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Abstract. Let K be a non-archimedean local field and let G = GLn(K). We have shown
in previous work that the smooth dual Irr(G) admits a complex structure: in this article we
show how the epsilon factors interface with this complex structure. The epsilon factors, up to
a constant term, factor as invariant characters through the corresponding complex tori. For the
arithmetically unramified smooth dual of GLn, we provide explicit formulas for the invariant
characters.

1. Introduction. Let K be a non-archimedean local field and let G = GLn(K). In the
spirit of the Langlands program, this short paper provides a link between number theory
and geometry. The arithmetic comes from ε-factors, which are naturally associated to
representations of Galois groups, or more generally to representations of the Weil–Deligne
group WDK of K.

The smooth dual Irr(G) possesses a nice geometry: it is the disjoint union of smooth
complex algebraic varieties, each of which is the quotient of a complex torus by a product
of symmetric groups, see [BP].

In this article we show how the epsilon factors interface with this complex structure.
We continue with some background on the epsilon factors [L], [D]. The epsilon factors

are very important and central in the theory of Artin L-functions. If E denotes a global
field, then we have the absolute Weil groupWE , see [MP, 6.2.6]. The completed L-function
L(s, V ) of a representation WE → GL(V ) of the Weil group WE of the global field E
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defines a meromorphic function in the complex plane satisfying the functional equation

L(s, V ) = ε(s, V )L(1− s, V ∗)

where V ∗ is the dual of the representation V of WE , and the epsilon factor ε(s, V ) is
defined by the product

ε(s, V ) =
∏

εEν (s, Vν , ψν). (1)

Here, ψν is the local component at a place ν of a non-trivial additive character ψ of
AE/E. Then ψν is a non-trivial additive character of the local field Eν , see [D, 5.11]. As
usual, AE denotes the adeles of E.

From now on, we will focus on the non-archimedean places of the global field E,
and we will write K for the non-archimedean local field Eν . An elementary substitution,
see §2, allows one to replace the epsilon factor εK(s, V, ψ) with three variables, by the
epsilon factor εK(V, ψ) with two variables. From now on, we will be concerned with the
epsilon factor εK(V, ψ).

From the point of view of the local Langlands correspondence for GLn, the relevant
representations are the Weil–Deligne representations, see Section 2. The set Gn(K) of
equivalence classes of n-dimensional Weil–Deligne representations can be organised as a
disjoint union of complex algebraic varieties:

Gn(K) =
⊔

X.

Each variety X arises in the following way. Let ρ′ denote a Weil–Deligne representation
of the Weil group WK , and let m denote the number of indecomposable summands in ρ′.
Then X is the quotient of a complex torus T of dimension m by a certain finite group S:

X = T/S. (2)

By a rational character, or algebraic character, or simply character, we shall mean a
morphism of algebraic groups

T→ C×.

Such a character has the form

(z1, . . . , zm) 7→ zβ1
1 · · · zβmm

where the βj are all integers.

Theorem 1.1. Up to a constant e(X, ψ), each epsilon factor εK(V, ψ) factors through a
rational character χ(X, ψ) of T. Quite specifically, we have

(z1, . . . , zk) 7→ (zβ1
1 , . . . , zβkk ) (3)

where the zj are torus coordinates, X is the orbit of the Weil–Deligne representation

V1 ⊗ Sp(d1)⊕ . . .⊕ Vk ⊗ Sp(dk)

and
βj = (dj − 1) dimV Ij + dj [a(Vj) + n(ψ) dim(Vj)]

where V1, . . . , Vk are irreducible representations of the local Weil groupWK , a(Vj) denotes
the Artin conductor exponent of Vj, n(ψ) denotes the conductor of ψ, and I denotes the
inertia subgroup of WK .
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Since the conductors are integers, the number βj is an integer. So the map (3) is a
rational character of T.

The rather lengthy formula for the constant e(X, ψ) appears later in this article, see
(19) and (20).

We emphasize that the character χ(X, ψ) and the constant e(X, ψ) depend only on
the connected component X, once a base point has been chosen in X, and the additive
character ψ has been chosen and fixed.

