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NEW WEIERSTRASS ELLIPTIC WAVE SOLUTIONS OF THE
DAVEY–STEWARTSON EQUATION WITH

POWER LAW NONLINEARITY

Abstract. Travelling wave solutions for the (2+1)-dimensional Davey–
Stewartson-type equations are studied by using the Weierstrass elliptic func-
tion method. As a result, some previously known solutions are recovered,
and at the same time some new ones are also given including integrable
ones. Moreover, three-dimensional and two-dimensional graphics of some so-
lutions are plotted.

1. Introduction. The Davey–Stewartson (DS) equations for the func-
tion q = q(x, y, t) are (see [7])

(1.1)
iqt + aqxx + qyy + b|q|2q − 2qrx = 0,

rxx − aryy − b(|q|2)xx = 0,

where q is the (complex valued) envelope of the wave packet associated with
the fast oscillations, and r is the induced mean flow, x and y are the slow, hor-
izontal scales parallel and perpendicular to the fast oscillations, respectively,
whereas t is the slow time in the group velocity frame. As usual, irrotational
flow of an inviscid fluid is studied, and q is connected with the velocity po-
tential. Of particular significance is the parameter a, and the cases a = 1 and
a = −1 are called the DS I and DS II equations, respectively. The constant
b measures the cubic nonlinearity. The DS equation is a two-dimensional
generalization of the nonlinear Schrödinger (NLS) equation. Much work has
been done in the past few decades to study this equation. Especially, in 1988,
Boiti et al. [5] considered the DS equation and constructed solutions that
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decay exponentially in all directions. Using the inverse scattering method,
Fokas and Santini [14, 15] derived such solutions and named them dromions.
Hietarinta and Hirota [17, 18] and Radha and Lakshmanan [27] found mul-
tidromion solutions or one-dromion solutions to the DS equation by the
bilinear method. Their works developed the study of the DS equation in an
interesting direction. Recently, many new methods to construct exact solu-
tions of the DS equation have been established and developed, such as the
sine-cosine method [3, 32], extended Weierstrass transformation method [16],
trial equation method and ansatz approach [25], extended Jacobian elliptic
function expansion method [4], homotopy analysis method [21], homotopy
perturbation method [33], first integral method [22], exp-function method,
(G

′

G ) method [8], uniform algebraic method [13] etc. The solutions of the DS
equation have been applied in plasma physics, nonlinear optics, hydrody-
namics, etc. For example, the solutions of the DS equation can describe the
interaction between a spatiotemporal optical pulse and adequately matched
microwaves [23].

The purpose of this paper is to apply the Weierstrass elliptic function
method [9–12, 26, 28] to the following (2 + 1)-dimensional Davey–Stewart-
son-type equations with power law nonlinearity [8, 29]:

(1.2)
iqt + a(qxx + qyy) + b|q|2nq − αqr = 0,

rxx + ryy + β(|q|2n)xx = 0.

Here, q and r are the dependent variables while x, y and t are the independent
variables. The first two independent variables are the spatial variables while
t represents time. The exponent n is the power law parameter. It is necessary
to have n > 0. In (1.2), q is a complex valued function while r is a real valued
function. Also, a, b, α, and β are all constant coefficients. The authors of [8]
and [29] obtained some exact explicit solutions of (1.2).

The objective of this paper is to investigate the travelling wave solutions
of (1.2) systematically, by applying the Weierstrass elliptic function method.
It will be shown that some previously known solutions are recovered, and
some new ones are found.

The paper is organized as follows. In Section 2, we outline the Weierstrass
elliptic function method. In Section 3, we give some particular travelling wave
solutions of (1.2). Finally, some corollaries are given in Section 4. In the
Appendix, we give some elementary features and properties of Weierstrass
functions.

2. Weierstrass elliptic functions. When searching for solutions of
some evolutionary equations, we encounter the following ordinary differential
equation [26, 31]:
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(2.1)
(
dϕ(ξ)

dξ

)2

= a0ϕ
4 + 4a1ϕ

3 + 6a2ϕ
2 + 4a3ϕ+ a4 = P (ϕ).

