz 3]). Let P1, . . . , Pk be integer polynomials.
Then

H(P1 · · ·Pk) � H(P1) · · ·H(Pk)
where the implied constants depend only on the degrees of the polynomials.

Proof. Recall that the Mahler measure of a polynomial P of degree d is
defined as

M(P ) := |ad|
d∏
i=1

max{1, |αi|}

where ad and αi are the leading coefficient and roots of P , respectively. Now,
Mahler [13] showed that(

d

bd/2c

)−1
H(P ) ≤ M(P ) ≤

√
d+ 1 H(P ).

Hence the result follows by noting that the Mahler measure is multiplicative,
which can be easily seen from its definition.

Lemma 2.2 ([11, Lemma 3]). Let P be an integer polynomial of degree
at most n ≥ 2 and with non-zero discriminant. If α is a root of P , then

|P ′(α)| � |D(P )|1/2H(P )−n+2

where the implied constant depends only on n.

Lemma 2.3 ([11, Lemma 4]). Let P be as in Lemma 2.2 and let x ∈ C.
If α is the root of P closest to x, then

|x− α| � H(P )n−2|D(P )|−1/2|P (x)|
where the implied constant depends only on n.

Lemma 2.4. In the setting of Lemma 2.3 write H for H(P ). Furthermore,
assume that x ∈ [−1/2, 1/2) and |P (x)| < ψ(H) for some approximation
function ψ. If |D(P )| �n H2(n−1−λ) for some 0 < 2λ < 1 − logH ψ(H),
then |P ′(x)| �n |P ′(α)| for sufficiently large H.

Proof. First, observe that by Lemma 2.2 we have

|P ′(α)| �n H
n−1−λH−n+2 = H1−λ.

Then note that by Lemma 2.3,

|x− α| �n H
n−2Hλ+1−nψ(H) = Hλ−1ψ(H) < H−1/2ψ(H)1/2.



274 A. Pezzoni

Hence we can assume |α| < 1, since this is less than 1/2 for H large enough.
Now, by the mean value theorem we can find some z between x and α, thus
with |z| < 1, such that

|P ′(x)− P ′(α)| = |P ′′(z)| |x− α| �n HH
λ−1ψ(H) = Hλψ(H).

Finally, the hypothesis on λ implies that Hλψ(H) < H1−λ, therefore up to
choosing H large enough we have

|P ′(x)− P ′(α)| < 1
2 |P

′(α)|,

from which it follows that |P ′(x)| �n |P ′(α)|, as required.

Lemma 2.5. Fix P ∈ C[X] and m ∈ C. If P (X) = anX
n+· · ·+a1X+a0,

then the coefficients of P (X +m) = bnX
n + · · ·+ bnX + b0 are

bk =
n∑
j=k

(
j

k

)
ajm

j−k for each 0 ≤ k ≤ n.

Proof. We proceed by induction on n. If n = 1 then P (X +m) = a1X +
a0 +ma1, which agrees with the above formula. Now assume the lemma is
true for n − 1. Since we can write P (X) = anX

n + Q(X), where Q(X) =
an−1X

n−1 + · · ·+ a0, we have

P (X +m) = Q(X +m) + an(X +m)n = Q(X +m) + an

n∑
i=0

(
n

i

)
Ximn−i.

Thus bn = an and, by the induction hypothesis, for 0 ≤ k ≤ n− 1,

bk =

(
n

k

)
anm

n−k +

n−1∑
j=k

(
j

k

)
ajm

j−k =

n∑
j=k

(
j

k

)
ajm

j−k.

Note. While we chose to state the lemma over C for simplicity, there
is nothing specific to it in the proof, which carries over as-is for any other
commutative ring with unity.

Corollary 2.6. In the setting of Lemma 2.5 we have

H(P (X +m)) ≤ (1 + |m|)nH(P ).

Proof. By Lemma 2.5, for each 0 ≤ k ≤ n we have

|bk| ≤
n∑
j=k

(
j

k

)
|aj | |m|j−k ≤ H(P )

n∑
j=k

(
j

k

)
|m|j−k.