In §4, we focus on a part of the smooth dual of GLn(K), namely the arithmetically
unramified smooth dual. The extended quotient T//W is a model for this part of the
dual, where T is a maximal torus in the Langlands dual group GLn(C) and W is the
Weyl group of GLn(C). We calculate explicitly the epsilon factors.

This article is an expanded account of a talk given at the conference Geometry, repre-
sentation theory and the Baum–Connes conjecture, Fields Institute, July 2016, which was
part of the EU Quantum Dynamics network activities. We thank Paul Baum for several
valuable conversations, which led to major changes in the exposition of this article.

We take this opportunity to thank Paul Baum for an inspiring collaboration, which
has withstood the test of time, and which has enabled us to discover and explore several
new mathematical vistas. Paul observed that the article [BP] was the tip of a large
iceberg. Further exploration led to several articles, of which [ABPS] is the most recent.

In writing this article, we were greatly influenced by the preprint of Ikeda [Ikeda].
The main background reference is Deligne [D], but we prefer to use the notation in Lang-
lands [L]. We thank the referee for providing many insightful comments which influenced
the final version of this Note.

2. Weil–Deligne representations. We need to recall some material, following closely
the exposition in [BP]. Let K be a non-archimedean local field. The normalized valuation
will be denoted by valK , the norm of x ∈ K by ‖x‖K , and the cardinality of the residue
field of K by qK . We have the local Artin reciprocity map

ArtK : WK → K×.

We will write
‖w‖ = ‖ArtK(w)‖K = q

−valK(ArtK(w))
K

for all w ∈WK .
The homomorphism d : WK → Z is defined by

d(w) = valK(ArtK(w)).

The Weil group WK fits into a short exact sequence

0→ IK →WK
d−→ Z→ 0

where IK is the inertia group of K. A Weil–Deligne representation is a pair (ρ,N) con-
sisting of a continuous representation ρ : WK → GLn(V ), dimC(V ) = n, together with a
nilpotent endomorphism N ∈ End(V ) such that

ρ(w)Nρ(w)−1 = ‖w‖N.
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For any n ≥ 1, the representation Sp(n) is defined by

V = Cn = Ce0 + . . .+ Cen−1

with ρ(w)ei = ‖w‖iei and Nei = ei+1 (0 ≤ i ≤ n− 1), Nen−1 = 0.
Let Gn(K) be the set of equivalence classes of semisimple n-dimensional Weil–Deligne

representations. Let Irr(GLn(K)) be the set of equivalence classes of irreducible smooth
representations of GLn(K).

We recall the local Langlands correspondence

recK : Irr(GLn(K))→ Gn(K)

which is unique subject to the conditions listed in [HT, p. 2]. See also the single trace
condition of Scholze in [Sch, Theorem 1.2(a)].

We identify the elements of the set G1(K), the quasicharacters ofWK , with quasichar-
acters of K× via the local Artin reciprocity map ArtK . The local Langlands correspon-
dence is compatible with twisting by quasicharacters [HT, p. 2].

A quasicharacter η : WK → C× is (arithmetically) unramified if η is trivial on the
inertia group IK . In that case we have η(w) = zd(w) with z ∈ C×. The group of unramified
quasicharacters of WK is denoted Ψ(WK). Let Φ = ΦK denote a geometric Frobenius
element in WK . The isomorphism Ψ(WK) ' C× is secured by the map η 7→ η(ΦK).

Let now
ρ′ = ρ1 ⊗ Sp(d1)⊕ . . .⊕ ρm ⊗ Sp(dm)

be a Weil–Deligne representation. In this formula, ρ1, . . . , ρm are irreducible representa-
tions of the Weil group WK . The set

{η1ρ1 ⊗ Sp(d1)⊕ . . .⊕ ηmρm ⊗ Sp(dm) : η1, . . . , ηm ∈ Ψ(WK)}

will be called the orbit of ρ′ under the action of

Ψ(WK)× . . .×Ψ(WK)

(m factors). This orbit will be denoted X = X(ρ′). The orbits create a partition of Gn(K).
The set Gn(K) is a disjoint union of orbits:

Gn(K) =
⊔

X.

