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STOCHASTIC APPROXIMATION PROCEDURE IN
SEMI-MARKOV ENVIRONMENT APPLIED TO

ALCOHOL CONSUMPTION MODEL

Abstract. In this paper, we consider a stochastic approximation proce-
dure with semi-Markov switchings in an averaging scheme with a small pa-
rameter.

1. Introduction. Due to the wide use of stochastic diffusion problems,
conditions for stability and control of such systems seem to be important.
In [6] sufficient conditions for stability of stochastic systems via Lyapunov
function properties are given and estimates of large deviations of linear diffu-
sion systems are obtained. Problems of optimal control of diffusion processes
described by stochastic differential equations with acceptable control are de-
scribed in [20]. On the other hand, asymptotic behaviour is considered in [25]
and [26].

For conditions of weak convergence of random processes in [11, 16, 12]
the method of small parameter and a singular perturbation problem solu-
tion was used for the construction of the generator limiting process. This
method is applied to schemes of averaging of diffusion approximation and to
schemes of averaging of asymptotically small diffusion. In particular in [16]
the cases of random evolution of Markov and semi-Markov switchings were
examined.

Construction of semi-Markov processes and investigation of asymptotic
properties of random processes with semi-Markov switchings are considered
in [1, 2, 3, 4]. For these processes, weak convergence to the solution of ap-
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propriate partial differential equations and an averaging scheme of diffusion
processes in diffusion approximation is presented in [3, 5].

In [19] asymptotic properties of semi-Markov processes with linearly per-
turbed operator maintainer a Markov process were analysed via the semi-
group property. These results were then developed in [14]. A classification of
solutions of a singular perturbation problem for random processes with the
use of semi-Markov switchings is described in [16] and in [15] with the use of
the compensating operator (see [27]). Using the compensating operator [10]
one obtains sufficient conditions for convergence of a random evolution with
semi-Markov switchings to the diffusion process in the averaging scheme (see
also [13]).

The results of these studies have found various applications [8, 9, 18, 17].
In [21] convergence of stochastic procedures is established using proper-

ties of Lyapunov type functions. Stochastic Approximation Procedure (SAP)
by a regression function with semi-Markov switchings was considered in [7].

2. Problem. In this paper, we consider a dynamical system with semi-
Markov switchings using a small parameter. x(t), t ≥ 0, is a semi-Markov
process in the standard phase space (X, E), generated by the renewal Markov
process xn, τn, n ≥ 0, defined by the semi-Markov kernel

Q(t, x,B) = P (x,B)Gx(t),

where the stochastic kernel

P (x,B) := P{xn+1 ∈ B | xn = x}, B ∈ E ,

defines an embedded Markov chain xn = x(τn) at the renewal moments,

τn =

n∑
k=1

θk, n ≥ 0, τ0 = 0,

with intervals θk+1 = τk+1 − τk between the renewal moments. The θn are
defined by the distribution functions

Gx(t) = P{θn+1 ≤ t | xn = x} =: P{θx ≤ t}.

Define

g(x) =

∞�

0

Gx(ds), Gx(s) = 1−Gx(s).

The semi-Markov process is defined by

x(t) = xν(t), t ≥ 0,

where the counting process ν(t) is defined by

ν(t) := max {n : τn ≤ t}, t ≥ 0.
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We shall assume that the semi-Markov process x(t), t ≥ 0, is regular (the
probability of reaching any state is positive) and uniformly ergodic [16, p. 33]
with stationary distribution π(B), B ∈ E :

π(dx) = ρ(dx)g(x)/m, where m =
�

X

g(x) ρ(dx).

Here ρ(B), B ∈ E , is a stationary distribution of the embedded Markov chain
(xn). Note that the process x(t) has a generator Q,

Qφ(x) =
1

g(x)

�

X

P (x, dy)[φ(y)− φ(x)],

which acts in the Banach space B of all bounded real-valued measurable
functions on X, with the sup-norm ‖φ‖ = supx∈X |φ(x)| for φ ∈ B. We have

(1) B = NQ ⊕RQ

where NQ := {φ : Qφ = 0} and RQ := {Qψ : ψ ∈ B}. Given Q, we can
define the potential operator or simply the potential of Q by

R0 = Π − (Q+Π)−1 where Πφ(x) :=
�

X

π(dx)φ(x).