In [31], Whittaker and Watson introduced two invariants:

g2 = a0a4 − 4a1a3 + 3a22,(2.2)

g3 = a0a2a4 + 2a1a2a3 − a32 − a0a23 − a21a4,(2.3)

and the discriminant ∆ = g32 − 27g23. Then solutions ϕ of (2.1) can be ex-
pressed in terms of elliptic functions ℘ [30, 31]:

(2.4) ϕ(ξ) = ϕ0 +
P ′(ϕ0)

4
[
℘(ξ, g2, g3)− 1

24P
′′(ϕ0)

] ,
where ϕ0 is one of the roots of the polynomial P (ϕ), and P ′(ϕ0), P ′′(ϕ0)
respectively denote the first and second derivative of P (ϕ) with respect to
ϕ at ϕ0. In particular, if ∆ = g32 − 27g23 = 0, then the Weierstrass elliptic
function ℘(ξ, g2 , g3) satisfies these conditions [1]:

(2.5)
℘(ξ, 12s2, 8s3) = −s+ 3s sin−2(

√
3s ξ), g2 > 0, g3 > 0,

℘(ξ, 12s2,−8s3) = s+ 3s sinh−2(
√
3s ξ), g2 > 0, g3 < 0,

where s = 1
2

3
√
|g3|. Once we get a solution of (2.1) of the form (2.4), we

will get exact expressions of solutions of many partial differential equations.
Suppose that ∆ = g32 − 27g23 = 0. It is obvious that if g2 > 0, g3 > 0, then
there exist periodic solutions of the original evolutionary equation:

(2.6) ϕ(ξ) = ϕ0 +
P ′(ϕ0)

4
[
− e1

2 −
P ′′(ϕ0)

24 + 3
2e1 csc

2
(√

3
2e1 t

)] , ∆ = 0, g3 > 0,

while if g2 > 0, g3 < 0, then there exist solitary solutions:

(2.7) ϕ(ξ) = ϕ0 +
P ′(ϕ0)

4
[
e1 − P ′′(ϕ0)

24 + 3e1csch
2
(√

3e1 t
)] , ∆ = 0, g3 < 0,

where e1 = 3
√
|g3| in (2.6) and e1 = 1

2
3
√
|g3| in (2.7).

3. The 2D Davey–Stewartson equation with power law nonlin-
earity. We assume that a travelling wave solution of (1.2) is of the form

(3.1)
q(x, y, t) = exp(iθ)g(ξ), r(x, y, t) = h(ξ),

ξ = kx+ λy − νt, θ = px+ sy + ωt

where k, λ, ν, p, s and ω are real constants. Then (1.2) becomes the system
of ODEs
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(−ν + 2a(pk + sλ))g′(ξ) = 0,(3.2)

a(k2 + λ2)g′′ − (ω + a(p2 + s2))g + bg2n+1 − αgh = 0,(3.3)

(k2 + λ2)h′′ + βk2(g2n)′′ = 0.(3.4)

where the primes denote derivatives with respect to ξ. Equation (3.4) can
then be integrated term by term two times where the integration constants
are taken to be zero. This converts it into

(3.5) h = − βk2

k2 + λ2
g2n.

Substituting (3.5) into (3.3), we have

(3.6) a(k2 + λ2)g′′ − (ω + a(p2 + s2))g +

(
b+

αβk2

k2 + λ2

)
g2n+1 = 0.

By multiplying (3.6) by g′ and integrating once again, we get

(3.7) (g′)2 = K + δg2 − γ

n+ 1
g2n+2,

where δ = ω+a(p2+s2)
a(k2+λ2)

, γ = 1
a(k2+λ2)

(
b + αβk2

k2+λ2

)
and K is the integration

constant. The transformation g = ϕp, p 6= 0, 1, turns the above equation to

(3.8)
(
dϕ

dξ

)2

=
1

p2

[
Kϕ2−2p + δϕ2 − γ

n+ 1
ϕ2np+2

]
.

If we want to guarantee the integrability of (3.8), the powers of φ have to be
integers between 0 and 4 [19], and therefore we have the following possible
cases:

• If K = 0, then p ∈
{
− 1
n ,−

1
2n ,

1
2n ,

1
n

}
.

In the following it will be proved that p = 1
2n and p = 1

n give the same
solution of (2.1), and therefore we only consider p = 1

2n . For the same reason,
for p = − 1

2n and p = − 1
n we will only consider p = − 1

2n .

• If K 6= 0, then n = 2 and p = ±1
2 .