Since (1 + |m|)n =
∑n

s=0

(
n
s

)
|m|s, it is enough to prove that(

n

s

)
≥
(
s+ k

k

)
=

(
s+ k

s

)
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for any 0 ≤ k ≤ n and 0 ≤ s ≤ n− k. On the other hand,
(
t
s

)
is monotonic

in t for t ≥ s, which can be readily seen from(
t+ 1

s

)
=

t+ 1

t+ 1− s
t!

(t− s)!s!
≥
(
t

s

)
.

Therefore the observation that n ≥ j = s+ k completes the proof.

3. Proof of Theorem 1.4. Let I := [−1/2, 1/2). We prove the result
for Aλn(ψ) ∩ I, and then extend it to the whole Aλn(ψ). Our first goal is to
estimate how much each polynomial in Pλn can contribute towards Aλn(ψ).
To do so, consider some ε > 0 and Q ∈ N. For a polynomial P ∈ Pλn with
H(P ) ≤ Q define

σε(P ) := {x ∈ I : |P (x)| ≤ ε, |P ′(x)| ≥ 2}.

Then let Bn(Q, ε) be the union of σε(P ) over all such polynomials. We will
rely on the following specialisation of [1, Proposition 1]:

Lemma 3.1. For any Q > 4n2 and any ε < n−12−n−2Q−n we have

|Bn(Q, ε)| ≤ n2n+2εQn,

where |Bn(Q, ε)| denotes the Lebesgue measure of Bn(Q, ε).

Now, partition Pλn into sets

Pλn(t) := {P ∈ Pλn : 2t ≤ H(P ) < 2t+1}

and observe that

Aλn(ψ) ∩ I = lim sup γψ(P ) =
∞⋂
t0=1

∞⋃
t=t0

⋃
P∈Pλn(t)

γψ(P )

where γψ(P ) := {x ∈ I : |P (x)| ≤ ψ(H(P ))}. Then, for t large enough and
for any P ∈ Pλn(t), letting ε = ψ(2t) we have γψ(P ) ⊆ σε(P ), so that the sets
σε(P ) form a cover of Aλn(ψ) ∩ I. Indeed, ψ(H(P )) ≤ ε since ψ is assumed
to be decreasing. Furthermore, if α is the root of P closest to x, then up to
choosing t0 large enough Lemma 2.4 ensures that |P ′(x)| is comparable to
|P ′(α)|, hence

|P ′(x)| �n H(P )1−λ ≥ 2t(1−λ)

so |P ′(x)| > 2, again up to choosing t0 large enough.
Note that each σε(P ) is a union of finitely many intervals, the number of

which is bounded above by a constant that depends only on n. We cannot use
this directly to obtain an upper bound for the Hausdorff dimension of Aλn,
though, because those intervals can be arbitrarily small, and also we do not
know how many polynomials there are in each Pλn(t). To fix this, consider
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the sets
σ̃ε(P ) :=

⋃
x∈σε(P )

{y ∈ I : |y − x| < 2−tε}.

Clearly σε(P ) ⊆ σ̃ε(P ). Furthermore, by the mean value theorem, for each
y ∈ σ̃ε(P ) there is a z ∈ I which lies between y and the corresponding
x ∈ σε(P ) such that

|P (y)− P (x)| = |P ′(z)| |y − x|.

Since |z| < 1, we have |P ′(z)| �n H(P ) < 2t+1, thus

|P (y)| ≤ |P (x)|+ |P ′(z)| |y − x| �n |P (x)|+ 2ε� ε.

Now, let c be the constant implied in the above inequality, so that σε(P )
is covered by intervals in σcε(P ) of length at least ` = 21−tε. From this we
can obtain a cover made up of intervals of length exactly `, splitting up the
larger intervals and allowing some overlap at the edges as necessary, and by
Lemma 3.1 the polynomials in Pλn(t) contribute at most

|Bn(2t+1, cε)|
`

�n 2t(n+1) =: N

of these intervals. To conclude, it follows that

Hg(Aλn ∩I)�n lim
t0→∞

∑
t≥t0

g(`)N = lim
t0→∞

∑
t≥t0

g

(
ψ(2t)

2t−1

)
2t(n+1)

≤ lim
t0→∞

∑
t≥t0

g

(
ψ(2t)

2t

)
2t(n+1) = 0

because g is assumed to be increasing, ψ is decreasing, and by Cauchy’s
condensation test we know that∑

t≥0
g

(
ψ(2t)

2t

)
2t(n+1) <∞ iff

∑
q≥1

g

(
ψ(q)

q

)
qn <∞.