SAP for a diffusion process uε(t) ∈ Rd in an averaging scheme with a
small parameter ε > 0 is defined by a stochastic differential equation

(2) duε(t) = a(t)

[
C

(
uε(t);x

(
t

ε

))
dt+ σ

(
uε(t);x

(
t

ε

))
dw(t)

]
where

• uε(t), t ≥ 0, is a random evolution in a diffusion process [16, 2, 15, 27];
• x(t), t ≥ 0, is a semi-Markov process [16, 1, 19, 14];
• w(t) is the Wiener process [25, 26, 11],
• a(t) satisfies

	∞
t0
a(t) dt =∞,

	∞
t0
a2(t) dt <∞.

The semigroup Tx(t), t ≥ 0, x ∈ X, associated to the system
(3) dux(t) = a(t)[C(ux(t);x)dt+ σ(ux(t);x)dw(t)], ux(0) = u,

is defined by
(4) Tx(t)φ(u) = φ(ux(t, u))

where
ux(t, u) := ux(t), ux(0) = u.

Notice that ux(t + s, u) = ux(s, ux(t, u)), which is the semigroup property
for the trajectories ux(t, u) [16, p. 44].

The generating operator Ax(t) of the semigroup Tx(t) is defined by

(5) Ax(t)φ(u) = a(t)C(u, x)φ′(u) + a2(t)
1

2
σ2(u, x)φ′′(u),
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where φ(·) ∈ C2(Rd) and a(·) ∈ C1(R). Note that a solution of (3) exists
when the following conditions are satisfied:

‖C(u1, x)− C(u2, x)‖+ ‖σ(u1, x)− σ(u2, x)‖ < l(‖u1 − u2‖), ∀x ∈ X,
‖C(u, x)‖+ ‖σ(u, x)‖ < l(1 + ‖u‖), ∀x ∈ X,

for some l > 0 [21, Chapter 3, Sec. 4].

3. Main result. The main result of the paper can be formulated as
follows:

Theorem 3.1. Let C(·, x) ∈ C3(Rd) for all x ∈ X and let V (u) be
the Lyapunov function for the dynamical system du

dt = C(u), where C(u) =	
X C(u, x)π(dx), which satisfies the following conditions:

(C1) C(u)V ′(u) ≤ −c0V (u), c0 > 0,
(C2) |R0C(u, x)V

′(u)| ≤ c1(1 + V (u)),
(C3) |C(u, x)R0[C(u, x)V

′(u)]′| ≤ c2(1 + V (u)),
(C4) |C(u, x)[C(u, x)[C(u, x)V ′(u)]′]′| ≤ c3(1 + V (u)),

(C5) (Cramer condition) sup
x∈X

∞	
0

ehtGx(t) dt ≤ H <∞, h > 0,

(C6)
∞	
0

a(t) dt =∞,
∞	
0

a2(t) dt <∞,

(C7) bε1(t, s) =
∣∣a(t+εs)

a(t)

∣∣ ≤ A1 <∞, a(·) ∈ C1(R) and bε2(t, s) =
∣∣a′(t+εs)

a(t)

∣∣ <
A2 <∞.

Then the solution uε(t), t ≥ 0, of (2) converges to some point u∗ ∈ R almost
surely.

We introduce an advanced Markov renewal process (MRP) (see [16]),
using the given sequence:

(6) uεn = uε(τ εn), xεn = xε(τ εn), τ εn = ετn,

where τn =
∑n

k=1 θk, n ≥ 0, τ0 = 0 are the renewal times of the semi-Markov
process x(t), t ≥ 0, determined by the distribution function of the time spent
in state x.

Definition 1 ([16, 10]). The compensating operator of the advanced
MRP (6) is defined by

(7) Lεt (x)φ(u, x)

= ε−1[E{φ(uεn+1, x
ε
n+1) | uεn = u, xεn = x, τ εn = t} − φ(u, x)]/g(x).

To simplify notation we let

q(x) =
1

g(x)
and Pφ(u, x) =

�

X

φ(u, y)P (x, dy).
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We have

Lemma 3.2. The compensating operator Lεt (x) is of the following form:

(8) Lεt (x)φ(u, x) = ε−1Qφ(u, x) + ε−1[Gε
t (x)− I]Q0φ(u, x),

where

Gε
t (x) =

∞�

0

Gx(ds)Tx(t+ εs), Q0φ(x) =
1

g(x)
Pφ(u, x).