We note that Ψ(WK)m ' (C×)m, a complex torus.
Each irreducible representation ρ of WK has a torsion number : the order of the cyclic

group of all those unramified characters η ofWK for which ρ⊗η ∼= ρ. The torsion number
of ρi will be denoted τi. To determine the structure of each orbit, we have to pay attention
to the torsion numbers of ρ1, . . . , ρm and to the action of GLn(C) by conjugation.

Let µτ ⊂ C denote the cyclic group of order τ . The orbit O(ρ′) will have the structure
of the quotient torus

Ψ(WK)× . . .×Ψ(WK)/(µτ1 × . . .× µτm) (4)

modulo a product of symmetric groups. We will write z1, . . . , zm for coordinates on this
quotient torus. To be precise, we are writing zj as a coset:

zj = ηj(ΦK) · µτj . (5)
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In this way, the set Gn(K) acquires (locally) the structure of complex algebraic variety.
Each connected component in Gn(K) is the quotient of a complex torus by a product of
symmetric groups.

We recall that, given an irreducible representation V ofWK , there exists an irreducible
representation V Gal of Galois type such that V = V Gal ⊗ ωs for some s ∈ C, see [Tate,
(2.2.1)].

This allows us to view the orbit X(ρ′) as a pointed complex algebraic variety, with
base point

ρ′ = ρ1 ⊗ Sp(d1)⊕ . . .⊕ ρm ⊗ Sp(dm),

where each ρj is of Galois type.

3. The formulas. The elementary substitution referred to in the Introduction is as
follows. Let

εK(s, V, ψ) = εK(V ⊗ ωs−1/2, ψ)

for all s ∈ C, see [Tate, (3.6.4)], [L, p. 6]. For s ∈ C, ωs : WK → C× is the unramified
quasicharacter defined by ωs(w) = ‖w‖sK for all w ∈WK . To compare this quasicharacter
with those in §2, note the following:

ωs(w) = ‖w‖sK = q
−s·valK(ArtK(w))
K = zd(w)

with z = q−sK ∈ C×.
If V is a 1-dimensional continuous complex representation of WK , and χ : WK → C×

is the corresponding quasicharacter, then εK(χ, ψ) is the abelian local constant of Tate,
see [Tate, (3.6.3)].

We note that εK(V, ψ) is denoted εLanglands
K (V, ψ) in [Ikeda] and εL(V, ψ) in [Tate,

3.6].
We recall that, if (V,N) is any Φ-semisimple Weil–Deligne representation, then we

have a finite direct sum decomposition of (V,N) into indecomposable Weil–Deligne rep-
resentations as follows:

(V,N) = V1 ⊗ Sp(d1)⊕ . . .⊕ Vm ⊗ Sp(dm). (6)

We will write
Vj = V Gal

j ⊗ ωsj .

Lemma 3.1. Let a(V ) denote the Artin conductor exponent of V . Then a(V ⊗ωs) = a(V ).

Proof. The definition is

a(V ) = dimV − dimV I +
∑
k≥1

1
[I : Ik] · dimV/V Ik (7)

where I = I0 ⊃ I1 ⊃ . . . ⊃ Ik ⊃ . . . are the ramification subgroups of the inertia group I.
We have

dim(V ⊗ ωs) = dimV.

Now ωs is an unramified quasi-character of WK :

ωs(I) = ‖ArtK(I)‖s = ‖UK‖s = 1
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and so
(V ⊗ ωs)Ik = V Ik

for all k ≥ 0. The result now follows from (7).
In particular, we have

a(Vj) = a(V Gal
j ).

We need the following three items in order to compute epsilon factors.

