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Summary. A stochastic Gronwall lemma is proved in Scheutzow (2013) in the case when
the exponent p lies in the interval 0 < p < 1. In this paper, we extend the lemma to the
entire interval 0 < p < ∞. We construct simple examples to illustrate the present result.

1. Introduction. In [8], Scheutzow proved a stochastic version of the
celebrated Gronwall lemma of the following type:

Theorem 1.1. Let Z and H be non-negative, adapted processes with con-
tinuous paths and assume that ψ is a non-negative and progressively mea-
surable function. Let M be a continuous local martingale starting at zero. If

(1) Z(t) ≤ H(t) +

t�

0

ψ(s)Z(s) ds+M(t)

for all t ≥ 0, then for p ∈ (0, 1), and µ, ν > 1 such that 1/µ + 1/ν = 1 and
pν < 1, we have

E sup
0≤s≤t

Z(s)p ≤ (cpν + 1)1/ν
(
E exp

{
pµ

t�

0

ψ(s) ds
})1/µ

(E(H∗(t))pν)1/ν ,

where H∗ is the maximal function of H and cpν is a positive constant given
by

(2) cpν =

(
4 ∧ 1

pν

)
πpν

sin(πpν)
.
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It is pointed out in [8] that the exact constant cpν in (2) is not optimal.
We also remark that the above result in Theorem 4 of Scheutzow [8] holds
true only for 0 < p < 1. A key question naturally arises: can this result be
extended to the entire interval (0,∞)? The main aim of the present paper is
to answer this question in the affirmative. For the rest of the paper, we shall
assume that

(3) Z(t)α ≤ H(t) +
(t�
0

ψ(s)Z(s)β ds
)α/β

+M(t)

for all t ≥ 0, where α, β are positive real numbers. Throughout the paper,
we impose similar assumptions on the real-valued processes Z = (Zt)t≥0,
H = (Ht)t≥0, ψ = (ψt)t≥0 and M = (Mt)t≥0 to those in Theorem 1.1. A
general account of these processes is given in [6] and [7].

It is essential to note that in the special case when α = 1 and β = 1 in (3),
we have the linear stochastic integral inequality (1). The main point here is
that the results of this paper contain and extend Theorem 4 of Scheutzow [8].

2. Main results. In this paper, we shall prove the following two theo-
rems.

Theorem 2.1. Let 0 < α ≤ β < ∞ and 1 < r < ∞, and let θ, q > 1 be
such that 1/θ+1/q = 1. Suppose that (3) holds. Then there exists a positive
constant Arq, depending only on r and q, such that

E sup
0≤s≤t

Z(s)α ≤ 21−1/q
(
E

(
1 +

(1− e(t))α/β

1− (1− e(t))α/β

)θ)1/θ

(4)

×
(
(E(H∗(t))q)1/q +Arq(E〈M〉rq/2t )1/(rq)

)
for all t ≥ 0, where

H∗(t) = sup
0≤s≤t

Hs,

〈M〉 is the quadratic variation of a continuous local martingale M with
M(0) = 0, and e(t) is the process given by

(5) e(t) = exp
(
−
t�

0

ψ(u) du
)
.

Proof. We argue similarly to [8], with minor modifications. The change
of variable Y (t) = Z(t)α in (3) yields

(6) Y (t) ≤ H(t) +M(t) +
(t�
0

ψ(s)Y (s)β/α ds
)α/β

for all 0 ≤ t <∞.
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For any real-valued continuous local martingale M = (Mt)t≥0, it follows
from (6) that

(7) Y (t) ≤ H(t) + |M(t)|+
(t�
0

ψ(s)Y (s)β/α ds
)α/β

.

We now proceed to estimate Y (t) from above. Let e(t) be defined by (5).
Using a nonlinear version of the Gronwall lemma (see [9, Theorem 1]) in (7),
we get the estimate

Y (t) ≤ H(t) + |M(t)|+
(
	t
0 ψ(s)(H(s) + |M(s)|)β/αe(s) ds)α/β

1− (1− e(t))α/β
(8)

≤ H(t) + |M(t)|+
(
	t
0 ψ(s)e(s) ds)

α/β

1− (1− e(t))α/β
(H∗(t) +M∗(t))

= H(t) + |M(t)|+ (1− e(t))α/β

1− (1− e(t))α/β
(H∗(t) +M∗(t)),

where H∗(t) = sup0≤s≤tHs and M∗(t) = sup0≤s≤t |Ms|. Therefore,

(9) Z(t)α ≤ H(t) + |M(t)|+ (1− e(t))α/β

1− (1− e(t))α/β
(H∗(t) +M∗(t)).