Proof. From [16, 27, 13] we have

E[φ(uεn+1, x
ε
n+1) | uεn = u, xεn = x, τ εn = t] = Eu,x,tφ(u

ε
n+1, x

ε
n+1)

=

∞�

0

Gx(ds)Tx(t+ εs)
�

X

P (x, dy)φ(u, y).

Hence

Lεt (x)φ(u, x)

= ε−1q(x)
[∞�
0

Gx(ds)Tx(t+ εs)
�

X

P (x, dy)φ(u, y)− φ(u, x)
]

= ε−1q(x)
�

X

P (x, dy) [φ(u, y)− φ(u, x)]

+ ε−1q(x)

∞�

0

Gx(ds) [Tx(t+ εs)− I]
�

X

P (x, dy)φ(u, y).

Thus we obtain (8).

Lemma 3.3. The compensating operator Lεt (x) has the asymptotic repre-
sentations

Lεt (x)φ(u, x) = ε−1Qφ(u, x) + q(x)θε1(x)Pφ(u, x),(9)

Lεt (x)φ(u, x) = ε−1Qφ(u, x) +Ax(t)Pφ(u, x) + ε2a2(t)θε2(x)Pφ(u, x),(10)

where

θε1(x) =

∞�

0

Gx(s)Ax(t+ εs)Tx(t+ εs) ds,

θε2(x) = q(x)

∞�

0

G
(2)
x (s)Ã1

x(t+ εs)Ãx(t+ εs)Tx(t+ εs) ds,

where

Ã1
x(t+ εs)φ(u) = bε2(t, s)C(u, x)φ

′(u) + a(t+ εs)bε2(t, s)σ
2(u, x)φ′′(u)

=
1

a(t)
A′x(t+ εs)φ(u),
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Ãx(t+ εs)φ(u) = bε1(t, s)C(u, x)φ
′(u) + 1

2a(t+ εs)bε1(t, s)σ
2(u, x)φ′′(u)

=
1

a(t)
Ax(t+ εs)φ(u),

bε1(t, s) =
a(t+ εs)

a(t)
, bε2(t, s) =

a′(t+ εs)

a(t)

Proof. For the semigroup Tx(t+ εs), t ≥ 0, x ∈ X, we have,
dTx(t+ εs) = εAx(t+ εs)Tx(t+ εs)ds.

Integrating by parts we obtain (see (8))

Gε
t (x)− I =

∞�

0

Gx(ds) [Tx(t+ εs)− I]

= −Gx(s)[Tx(t+ εs)− I]|∞0 + ε

∞�

0

Gx(s)Ax(t+ εs)Tx(t+ εs) ds.

Given the Cramer condition we have lims→∞Gx(s) = 0. Moreover Tx(t) = I,
so

Gε
t (x)− I = ε

∞�

0

Gx(s)Ax(t+ εs)Tx(t+ εs) ds = εθε1(x).

Hence we obtain (9).
For

Gε
t,1(x) =

∞�

0

Gx(s)Ax(t+ εs)Tx(t+ εs) ds

integrating by parts using the substitutions u = Ax(t + εs)Tx(t + εs) and
dv = Gx(ds) with du = (Ax(t+ εs)Tx(t+ εs))′ds and v = −G(2)

x (s) we get

Gε
t,1(s) =

∞�

0

Gx(s)Ax(t+ εs)Tx(t+ εs) ds

= −Ax(t+ εs)Tx(t+ εs) ·G(2)
x (s)|∞0

+ ε

∞�

0

(Ax(t+ εs)Tx(t+ εs))′ ·G(2)
x (s) ds

= g(x)Ax(t)I + ε2
∞�

0

A′x(t+ εs)Ax(t+ εs)Tx(t+ εs) ·G(2)
x (s) ds

= g(x)Ax(t)I + ε2a2(t)g(x)θε2(x),

where

G
(2)
x (t) =

∞�

t

Gx(s) ds.