Next, by using the results obtained in the preceding sections, we will con-
struct the corresponding solutions of (3.8) in the above cases.

3.1. Case 1

Case 1(i): K = 0, p = 1
2n . In this case, (3.8) takes the form

(3.9)
(
dϕ

dξ

)2

= 4n2
[
δϕ2 − γ

n+ 1
ϕ3

]
= P (ϕ).

The polynomial P (ϕ) has two roots: ϕ0 = 0 (with multiplicity two) and
ϕ0 = δ(n + 1)/γ. From (2.4), for each root ϕ0 a solution of (3.9) can be
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found to be

(3.10) ϕ =
3ϕ0℘(ξ, g2, g3) + 5n2δϕ0 − 6n2γ

n+1 ϕ
2
0

3℘(ξ, g2, g3)− n2δ + 3n2γ
n+1 ϕ0

,

where the invariants are

(3.11) g2 = 48n4δ2, g3 = −64n6δ3.
The root ϕ0 = 0 gives the trivial solution ϕ = 0, and the nonzero solution
of P (ϕ) = 0 can be easily found. By substituting ϕ0 = δ(n+ 1)/γ in (3.10),
we get

(3.12) ϕ =
δ(n+ 1)

γ

3℘(ξ, g2, g3)− n2δ
3℘(ξ, g2, g3) + 2n2δ

.

Since ∆ = 0, we find a periodic wave solution to (3.9) from (2.6):

(3.13) ϕ =
δ(n+ 1)

γ
sec2(n

√
−δ ξ)

for δ < 0. A solitary wave solution of (3.9) is obtained from (2.7):

(3.14) ϕ =
δ(n+ 1)

γ
sech2(n

√
δ ξ)

for δ > 0. Changing to the original variables, the periodic wave solution
of (1.2) (for δ < 0) and the solitary wave solution (for δ > 0) can be written
respectively as

(3.15)
q(x, t) = exp(iθ)(

√
δ(n+ 1)/γ sec(n

√
−δ ξ))1/n,

r(x, t) = − βk2

k2 + λ2
δ(n+ 1)

γ
(sec(n

√
−δ ξ))2

and

(3.16)
q(x, t) = exp(iθ)(

√
δ(n+ 1)/γ sech(n

√
δξ))1/n,

r(x, t) = − βk2

k2 + λ2
δ(n+ 1)

γ
(sech(n

√
δ ξ))2.

We will now show that by choosing p = 1
n in (3.8) instead p = 1

2n , we
will recover the same solutions for (1.2).

In this case, (3.8) becomes

(3.17)
(
dϕ

dξ

)2

= 4n2
[
δϕ2 − γ

n+ 1
ϕ4

]
= P (ϕ).

The fourth order polynomial P (ϕ) has two roots: ϕ0 = 0 (double) and ϕ0 =
±
√
δ(n+ 1)/γ. From (2.4), the solution of (3.17) in terms of ϕ0 is

(3.18) ϕ =
3ϕ0℘(ξ, g2, g3) + 5n2δϕ0 − 6n2γ

n+1 ϕ
3
0

3℘(ξ, g2, g3)− n2δ + 6n2γ
n+1 ϕ

2
0

,
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where the invariants are

(3.19) g2 =
4
3n

4δ2, g3 = − 8
27n

6δ3.

Then for ϕ0 = ±
√
δ(n+ 1)/γ, a nontrivial solution of (3.17) is

(3.20) ϕ = ±

√
δ(n+ 1)

γ

3℘(ξ, g2, g3)− n2δ
3℘(ξ, g2, g3) + 5n2γ

.

Since ∆ = 0, it is easy to see from (2.6), (2.7) that the solutions (3.20)
give rise to the same periodic wave and solitary wave solutions of (1.2) as in
(3.15), (3.16).

Case 1(ii): K = 0, p = −1
2n . In this case, (3.8) takes the form

(3.21)
(
dϕ

dξ

)2

= 4n2
[
δϕ2 − γ

n+ 1
ϕ

]
= P (ϕ).

The second order polynomial P (ϕ) has two roots: ϕ0 = 0 and ϕ0 = γ
δ(n+1) .