3.1. Additivity. Additivity with respect to V , see [Tate, 3.4.2], [L, Theorem A (ii)]:
εK(V1 ⊕ . . .⊕ Vk, ψ) = εK(V1, ψ) . . . εK(Vk, ψ). (8)

3.2. Unramified twist. Behaviour under unramified twist, see [Tate, 3.4.5], [L, Lemma
22.4]:

εK(V ⊗ ωs, ψ) = εK(V, ψ)q−s[a(V )+n(ψ) dimV ] (9)
where a(V ) is the Artin conductor exponent of V , and n(ψ) is the conductor of ψ.

3.3. The extension formula. The extension to Weil–Deligne representations is as fol-
lows [Tate, 4.1.6]:

εK((V,N), ψ) := εK(V, ψ) det(−Φ|V I/V IN ). (10)

3.4. The term εK(V, ψ). A typical direct summand of (6) as a representation of WK

is
V Gal
j ⊗ ωsj ⊗ ωk

with 1 ≤ j ≤ m, 0 ≤ k ≤ dj − 1. We have
V Gal
j ⊗ ωsj ⊗ ωk = V Gal

j ⊗ ωsj+k.

For this summand, we have by (9)

εK(V Gal
j ⊗ ωsj ⊗ ωk, ψ) = εK(V Gal

j , ψ)q−(sj+k)[a(V Gal
j )+n(ψ) dimV Gal

j ] (11)
and then the formula for εK(V, ψ) follows from (8). Applying Lemma 3.1, we obtain

εK(V, ψ) =
m∏
j=1

(
εK(V Gal

j , ψ)
)dj · q−[sjdj+(dj−1)dj/2][a(Vj)+n(ψ) dim(Vj)]. (12)

Note that Ikeda succeeds in describing the numbers εK(V Gal
j , ψ) in terms of the non-

abelian local class field theory of K, see [Ikeda, Theorem 5.4].

3.5. The determinant. The determinant is additive
det(A⊕B) = (detA)(detB)

and so it suffices to consider a typical factor in (10), namely
det(−Φ|EIj /(EIj )Nj ) (13)

where Ej is the WK-module given by
Ej = Vj ⊗ (ω0 ⊕ ω1 ⊕ . . .⊕ ωdj−1)

= (V Gal
j ⊗ ωsj )⊗ (ω0 ⊕ ω1 ⊕ . . .⊕ ωdj−1)

= V Gal
j ⊗ (ωsj ⊕ ωsj+1 ⊕ . . .⊕ ωsj+dj−1).
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We note that V Ij = (V Gal
j )I . Then the WK-submodule fixed by the inertia group I is

EIj := V Ij ⊗ (ωsj ⊕ ωsj+1 ⊕ . . .⊕ ωsj+dj−1).

The WK-submodule of Ej annihilated by Nj is

(Ej)Nj = V Gal
j ⊗ ωsj+dj−1

from which it follows that
(Ej)INj = V Ij ⊗ ωsj+dj−1.

For the quotient we have the following WK-module:

EIj /(Ej)INj ' V
I
j ⊗ (ωsj ⊕ . . .⊕ ωsj+dj−2). (14)

Recall that
ωs(Φ) = ‖$K‖s = q−sK .

It is enough to compute the action of −Φ on the WK-module V Ij ⊗ ωsj ⊗ ωk with
0 ≤ k ≤ dj − 1. On this WK-module, −Φ will act as

q−(sj+k)(−Φ|V Ij )

and the determinant will be

q−(sj+k) dimV Ij det(−Φ|V Ij ).

There are dj − 1 direct summands in (14) so the resulting determinant will be the
product

dj−2∏
k=0

q−(sj+k) dimV Ij · det(−ρj(Φ)|V Ij )

= det(−ρj(Φ)|V Ij )dj−1 · q−sj(dj−1) dimV Ij · q−(1+2+...+dj−2) dimV Ij

= det(−ρj(Φ)|V Ij )dj−1 · q−sj(dj−1) dimV Ij · q− 1
2 (dj−2)(dj−1) dimV Ij

(15)

provided that dj ≥ 3. By inspection, this formula is also valid for dj = 1 or 2.