3.1. Extending the argument. Fix m ∈ Z and consider x ∈ [m−1/2,
m+ 1/2). Then suppose that P ∈ Pλn is such that |P (x)| ≤ ψ(H(P )). Now,
note that y = x−m ∈ I and let Q(X) = P (X +m), so that Q(y) = P (x).
Furthermore, by Corollary 2.6 we know that cH(Q) ≤ H(P ), where c =
(1 + |m|)−n is independent of P . Therefore Q ∈ Pλn and

|Q(y)| ≤ ψ(H(P )) ≤ ψ(cH(Q)).

Hence the following lemma, together with the previous argument, is enough
to complete the proof of Theorem 1.4.
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Lemma 3.2. Let 0 < c1 < c2. Then
∞∑
q=1

g

(
ψ(c1q)

q

)
qn <∞ iff

∞∑
q=1

g

(
ψ(c2q)

q

)
qn <∞.

Proof. To begin, assume that the series with c1 converges. Since ψ is
decreasing we have ψ(c1q) ≥ ψ(c2q), and since g is increasing it follows
that

∞∑
q=1

g

(
ψ(c2q)

q

)
qn ≤

∞∑
q=1

g

(
ψ(c1q)

q

)
qn <∞.

For the other implication, note that c = c2c
−1
1 > 1 and∑

q≥c
g

(
ψ(c1q)

q

)
qn =

∞∑
r=1

∑
cr≤q<c(r+1)

g

(
ψ(c1q)

q

)
qn

≤
∞∑
r=1

∑
cr≤q<c(r+1)

g

(
ψ(cc1r)

cr

)
cn(r + 1)n

≤ 2ncn
∞∑
r=1

( ∑
cr≤q<c(r+1)

1
)
g

(
ψ(c2r)

r

)
rn

≤ 2ncn+1
∞∑
r=1

g

(
ψ(c2r)

r

)
rn

where the first two inequalities are again due to the fact that g is increasing
and ψ is decreasing. Therefore the first series converges when the second
does, as required.

4. Proof of Theorem 1.5. Just as in the proof of Theorem 1.4, we
will focus on A∗n,λ(ψ)∩ I, after which the result immediately extends to the
whole A∗n,λ(ψ). Similarly to what we did there, define

P∗3,λ(t) := {P ∈ P∗3,λ : 2t ≤ H(P ) < 2t+1}.

Now suppose that P ∈ P∗3,λ and let σ(P ) be the set of x ∈ I such that
|P (x)| ≤ ψ(H(P )). Furthermore, let σ(t) be the union of σ(P ) over all P
in P∗3,λ(t). Then, by Lemma 2.3, we know that

|x− α| ≤ cH(P )|D(P )|−1/2ψ(H(P )) =: r(P,ψ)

where α is the root of P closest to x and where the constant c > 0 is
independent of P and x. Hence σ(P ) is covered by at most three intervals
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of radius r(P,ψ) centred at the roots of P . Then

A∗3,λ(ψ) ∩ I ⊆ lim supσ(t) =
∞⋂
t0=0

∞⋃
t=t0

σ(t)

and

|σ(t)| ≤
∑

P∈P∗
3,λ(t)

|σ(P )| �
∑

P∈P∗
3,λ(t)

H(P )|D(P )|−1/2ψ(H(P ))

� 2tψ(2t)
∑

P∈P∗
3,λ(t)

|D(P )|−1/2 � 2t(3−2λ/3)ψ(2t)

because from [10, Corollary 2] it follows immediately that∑
P∈P∗

3,λ(t)

|D(P )|−1/2 � 2t(2−2λ/3)

where the implied constants are absolute.
Just as in the proof of Theorem 1.4, consider a slight enlargement of

σ(P ):
σ̃(P ) =

⋃
x∈σ(P )

{y ∈ R : |y − x| < ψ(2t)/2t},

so that for any y ∈ σ̃(P ) we have

|P (y)| ≤ |P (x)|+ |P ′(z)| |x− y| � ψ(H(P )).