The solution of (3.21), obtained from (2.4), is

(3.22) ϕ =
3ϕ0℘(ξ, g2, g3) + 5n2δϕ0 − 3n2γ

n+1

3℘(ξ, g2, g3)− n2γ
where the invariants are given by (3.11). Substituting ϕ0 = 0 into (3.22), we
get

(3.23) ϕ = − 3n2γ

(n+ 1)(3℘(ξ, g2, g3)− n2δ)
.

Since ∆ = 0, from (2.6) and (2.7), a periodic wave solution and a solitary
wave solution of (3.21) can be written respectively as

ϕ =
γ

δ(n+ 1)
sin2(n

√
−δ ξ) (δ < 0)(3.24)

and

ϕ = − γ

δ(n+ 1)
sinh2(n

√
δ ξ) (δ > 0)(3.25)

Therefore, when δ < 0, (1.2) has the following periodic wave solution:

(3.26)
q(x, t) = exp(iθ)(

√
δ(n+ 1)/γ csc(n

√
−δ ξ))1/n,

r(x, t) = − βk2

k2 + λ2
δ(n+ 1)

γ
(csc(n

√
−δ ξ))2

when δ > 0, (1.2) has the following solitary wave solution:

(3.27)
q(x, t) = exp(iθ)(

√
−δ(n+ 1)/γ csch(n

√
δ ξ))1/n,

r(x, t) =
βk2

k2 + λ2
δ(n+ 1)

γ
(csch(n

√
δ ξ))2.
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On substituting the second root ϕ0 =
γ

δ(n+1) into (3.22), we get

(3.28) ϕ =
γ

δ(n+ 1)

3℘(ξ, g2, g3) + 2n2δ

3℘(ξ, g2, g3)− n2δ
.

So from (2.6) and (2.7), the solution can be expressed as

(3.29) ϕ =
γ

δ(n+ 1)
cos2(n

√
−δ ξ) (δ < 0)

and

(3.30) ϕ =
γ

δ(n+ 1)
cosh2(n

√
δ ξ) (δ > 0).

Thus, we get the solutions of (1.2) which were given by (3.15) and (3.16). In
addition, it can be proved that the choice p = − 1

n in (3.8) gives exactly the
same solutions for (1.2).

Exact travelingwavesolutionsof the (2+1)-dimensionalDavey–Stewartson
equation with power law nonlinearity can be obtained by using the above
results:

Theorem 1. The (2 + 1)-dimensional Davey–Stewartson equation with
power law nonlinearity has solutions described as follows:

(1) When δ < 0, there exist the following explicit periodic wave solutions:

(3.31)
q1(x, y, t) = exp(iθ)(

√
δ(n+ 1)/γ sec(n

√
−δξ))1/n,

r1(x, y, t) = −
βk2

k2 + λ2
δ(n+ 1)

γ
(sec(n

√
−δ ξ))2,

and also

(3.32)
q2(x, y, t) = exp(iθ)(

√
δ(n+ 1)/γ csc(n

√
−δ ξ))1/n,

r2(x, y, t) = −
βk2

k2 + λ2
δ(n+ 1)

γ
(csc(n

√
−δ ξ))2.

(2) When δ > 0, there exist the following explicit solitary wave solutions:

(3.33)
q3(x, y, t) = exp(iθ)(

√
δ(n+ 1)/γ sech(n

√
δ ξ))1/n,

r3(x, y, t) = −
βk2

k2 + λ2
δ(n+ 1)

γ
(sech(n

√
δ ξ))2,

and also

(3.34)
q4(x, y, t) = exp(iθ)(

√
−δ(n+ 1)/γ csch(n

√
δ ξ))1/n,

r4(x, y, t) =
βk2

k2 + λ2
δ(n+ 1)

γ
(csch(n

√
δ ξ))2.

Remark 3.1. 1. When δ < 0, the solutions (3.31) that we obtained coin-
cide with the solutions (3.9) which were obtained by the dynamical system
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method by J. Shi et al. [29], When δ > 0, the solutions (3.33)–(3.34) we
obtained coincide with those obtained by J. Shi et al. [29, (3.7)–(3.1)].

(a)

(b)

Im q(x, t)

γ(x, t)

γ(x, t)Im q(x, t)

5

0

0

−50

−100

3

2

1

−1

−2

1 2 3 4

Fig. 1. (a) 3D surfaces of (3.31). (b) 2D surfaces of (3.31) for n = 3, δ = γ = −1,
k = p = v = −ω = 1, y = 0.