3.6. The term εK((V,N), ψ). We recall the discussion in §2 of the quotient torus (4),
especially the definition (5) of the torus coordinates z1, . . . , zm:

zj = ωsj (ΦK) · µτj = q
−sj
K · µτj

where τj is the torsion number of V Gal
j and µτj ⊂ C is the cyclic group of order τj .

From the extension formula (10) we infer that ε((V,N), ψ) is the product of (12)
and (15). This product is of the form

const · zβ1
1 · · · zβmm (16)

where
βj = (dj − 1) dimV Ij + dj [a(Vj) + n(ψ) dim(Vj)]

for all 1 ≤ j ≤ m. Note that βj is an integer :

βj ∈ Z.
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The constant can be read off from (12) and (15). Apart from the constant term, the
formula (16) for the epsilon factor is a rational character of the quotient torus (a complex
torus of dimension m):

(z1, . . . , zm) 7→ zβ1
1 · · · zβmm .

Consider the following set:{
ωs1 ⊗ V Gal

1 ⊗ Sp(d1)⊕ . . .⊕ ωsm ⊗ V Gal
m ⊗ Sp(dm) : s1, . . . , sm ∈ C

}
. (17)

After allowing for conjugacy in the Langlands dual group GLn(C), this set has the struc-
ture of a complex algebraic variety X in Gn. In fact X is a connected component in
Gn(K):

X ⊂ Gn(K).

Applying the local Langlands correspondence, we have, by transport of structure, a con-
nected component in the smooth dual:

rec−1
K (X) ⊂ Irr(GLn(K)).

We emphasize that this imposes a topology on Irr(GLn(K)) which is finer than the
standard (Zariski) topology in representation theory. Our topology on the smooth dual
is well-adapted to the study of the Hecke algebra H(GLn(K)) (see Theorem 3 in [BP]),
and is, indeed, well-adapted to the study of epsilon factors, the subject of this article.

Looking carefully at the formulas (12) and (15), we see that the constant in (16)
depends on the variety X, the choice of base point of X, and the additive character ψ.
We will denote this constant by e(X, ψ), so that (16) can be re-written

e(X, ψ) · zβ1
1 · · · zβmm (18)

which, up to the constant e(X, ψ), factors as a rational character through T, in the
notation of (2). The constant e(X, ψ) is itself the product of

m∏
j=1

(
εK(V Gal

j , ψ)
)dj · q− 1

2 (dj−1)dj [a(Vj)+n(ψ) dim(Vj)] (19)

with
m∏
j=1

det(−ρj(Φ)|V Ij )dj−1 · q− 1
2 (dj−2)(dj−1) dimV Ij . (20)

This establishes our main result, Theorem 1.1, which could perhaps be useful in the
geometric Langlands program.

The terms εK(V Gal
j , ψ) are the epsilon factors attached to irreducible representations

of the local absolute Galois group GK . These terms are defined in [Ikeda, p. 15]. There
is one case where they are readily computed.

Lemma 3.2. Let ψ be an additive character K → C×. Then we have εK(1, ψ) = 1.

Proof. We start with the classical formula in [Tate, 3.6.3]:

εK(χ, ψ) = χ(c)
∫
O× χ

−1(u)ψ(u/c) du
|
∫
O× χ−1(u)ψ(u/c) du|
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where c is an element of K× of valuation a(χ) + n(ψ). Now set χ = 1 and let n(ψ) = k.
Then we take c = $k. Then u ∈ O× =⇒ u/c ∈ $−kO×. But we have ψ($−kO) = 1
since ψ has conductor k. Therefore we have

εK(1, ψ) =
∫
O× ψ(u/c) du
|
∫
O× ψ(u/c) du|

= vol(O×)
|vol(O×)| = 1.

4. The arithmetically unramified representations of GLn(K). Here, the underly-
ing representation of the Weil group is the trivial n-dimensional representation ρ : WK →
GLn(C). So we have V Gal

j = 1, 1 ≤ j ≤ n.
Let W be the Weyl group Sn. The arithmetically unramified representations of

GLn(K) have, by definition, the following set of Langlands parameters (Weil–Deligne
representations):

{ωs1 ⊗ Sp(d1)⊕ . . .⊕ ωsk ⊗ Sp(dk) : sj ∈ C} (21)

where d1 + . . .+ dk = n. This set determines a complex algebraic variety X in Gn(K).
We choose ψ to have conductor 0, and now apply Lemma 3.2. In this case βj = dj−1.