Substituting this result into (9), we obtain (10).
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Lemma 3.4. The compensating operator Lεt (x) satisfies, with φε(u, x) =
φ(u) + εφ1(u, x),

Lεt (x)φ
ε(u, x) = Ltφ(u, x) + εθεt (x)φ(u)

where θεt (x)φ(u) = q(x)θ1(x)PR0L̃t(x)φ(u) + εa2(t)θε2(x)φ(u), L̃t(x) =
Ax(t)− Lt and φ(·) ∈ C3(R).

Proof. We have

Lεt (x)[φ(u) + εφ1(u, x)] =

ε−1Qφ(u)+Ax(t)φ(u)+Qφ1(u, x)+εq(x)θ
ε
1(x)Pφ1(u, x)+εa

2(t)θε2(x)Pφ(u).

Now

Ltφ(u) = ΠAx(t)Πφ(u) = a(t)C(u)φ′(u) +
a2(t)σ2(u)

2
φ′′(u)

where
C(u) =

�

X

C(u, x)π(dx), σ2(u) =
�

X

σ2(u, x)π(dx).

From φ(·) ∈ NQ we have

Ax(t)φ(u) +Qφ1(u, x) = Ltφ(u),

Hence
Qφ1(u, x) = (Ax(t)− Lt)φ(u) = L̃t(x)φ(u).

Using this result we obtain

φ1(u, x) = R0L̃t(x)φ(u).

Finally,
Lεt (x)φ

ε(u, x) = Ltφ(u) + εθεt (x)φ(u)

where
θεt (x) = q(x)θ1(x)PR0L̃t(x) + a2(t)θε2(x).

Consider a Lyapunov function V (u) for the equation
du

dt
= C(u).

The next lemma follows immediately from the previous one:

Corollary 3.5. For the Lyapunov function V ε(u, x) = V (u)+εV1(u, x)
we have

Lεt (x)V
ε(u, x) = LtV (u) + εθεt (x)V (u).

Finally, we are ready to prove our main Theorem 3.1.

Proof of Theorem 3.1. Using conditions (C4)–(C7) we have

|θεt (x)V (u)| ≤ A3(1 + V (u)) <∞.
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Next, using conditions (C1)–(C3) we find that
LtV (u) ≤ −c0a(t)V (u) + a2(t)c1(1 + V (u)).

Now from the Korolyuk theorem (see Theorem 6.1 or [16]) and the Nevelson–
Hasminskii theorem (see Theorem 6.2 or [21]) we deduce that

P
(
lim
ε→0

uε(t) = u?
)
= 1,

which completes the proof.

4. Application. This result can be used in controlling the process in an
averaging scheme with semi-Markov switchings [22].

A mathematical model for alcohol consumption is considered [23]. In
[24], an equilibrium point was obtained in the case of deterministic values of
coefficients in the form

(11)

{
a′ = µ+ γ − γm+ βa2 − a[β + µ+ γ − (d− dA)(1− a)],
m′ = βa− βa2 −m[α+ µ+ a(d− dA)],

where α = 0.000110247 (rate at which a nonrisk consumer moves to the risk
consumption subpopulation), β = 0.0284534 (transmission rate due to social
pressure to increase alcohol consumption: family, friends, marketing, TV,
etc.), µ = 0.01 (birth rate in Spain), dA = 0.008 (death rate in Spain), d =
0.009 (augmented death rate due to alcohol consumption), γ = 0.00144 (rate
at which a risk consumer becomes a nonconsumer), a(t) is the rate of non-
consumers, and m(t) the rate of non-risk consumers. It is the same model as
presented in [23], but without delay (assuming I(at) ≈ at).
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The solution of system (11) converges to the equilibrium point: a∗ =
0.3647389407, m∗ = 0.6293831151 (see [23]). We propose below a modifi-
cation of the above system considering a semi-Markov model with switch-
ings. More precisely, we consider two modifications studied in the following
subsections.
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4.1. Model with stochastic drift. Consider the model

(12)


a′ = µ+ γ − γm+ βa2 − a[β + µ+ γ − (d− dA)(1− a)]

+ σ1(a− a?)w′1,

m′ = βa− βa2 −m[α+ µ+ a(d− dA)] + σ2(m−m?)w′2,

where α = 0.000110247, β = 0.0284534, µ = 0.01, dA = 0.008, d = 0.009,
γ = 0.00144, a0 = 0.362, m0 = 0.581, a(t) is the nonconsumers rate, and
m(t) the rate of nonrisk consumers. It is the same model as in [24], I(at) ≈ at.
Here w′1, w′2 denote mutually independent standard Wiener processes.
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The solution of (12) converges to the equilibrium point a∗ = 0.3647389407,
m∗ = 0.6293831151 [24].