3.2. Case 2

Case 2(i): K 6= 0, n = 2, p = 1
2 . In this case, (3.8) takes the form

(3.35)
(
dϕ

dξ

)2

= 4

[
δϕ2 − γ

3
ϕ4 +Kϕ

]
= P (ϕ).

Now, solutions of (3.35) can be deduced from (2.4):

(3.36) ϕ =
3ϕ0℘(ξ, g2, g3) + 5δϕ0 − 2γϕ3

0 + 3K

3℘(ξ, g2, g3)− δ + 2γϕ2
0

where the invariants are given by

(3.37) g2 = 4δ2, g3 = 4(−δ3 + 9γK3)/27.
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So we can obtain the general expressions for solutions to (1.2):

(3.38)
q(x, y, t) = exp(iθ)

(
3ϕ0℘(ξ, g2, g3) + 5δϕ0 − 2γϕ3

0 + 3K

3℘(ξ, g2, g3)− δ + 2γϕ2
0

)1/2

,

r(x, y, t) = − βk2

k2 + λ2

(
3ϕ0℘(ξ, g2, g3) + 5δϕ0 − 2γϕ3

0 + 3K

3℘(ξ, g2, g3)− δ + 2γϕ2
0

)2

.

0.0

0.5

1.0

-2.0

-1.5

-1.0

-0.5

0.0

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2 -2 -1 1 2 3

-2.5

-2.0

-1.5

-1.0

-0.5

ReqHx, t L
rHx, t L

HcL

ReqHx, t L

rHx, t L

HdL

(c)

(d)

Re q(x, t)
r(x, t)

Re q(x, t)
1.2

1.0

0.8

0.6

0.4

0.2

1 2 3 4 5

r(x, t)

−2 −1 1 2 3
−0.5

−1.0

−1.5

−2.0

−2.5

Fig. 2. (c) 3D surfaces of (3.33). (d) 2D surfaces of (3.33) for n = 3, δ = γ = 1, k = p =
v = −ω = 1, y = 0.

For example, taking the simplest root ϕ0 = 0 of P (ϕ) in (3.38), we obtain
the solution of (1.2) given by

(3.39)
q(x, y, t) = exp(iθ)

(
3K

3℘(ξ, g2, g3)− δ

)1/2

,

r(x, y, t) = − βk2

k2 + λ2

(
3K

3℘(ξ, g2, g3)− δ

)2

.

Case 2(ii): K 6= 0, n = 2, p = −1
2 . In this case, (3.8) has the form

(3.40)
(
dϕ

dξ

)2

= 4

[
δϕ2 − γ

3
+Kϕ3

]
= P (ϕ).
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Using a similar procedure to Case 2(ii), we can get the following general
expression for solutions to (1.2):

(3.41)
q(x, y, t) = exp(iθ)

(
3ϕ0℘(ξ, g2, g3) + 5δϕ0 − 2γϕ3

0 + 3K

3℘(ξ, g2, g3)− δ + 2γϕ2
0

)−1/2
,

r(x, y, t) = − βk2

k2 + λ2

(
3ϕ0℘(ξ, g2, g3) + 5δϕ0 − 2γϕ3

0 + 3K

3℘(ξ, g2, g3)− δ + 2γϕ2
0

)−2
.

Subcase 1: K < 0, n = 2, p = −1
2 , δ > 0 and γ = 0. In this case the

simple root of P (ϕ) = 0 is ϕ0 = −δ/K. Using (2.5) and inserting ϕ0 into
(2.4) yields

(3.42) ϕ(ξ) =
−δ
K

sech2(
√
δ ξ).

So, (1.2) has the following explicit solitary wave solutions:

(3.43)
q(x, y, t) = exp(iθ)

(
−δ
K

sech2(
√
δ ξ)

)1/2

,

r(x, y, t) = − βk2

k2 + λ2

(
−δ
K

sech2(
√
δ ξ)

)2

.