We have

εK((V,N), ψ) = e(X, ψ)
m∏
j=1

q−(dj−1)sj = e(X, ψ)
m∏
j=1

z
dj−1
j

where

e(X, ψ) =
m∏
j=1

(−1)dj−1q−(dj−1)(dj−2)/2

and zj := q−sj .
The epsilon factor records the dimensions dj of the special representations Sp(dj)

which occur in the Weil–Deligne representation (V,N).
We will now re-organise the partition d1 + . . . + dk = n. Suppose that this partition

has distinct parts t1, . . . , tm with t1 < t2 < . . . < tm and that tj is repeated rj times so
that

r1t1 + . . .+ rmtm = n. (22)

Then, as a function on the complex torus (C×)r1+...+rm , the epsilon factor is invariant
under the following product of symmetric groups:

Sr1 ×Sr2 × . . .×Srm

and therefore factors through the following quotient variety

(C×)r1/Sr1 × . . .× (C×)rm/Srm .

Let T denote the standard maximal torus in the Langlands dual group GLn(C), and
let W be the Weyl group of GLn(C). We have the inertia space

IW (T ) := {(w, t) : w ∈W, t ∈ T,wt = t}.

Then IW (T ) admits an action of W , namely α · (w, t) = (αwα−1, α · t). We define T//W
to be the quotient:

T//W := IW (T )/W.
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This is the extended quotient of T by W , sometimes called the inertia stack, see [JM,
§1.1].

Let Tw denote the w-fixed set, and let Z(w) be the W -centralizer of w. Choose one
w in each W -conjugacy class, then we have

T//W =
⊔
Tw/Z(w).

The conjugacy classes in the symmetric group W are in bijection with the partitions
of n. The partition in (22) determines the permutation comprising r1 cycles of length t1,
. . . , rm cycles of length tm. If this permutation is denoted w, then we have

Tw = (C×)r1 × . . .× (C×)rm .

The centralizer Z(w) is a product of wreath products

Z/t1Z oSr1 × . . .× Z/tmZ oSrm

but the cyclic groups act trivially and so we have

Tw/Z(w) = (C×)r1/Sr1 × . . .× (C×)rm/Srm .

Every irreducible component in T//W is accounted for in this way. The epsilon factors
have precisely the amount of symmetry required to factor through these quotient varieties.

Example. Here, we consider the following Weil–Deligne representation of GL19(K):

ωs1Sp(2)⊕ ωs2Sp(2)⊕ ωs3Sp(2)⊕ ωs4Sp(3)⊕ ωs5Sp(3)⊕ ωs6Sp(7).

The epsilon factor of this representation is

const · z1z2z3z
2
4z

2
5z

6
6

which will factor through the following irreducible component of the extended quotient
T//W :

Sym3(C×)× Sym2(C×)× C×.

This perfectly illustrates the symmetry properties of the epsilon factors. Each epsilon
factor has precisely the symmetry, neither more nor less, of the corresponding irreducible
component in the extended quotient T//W . Each epsilon factor will therefore factor
through the corresponding irreducible component in T//W .

5. The general case. Let G be a reductive p-adic group and let LG be the L-group
LG = G∨ oWK

where G∨ is the complex dual group of G. Let

r : LG→ GL(V )

be a representation of LG on the complex vector space V , as in [Bor, 2.6]. LetW ′K denote
the Weil–Deligne group WK n C, defined by w.z = ‖w‖z. As in [Bor, 8.2], let φ be an
L-parameter for G:

φ : W ′K → LG.

Following [Bor, 12.1], we have the composite

r ◦ φ : W ′K → GL(V ).
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The representation r ◦φ determines, and is determined by, a Weil–Deligne representation
(V,N). So we obtain an epsilon factor εK((V,N), ψ) to which we may apply all the
preceding material.
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