Consequently, assuming that ψ(s) is non-deterministic in (9), applying
the Hölder inequality we obtain

(10) E sup
0≤s≤t

Z(s)α ≤ E

(
1 +

(1− e(t))α/β

1− (1− e(t))α/β

)
(H∗(t) +M∗(t))

≤
(
E

(
1 +

(1− e(t))α/β

1− (1− e(t))α/β

)θ)1/θ(
E(H∗(t) +M∗(t))q

)1/q
≤ 21−1/q

(
E

(
1 +

(1− e(t))α/β

1− (1− e(t))α/β

)θ)1/θ

×
(
(E(H∗(t))q)1/q + (E(M∗(t))q)1/q

)
for θ, q > 1 and 1/θ + 1/q = 1.

Let 〈M〉 be the quadratic variation of a continuous local martingale M
with M(0) = 0. Then, by a continuous martingale inequality (see [2, Theo-
rem 1]), there exists a positive constant Crq for 1 < r <∞ such that

(11) E(M∗(t))q ≤ Crq(E〈M〉rq/2t )1/r.

The desired result (4) now follows by combining (10) and (11).
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Remark. In the case when ψ(s) is deterministic in (9), it follows imme-
diately using the continuous martingale inequality [2] that

E sup
0≤s≤t

Z(s)α ≤
(
1 +

(1− e(t))α/β

1− (1− e(t))α/β

)(
E(H∗(t)) +Br(E〈M〉r/2t )1/r

)
,

where Br is some constant with 1 < r <∞, and 0 < α ≤ β.

A remarkable feature of Scheutzow’s result [8] is that the upper estimate
is independent of the quadratic variation 〈M〉 of the continuous local mar-
tingaleM . This is a consequence of the Burkholder martingale inequality [3].
Indeed, our result in Theorem 2.1 is given in terms of 〈M〉. In what follows,
assuming that (3) holds, we shall prove a result similar to that in [8] with
the upper bound independent of the quadratic variation 〈M〉. The result
extends [8, Theorem 4] to the case when 0 < p < ∞. We shall construct
simple examples to illustrate this result.

Theorem 2.2. Let 0 < p < β ≤ α < ∞, and let θ, q > 1 be such that
1/θ + 1/q = 1 and pq/β < 1. Assume that (3) holds. Then there exists a
positive constant Bpq/β, depending only on p, q and β, such that

(12) E sup
0≤s≤t

Z(s)p

≤ (1 +Bpq/β)
1/q

(
E exp

(
pθ

β

t�

0

ψ(s) ds

))1/θ(
E(H∗(t))pq/α

)1/q
for all t ≥ 0, where H∗(t) = sup0≤s≤tHs.

Proof. The proof is similar to that in [8] with appropriate modifications.
Taking the β

αth power on both sides of (7), we get

(13) Y (t)β/α ≤ H(t)β/α + |M(t)|β/α +

t�

0

ψ(s)Y (s)β/α ds.

Let N(t) = Y (t)β/α. Then

(14) N(t) ≤ H(t)β/α + |M(t)|β/α +

t�

0

ψ(s)N(s) ds.

Now applying the usual Gronwall lemma in (14) and integrating by parts,
we have

(15) N(t) ≤ exp
(t�
0

ψ(s) ds
)(t�

0

e−
	r
0 ψ(s) ds d|M(r)|β/α +H∗(t)β/α

)
.

It is clear that the stochastic integrator |M |β/α in (15) is not a con-
tinuous local martingale. Let δ > 0 and define a process P (r) by P (r) =
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(δ + |M(r)|2)β/(2α). Applying Ito’s lemma to P (r), we obtain

dP (r) =
β

α
(δ + |M(r)|2)

β
2α
−1|M(r)| sgn(M(r)) dM(r)

+
β

2α

(
(δ + |M(r)|2)

β
2α
−1 +

(
β

α
− 2

)
(δ + |M(r)|2)

β
2α
−2|M(r)|2

)
d〈M〉r,

where sgn(x) is 1 if x ≥ 0, and −1 if x < 0.
Letting δ ↓ 0 and using the fact that β/α− 2 ≤ −1, it now follows that

(16) d|M(r)|β/α ≤ β

α
|M(r)|β/α−1 sgn(M(r))dM(r).

Hence,

(17)
t�

0

e−
	r
0 ψ(s) ds d|M(r)|β/α

≤ β

α

t�

0

e−
	r
0 ψ(s) ds|M(r)|β/α−1 sgn(M(r)) dM(r)

with the stochastic integrator on the right-hand side being a continuous local
martingale.