Thus σ(P ) ⊆ σ̃(P ) and |σ̃(t)| � |σ(t)|. It follows that we can cover σ(t) with
at most

N :=
|σ̃(t)|
`
� 2t(3−2λ/3)ψ(2t)

2t

ψ(2t)
= 2t(4−2λ/3)

intervals of length ` := ψ(2t)/2t. Finally, this implies that

Hg(A3,λ(ψ) ∩ I)� lim
t0→∞

∞∑
t=t0

g

(
ψ(2t)

2t

)
2t(4−2λ/3) = 0

since by Cauchy’s condensation test we know that
∞∑
t=0

g

(
ψ(2t)

2t

)
2t(4−2λ/3) <∞ iff

∞∑
q=1

g

(
ψ(q)

q

)
q3−2λ/3 <∞.

5. Proof of Corollary 1.6. By Theorem 1.5 it is enough to focus on re-
ducible polynomials, i.e. on B := A3,λ(w)\A∗3,λ(w). Now consider x ∈ R such
that |P (x)| ≤ H(P )−w for infinitely many reducible cubic polynomials P and
write P = P1P2 with deg(Pi) = i. Note that if, say, |P1(x)| ≤ H(P1)

−w for at
most finitely many P1, then |P1(x)| � H(P1)

−w for all P1 and by Lemma 2.1
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we have

H(P1)
−w|P2(x)| � |P1(x)P2(x)| ≤ H(P )−w � H(P1)

−w H(P2)
−w.

It follows that for at least one i ∈ {1, 2} we can find a constant ci > 0 such
that |Pi(x)| ≤ ciH(Pi)−w for infinitely many Pi. In other words,

B ⊆ A1(c1q
−w) ∪ A2(c2q

−w).

Similarly, since a quadratic polynomial is either irreducible or a product or
two linear polynomials, we can also find constants c′i > 0 such that

A2(c2q
−w) ⊆ A1(c

′
1q
−w) ∪ A∗2(c′2q−w)

where A∗2 = A∗2,0. Furthermore, without loss of generality we may assume
that c1 ≥ c′1, so that

B ⊆ A1(c1q
−w) ∪ A∗2(c′2q−w).

Then Jarník’s theorem implies that

Hg(A1(c1q
−w)) = 0 if

∞∑
q=1

g(c1q
−w−1)q <∞,

and the proof of [8, Case II] implies that

Hg(A∗2(c′2q−w)) = 0 if
∞∑
q=1

g(c′2q
−w−1)q2 <∞.

Finally, by the comparison test and by Lemma 3.2, those two series converge
when

∞∑
q=1

g(q−w−1)q2 <∞.

This is enough to complete the proof of Corollary 1.6, since 0 ≤ λ < 9/20
means that 3− 2λ/3 > 2.

6. Conclusions. The main issue with proving a convergence result in
the case of reducible polynomials for more general approximation functions,
similar to what we did for Corollary 1.6, lies in decoupling the resulting
inequalities

|P1(x)| |P2(x)| ≤ ψ(H(P1P2)).

Our proof carries through as-is for any other ψ that is multiplicative, but
this is by no means the general case. For the case of quadratic polynomials,
Hussain [8] and Huang [7] resorted to imposing a fairly restrictive condition
on the dimension function, which looks artificial; however, in private corre-
spondence Hussain confirmed that the techniques used in those papers do
not allow for its removal. Furthermore, in a recent preprint Hussain, Schlei-
schitz and Simmons [9] showed that this decoupling can be achieved in the
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general case when, for all q large enough, logψ(q)/log q is non-increasing
and for every c1 > 1 there is a c2 > 0 such that ψ(q/c1) ≤ c2ψ(q). Obvi-
ously these are satisfied for ψ(q) = q−w and multiplicative functions satisfy
the latter condition, but it is not immediately clear whether multiplicative
approximation functions need to satisfy the former condition.

It would also be interesting to look into an equivalent version of Theo-
rem 1.5 for higher degrees, which would lead to a complete treatment of the
case of approximation functions of the form q−w. However, an analogue of
the discriminant estimate from [10] appears necessary to apply our method
in higher degrees, hence this will likely require some different techniques, just
like Sprindžuk’s solution of Mahler’s conjecture required techniques different
from those Volkmann used in his treatment of the cubic case.
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