4.2. Stochastic approximation procedure applied to stochastic
drift with semi-Markov switchings. The next model involves noncon-
stant coefficients. In this case, we use a stochastic approximation procedure
for a diffusion process with semi-Markov switchings,

(13)


a′ = c

[
µ(X) + γ − γm+ βa2 − a[β + µ(X) + γ − (d− dA)(1− a)]

+ σ1(a− a?)w′1
]
,

m′ = c
[
βa− βa2 −m[α+ µ(X) + a(d− dA)] + σ2(m−m?)w′2

]
,

where α = 0.000110247, β = 0.0284534, µ = 0.01, dA = 0.008, d = 0.009,
γ = 0.00144, a0 = 0.362, m0 = 0.581, a(t) is the rate of nonconsumers,
and m(t) the rate of nonrisk consumers. It is the same model as in [24],
I(at) ≈ at, a? = 0.3647389407, m? = 0.6293831151 (the solution of the
simple model (12)). Here w′1, w′2 are mutually independent standard Wiener
processes and

µ(X) = µ+X
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where X is a semi-Markov process with states ±0.005, and with Gx(t) ∼
unif[0, 50]. Gx(t) could have another distribution, but should satisfy the
Cramer condition (see (C6) of Theorem 3.1).
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c(t) = 1

t3/4+1

5. Conclusion. Considering the seventh condition of the theorem
(
	∞
0 c(t) dt = ∞,

	∞
0 c2(t) dt < ∞), the following control functions are avail-

able:

c(t) =
1

tα + 1

where α ∈ (1/2, 1]. In our example, when α = 1 we get a slight local vari-
ation but slow convergence to the solution (figure (b)). In contrast, when
α = 1/2, we get faster convergence to the solution, but more local variations
(figure (a)). The selection of the appropriate α can be the subject of a sepa-
rate study; in our opinion, it is reasonable to take α = 3/4, which combines
the advantages and disadvantages of extreme values in this context.
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6. Appendix

Theorem 6.1 (Pattern limit theorem [16, p. 202]). Suppose the following
conditions hold:

(D1) The family of stochastic processes ξε(t), t ≥ 0, ε ≥ 0, is relatively
compact.

(D2) There exists a family of test functions φε(·, ·) in C3
0 (R× E) such that

lim
ε→0

φε(u, x) = φ(u) uniformly in u, x.

(D3) We have

lim
ε→0

Lεtφ
ε(u, x) = Ltφ(u) uniformly on u, x.

The family of functions Lεtφ
ε, ε > 0, is uniformly bounded, and Lεtφ

ε

and Ltφ belong to C(Rd × E).
(D4) The convergence of the initial values holds, that is,

ξε(0)→ ξ(0), ε→ 0,

and
sup
ε>0

E|ξε(0)| ≤ C < +∞.

Then we have the weak convergence

ξε(t)⇀ ξ(t), ε→ 0.

The limit process ξ(t), t ≥ 0, is given by the solution of
d

dt
φ(ξ(t)) = Ltφ(ξ).

We used conditions (D2) and (D3) in (3.4). Condition (D1) has been
proved in [27].

Let
Ltφ(u) = a(t)C(u)φ′(u) +

1

2
a2(t)σ2(u)φ′′(u),

where φ(·) ∈ C2(Rd).
Theorem 6.2 ([21, Chapter 3, formula (8.5)]). Let V (u) be a Lyapunov

function such that
V (u)→∞, |u| → ∞,

and
LtV (u) ≤ −a(t)c0V (u) + c1a

2(u)(1 + V (u))

where
	∞
t0
a(t) dt =∞ and

	∞
t1
a2(t) dt <∞, and c0 > 0, c1 > 0. Then

P
(
lim
t→∞

u(t) = u?
)
= 1,

where C(u?) = 0.
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