Define a local martingale A = (At)t≥0 by

(18) A(t) =
β

α

t�

0

e−
	r
0 ψ(s) ds|M(r)|β/α−1 sgn(M(r)) dM(r).

We shall prove the existence of a continuous version of the local mar-
tingale A(t). Using [5, Lemma 2.20], it suffices to show that 〈A〉t < ∞ for
all t ≥ 0. Let κ ≥ 1 be fixed, A = (At)t≥0 be defined by (18) and let
M∗(t) = sup0≤r≤t |Mr|. Then

〈A〉t =
β2

α2

t�

0

e−2
	r
0 ψ(s) ds|M(r)|2(β/α−1) d〈M〉r(19)

=
β2

α2

t�

0

e−2
	r
0 ψ(s) ds

|M(r)|2(β/α−1)+κ

|M(r)|κ
d〈M〉r

≤ β2

α2
M∗(t)2β/α+κ

t�

0

e−2
	r
0 ψ(s) ds

d〈M〉r
|M(r)|2+κ

≤ β2

α2
M∗(t)2β/α+κ

t�

0

d〈M〉r
|M(r)|2+κ

<∞

provided that M∗ and
	t
0

d〈M〉r
|M(r)|2+κ are both finite.
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This proves that there exists a continuous version (local martingale) L(t)
of the local martingale A(t). It now follows from (15), (17) and (18) that

(20) N(t) ≤ exp
(t�
0

ψ(s) ds
)(
L(t) +H∗(t)β/α

)
using the continuous version of A(t).

The rest of the proof now follows as in [8] with minor modifications.
Using the change-of-variables N(t) = Y (t)β/α and Y (t) = Z(t)α, we obtain
N(t) = Z(t)β . Then (20) implies that

(21) Z(t) ≤ exp

(
1

β

t�

0

ψ(s) ds

)(
L(t) +H∗(t)β/α

)1/β
.

By the non-negativity of the process Z, we have −L(t) ≤ H∗(t)β/α for all
t ≥ 0. On the other hand, by the Hölder inequality with exponents θ, q > 1
such that 1/θ + 1/q = 1, we have

(22) E sup
0≤s≤t

Z(s)p ≤ E exp

(
p

β

t�

0

ψ(s) ds

)(
L∗(t) +H∗(t)β/α

)p/β
≤
(
E exp

(
pθ

β

t�

0

ψ(s) ds

))1/θ(
E(L∗(t))pq/β +E(H∗(t))pq/α

)1/q
,

where L∗(t) = sup0≤s≤t |Ls|.
The proof will be complete once we have an estimate for E(L∗(t))pq/β .

This follows by using the Burkholder martingale inequality (see [3, p. 432]).
For 0 < pq/β < 1 and L(t) being a local martingale with continuous sample
paths and L(0) = 0, there exists a positive constant Bpq/β such that

(23) E(L∗(t))pq/β ≤ Bpq/βE(L−(t))pq/β,

where L−(t) := − inf0≤s≤t Ls ∨ 0.
Now from −L(t) ≤ H∗(t)β/α, we have L−(t) ≤ H∗(t)β/α. Hence,

(24) E(L−(t))pq/β ≤ E(H∗(t))pq/α.

Then

(25) E(L∗(t))pq/β ≤ Bpq/βE(H∗(t))pq/α,

which follows immediately from (23) and (24).
Now combining (22) and (25), we obtain (12), which completes the proof

of the theorem.
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Remark. It should be noted that if α = β = 1, then Theorem 2.2 is
proved in Scheutzow [8] with an exact constant Bpq and for 0 < p < 1. In
this particular case, the optimal constant Bpq follows from Theorem 1.4 in
Bañuelos and Osękowski [1].

Remark. For a class of continuous local martingales M such that
t�

0

d〈M〉r
|M(r)|2+κ

<∞,

see for instance [4, Theorem II.4 and remark on p. 171].

We conclude with two simple examples of independent interest. These
fall under our Theorem 2.2, but not under [8, Theorem 4] where the upper
estimates for E sup0≤s≤t Z(s)

p are given in the case 0 < p < 1.

Example 2.3. Fix 1 < β ≤ α. Let θ and q satisfy the conditions in
Theorem 2.2. Hence, assuming (3) holds, E sup0≤s≤t Z(s) is majorized by
the upper estimate in (12) with p = 1.

Example 2.4. Let 2 < β ≤ α, and let θ, q > 1 be such that 1/θ + 1/q
= 1 and 2q/β < 1. Suppose that (3) holds. Then an upper bound for
E sup0≤s≤t Z(s)

2 follows from Theorem 2.2 for p = 2.

Acknowledgements. We are grateful to an anonymous referee for a
careful reading of our earlier submission.
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