The results of this subsection are summarized in the following proposition:

Proposition 3.1. (1) When K 6= 0, n = 2, equation (1.2) has the
following solutions:

(3.44)
q(x, y, t) = exp(iθ)

(
3ϕ0℘(ξ, g2, g3) + 5δϕ0 − 2γϕ3

0 + 3K

3℘(ξ, g2, g3)− δ + 2γϕ2
0

)1/2

,

r(x, y, t) = − βk2

k2 + λ2

(
3ϕ0℘(ξ, g2, g3) + 5δϕ0 − 2γϕ3

0 + 3K

3℘(ξ, g2, g3)− δ + 2γϕ2
0

)2

.

For example, for ϕ0 = 0, a solution of (1.2) is given by

(3.45)
q(x, y, t) = exp(iθ)

(
3K

3℘(ξ, g2, g3)− δ

)1/2

,

r(x, y, t) = − βk2

k2 + λ2

(
3K

3℘(ξ, g2, g3)− δ

)2

and another one by

(3.46)
q(x, y, t) = exp(iθ)

(
3ϕ0℘(ξ, g2, g3) + 5δϕ0 − 2γϕ3

0 + 3K

3℘(ξ, g2, g3)− δ + 2γϕ2
0

)−1/2
,

r(x, y, t) = − βk2

k2 + λ2

(
3ϕ0℘(ξ, g2, g3) + 5δϕ0 − 2γϕ3

0 + 3K

3℘(ξ, g2, g3)− δ + 2γϕ2
0

)−2
.
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(2) When K < 0, n = 2, p = −1
2 , δ > 0 and γ = 0, equation (1.2) has

the following explicit bright solitary wave solutions:

(3.47)
q(x, y, t) = exp(iθ)

(
−δ
K

sech2(
√
δ ξ)

)1/2

,

r(x, y, t) = − βk2

k2 + λ2

(
−δ
K

sech2(
√
δ ξ)

)2

.

Remark 3.2. In Figs. 1 and 2 we have plotted two- and three-dimensional
surfaces for (3.31) and (3.33) for suitable values of parameters.

The solutions we obtained here are more abundant than those by means
of the (G

′

G ) method [8], which only yields exact soliton solutions.

4. Conclusion. In this paper, the Weierstrass elliptic function method
has been successfully applied to construct travelling wave solutions for the
nonlinear differential equations such as nonlinear 2DDavey–Stewartson equa-
tion (DSE) with power law nonlinearity. The solutions obtained are solitary
wave solutions, periodic wave solutions and bright solitary wave solutions. It
has been observed that the traveling wave solutions of (3.44), (3.45), (3.46)
and (3.47) obtained in this paper are new complex hyperbolic function solu-
tions. The Weierstrass elliptic function method is effective in finding exact
solutions of many other similar equations which have arbitrary-order non-
linearity.

5. Appendix

5.1. Elementary properties of Weierstrass functions. The original
constructions of elliptic functions are due to Weierstrass [30] and Jacobi [20].
Here we list some elementary properties of Weierstrass functions [2, 6, 24, 31].
We define

(5.1) ℘(z) :=
1

z2

+
∑

{m,n}6={0,0}

(
1

(z + 2mω1 + 2nω2)
2 −

1

(2mω1 + 2nω2)
2

)
.

By construction, this function is doubly periodic with fundamental periods
2ω1 and 2ω2:

(5.2) ℘(z + 2ω1) = ℘(z), ℘(z + 2ω2) = ℘(z).

This function is called the Weierstrass elliptic function.
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−2 −1 1 2

−2

−1

1

2

Basic properties. Directly from the definition (5.1), the Weierstrass el-
liptic function is even,

(5.3) ℘(−z) = ℘(z),

and

(5.4) ℘(z) =
∑
m,n

1

(z +mω1 + nω2)
2 −

∑
{m,n}6={0,0}

1

(mω1 + nω2)
2 .

Let us find the Laurent series of ℘(z) at z = 0. It is easy to show that

1

(z + w)2
− 1

w2
=

1

w2

∞∑
k=1

(k + 1)

(
− z
w

)k
.

Consequently,

℘(z) =
1

z2
+
∞∑
k=1

∑
{m,n}6={0,0}

(k + 1)(−1)k

(mω1 + nω2)
k+2

zk =
1

z2
+
∞∑
k=1

akz
k,

where

ak = (k + 1)(−1)k
∑

{m,n}6={0,0}

1

(2mω1 + 2nω2)
k+2

.

The fact that ℘ is even implies that only the even-indexed coefficients do
not vanish,

a2l+1 = 0,(5.5)

a2l = (2l + 1)
∑

{m,n}6={0,0}

1

(2mω1 + 2nω2)
2(l+1)

.(5.6)
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The first terms are

a2 = 3
∑

{m,n}6={0,0}

1

(2mω1 + 2nω2)
4 ,

a4 = 5
∑

{m,n}6={0,0}

1

(2mω1 + 2nω2)
6 .

For reasons that will become apparent later, we define g2 and g3 so that

(5.7) ℘(z) =
1

z2
+
g2
20
z2 +

g3
28
z4 +O(z6),

implying that

g2 = 60
∑

{m,n}6={0,0}

1

(2mω1 + 2nω2)
4 ,(5.8)

g3 = 140
∑

{m,n}6={0,0}

1

(2mω1 + 2nω2)
6 .(5.9)

Weierstrassdifferentialequation. Bydirectlydifferentiatingequation(5.1),
the derivative of the Weierstrass function can be expressed as

(5.10) ℘′(z) = −2
∑
m,n

1

(z +mω1 + nω2)
3 .

It follows that this derivative is odd,

(5.11) ℘′(−z) = −℘′(z).
The Laurent series of ℘′(z), ℘3(z) and ℘′2(z) at z = 0 are

℘(z) =
1

z2
+
g2
20
z2 +

g3
28
z4 +O(z6),

℘′(z) = − 2

z3
+
g2
10
z +

g3
7
z3 +O(z5),

℘3(z) =
1

z6
+

3g2
20

1

z2
+

3g3
28

+O(z2),

℘′2(z) =
4

z6
− 2g2

5

1

z2
− 4g3

7
+O(z2).

It is not difficult to show that there is a linear combination of the above
which is not singular at z = 0 and furthermore it vanishes there. One can
eliminate the sixth order pole by taking an appropriate combination of ℘′2
and ℘3. This leaves a function with a second order pole. Taking an appro-
priate combination of the latter combination and ℘ yields a function with
no poles at z = 0. Trivially, adding an appropriate constant results in a
nonsingular function vanishing at z = 0. The appropriate combination turns
out to be

℘′2(z)− 4℘3(z) + g2℘(z) + g3 = O(z2).
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But the derivative as well as powers of an elliptic function are elliptic func-
tions with the same periods. Therefore, the function ℘′2(z) = 4℘3(z) −
g2℘(z) − g3 is an elliptic function with the same periods as ℘(z). Since the
latter has no pole at z = 0, it does not have any pole at all, and thus it
is an elliptic function with no poles. As elliptic functions with no poles are
necessarily constants and since ℘′2(z) = 4℘3(z) − g2℘(z) − g3 vanishes at
the origin, it vanishes everywhere. This implies that the Weierstrass elliptic
function obeys the differential equation

(5.12) ℘′2(z) = 4℘3(z)− g2℘(z)− g3 = 0.

This differential equation is of great importance in applications of the Weier-
strass elliptic function in physics. For a physicist it is sometimes useful to
even treat this differential equation as the definition of the Weierstrass ellip-
tic function.

It turns out that the Weierstrass elliptic function is the general solution
of the differential equation

(5.13)
(
dy

dz

)2

= 4y3 − g2y − g3.

After the substitution y = ℘(w), equation (5.13) assumes the form(
dw

dz

)2

= 1,

which obviously has the solutions w = ±z + z0. This implies that y =
℘(±z + z0) and since the Weierstrass elliptic function is even, the general
solution of the Weierstrass equation (5.13) can be written in the form

(5.14) y = ℘(z + z0).

In the following, we will deduce an integral formula for the inverse func-
tion of ℘. In order to do so, we define

(5.15) z(y) :=

∞�

y

1√
4t3 − g2t− g3

dt.

Differentiating with respect to z one gets

1 = −dy
dz

1√
4y3 − g2y − g3

so
(
dy

dz

)2

= 4y3 − g2y − g3.

We have just shown that the general solution of this equation is

y = ℘(z + z0).

Since the integral in (5.15) converges, it should vanish as y →∞, or equiv-
alently limy→∞ z(y) = 0. This implies that z = z0 is the position of a pole,
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or in other words it is congruent to z = 0. This means that

y = ℘(z + 2mω1 + 2nω2) = ℘(z).

Substituting the above into the equation (5.15) yields the integral formula
for the Weierstrass elliptic function,

(5.16) z =

∞�

℘(z)

1√
4t3 − g2t− g3

dt.

One could wonder how the above formula is consistent with the fact that
℘ is an elliptic function, and thus all numbers congruent to each other should
be mapped to the same value of ℘. The answer to this question is that the
integrable quantity in (5.16) has branch cuts. Depending on the selection of
the path from ℘(z) to infinity and more specifically depending on how many
times the path encircles each branch cut, one may get any number congruent
to z or −z. A more precise expression of the integral formula is

(5.17)
∞�

℘(z)

1√
4t3 − g2t− g3

dt ∼ ±z.

The roots of the cubic polynomial. We denote the values of the Weier-
strass elliptic function at the half-periods ω1, ω2 and ω3 := ω1 + ω2 as

(5.18) e1 := ℘(ω1), e2 := ℘(ω3), e3 := ℘(ω2).

The permutation between the indices of ω’s and e’s is introduced for nota-
tional reasons that will become apparent later. The periodicity properties of
℘ combined with the fact that the latter is an even function imply that ℘ is
stationary at the half-periods. For example,

℘′(ω1) = −℘′(−ω1) = −℘′(2ω1 − ω1) = −℘′(ω1),

implying that ℘′(ω1) = 0. Similarly one can show that

(5.19) ℘′(ω1) = ℘′(ω2) = ℘′(ω3) = 0.

Substituting a half-period into the Weierstrass equation (5.13), we get

(5.20) 4e3i − g2ei − g3 = 0.

The derivative of ℘, as shown in (5.10), has a single third order pole in
each cell, congruent to z = 0. Thus, ℘′ is an elliptic function of order 3 and
therefore it has exactly three roots in each cell. Since ω1, ω2 and ω3 all lie
within the fundamental period parallelogram, they cannot be congruent to
each other, and thus, there is no other root within the latter. This also implies
that ω1, ω2 and ω3 are necessarily first order roots of ℘′. All other roots of
℘′ are congruent to those. Finally, when equation (5.20) has a double root,
the solution of the differential equation (5.13) cannot be an elliptic function.
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An implication of the above is that z = ω1, z = ω2 and z = ω3 are
the only locations within the fundamental period parallelogram, where the
Laurent series of the function ℘(z) − ℘(z0) has a vanishing first order term
in the region of z0. Consequently, the equation ℘(z) = f0 has a double
root only when f0 equals any of the three roots e1, e2 or e3. Since ℘ is an
order two elliptic function, the complex numbers e1, e2 and e3 are the only
ones appearing only once in a cell, whereas all other complex numbers appear
twice.

Finally, equation (5.20) implies that ei are the three roots of the polyno-
mial appearing on the right hand side of the Weierstrass equation, namely

(5.21) Q(t) := 4t3 − g2t− g3 = 4(t− e1)(t− e2)(t− e3).

This directly implies that ei obey

e1 + e2 + e3 = 0,(5.22)
e1e2 + e2e3 + e3e1 = −g2/4,(5.23)

e1e2e3 = g3/4.(5.24)

Other properties. The Weierstrass elliptic function obeys the homogene-
ity relation

(5.25) ℘(z; g2, g3) = µ2℘

(
µz;

g2
µ4
,
g3
µ6

)
.

For the specific case µ = i, the above relation assumes the form

(5.26) ℘(z; g2, g3) = −℘(iz; g2,−g3).

Finally, when two of the roots e1, e2 and e3 coincide, the Weierstrass
elliptic function degenerates to a simply periodic function. Assuming that
the moduli g2 and g3 are real, the existence of a double root implies that
all roots are real. When the double root is larger than the simple root, the
Weierstrass elliptic function takes the form

(5.27) ℘(z; 12e20,−8e30) = e0 +
3e0

sinh2(
√
3e0 z)

,

whereas when the double root is smaller than the simple root, it takes the
form

(5.28) ℘(z; 12e20, 8e
3
0) = −e0 +

3e0

sin2(
√
3e0 z)

.

If there is only one triple root, then it must be vanishing, since the three
roots sum to zero. In this case, the Weierstrass elliptic function degenerates
to a function that is not periodic at all, namely

(5.29) ℘(z; 0, 0) = 1/z2.
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