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Abstract. We prove that all the compact metric spaces are in the closure of the class of full
matrix algebras for the quantum Gromov–Hausdorff propinquity. We also show that given an
action of a compact metrizable group G on a quasi-Leibniz quantum compact metric space
(A, L), the function associating any closed subgroup of G group to its fixed point C*-subalgebra
in A is continuous from the topology of the Hausdorff distance to the topology induced by
the propinquity. Our techniques are inspired from our work on AF algebras as quantum metric
spaces, as they are based on the use of various types of conditional expectations.

1. Introduction. The quantum Gromov–Hausdorff propinquity [16, 13, 17] provides a
natural framework to discuss finite dimensional approximations of quantum spaces in a
metric sense by extending the Gromov–Hausdorff distance to noncommutative geometry.
Thus, for this new metric, quantum tori are limits of fuzzy tori [11], spheres are limits of
full matrix algebras [25, 26, 27], AF algebras are limits of any inductive sequence from
which they are constructed [1, 2, 3], any separable nuclear quasi-diagonal C*-algebra
equipped with a quasi-Leibniz Lip-norm is the limit of finite dimensional C*-algebras [12],
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noncommutative solenoids are limits of matrix algebras [20], among other examples of
such finite dimensional approximations.

Many of these examples involve the use of a conditional expectation as a core tool.
In this note, we present two new applications of conditional expectations in constructing
quantum metrics, or proving new convergence results. We hope the techniques suggested
in this work may prove helpful for future research.

Our first new convergence result concerns full matrix algebras approximations for clas-
sical compact metric spaces. In [11] and [27] in particular, certain classical metric spaces
are limits of full matrix algebras, an intriguing phenomenon. This note answers the natu-
ral question of which classical compact metric spaces are limits of full matrix algebras for
the quantum propinquity. We shall prove that indeed, any classical compact metric space
is the limit, for the quantum propinquity, of a sequence of (2, 0)-quasi-Leibniz quantum
compact metric spaces constructed on full matrix algebras. Our approximations are very
different from the ones presented in the above references, as our focus is not to preserve
any symmetry of the limit space, but rather to find a very general method to obtain
such full matrix algebra approximations. In particular, it is generally difficult to compute
the closure of a particular set of quantum metric spaces for the propinquity. This paper
proves that all classical compact metric spaces do lie in the closure of full matrix alge-
bras for the propinquity and give examples to further test the theory of noncommutative
geometry and what properties pass, or do not pass, to the limit for convergent sequences
of quasi-Leibniz quantum compact metric spaces.

Our second new result concerns continuity of fixed point C*-subalgebras for the
propinquity under certain natural assumption. If G is a compact metric group acting
on a quantum compact metric space (A, L), then any closed subgroup of G defines a fixed
C*-subalgebra of A. We thus have a function from the space of closed subgroups of G,
metrized by the Hausdorff distance, to the space of fixed point C*-subalgebras of A for
the action of G. We metrize the codomain of this map with the quantum propinquity and
show that this function is indeed continuous. As an application, we obtain new results
about the metric geometry of quantum tori.

We now turn to a summary of some core ingredients of noncommutative metric ge-
ometry for our current purpose.

Quantum compact metric spaces are noncommutative generalizations of Lipschitz al-
gebras introduced in [22, 23] by Rieffel, and inspired by Connes [4]. In [16, 18], additional
requirements were placed on the original definition of Rieffel to accommodate the con-
struction of the quantum propinquity. The resulting notion of a quasi-Leibniz quantum
compact metric space will be the starting point for our work.

Notation 1.1. For any unital C*-algebra A, we denote the unit of A by 1A, the norm
of A by ‖ · ‖A, the Jordan–Lie algebra of the self-adjoint elements of A by sa (A), and the
state space of A by S (A).

Definition 1.2 ([22, 23, 16, 18]). A F -quasi-Leibniz quantum compact metric space
(A, L), for some function F : R4 → [0,∞) weakly increasing for the product order, consists
of unital C*-algebra A with unit 1A and a seminorm L defined on a dense Jordan–Lie
subalgebra dom(L) of the space sa (A) of self-adjoint elements in A, such that:
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(1) {a ∈ dom(L) : L(a) = 0} = R1A,
(2) the Monge–Kantorovich metric mkL defined for any two states ϕ,ψ ∈ S (A) by

mkL(ϕ,ψ) = sup{|ϕ(a)− ψ(a)| : a ∈ dom(L), L(a) 6 1}
metrizes the weak* topology on S (A),

(3) L is lower semi-continuous for ‖ · ‖A,
(4) for all a, b ∈ dom(L), we have:

max{L(a ◦ b), L({a, b})} 6 F
(
‖a‖A, ‖b‖A, L(a), L(b)

)
,

where a ◦ b = (ab+ ba)/2 and {a, b} = (ab− ba)/(2i).
The seminorm L is called an L-seminorm.
Notation 1.3. When C > 1, D > 0, and if F : x, y, lx, ly > 0 7→ C(xly + ylx) + Dlxly,
then a F -quasi-Leibniz quantum compact metric space is called (C,D)-quasi-Leibniz, and
it is called Leibniz when C = 1 and D = 0.

Rieffel provided in [22] the fundamental characterization of compact quantum metric
spaces, which is a noncommutative form of the Arzéla–Ascoli theorem. We will use a
version of this characterization found in [21] in this paper, which we now recall and
adapt slightly to our setting.
Theorem 1.4 ([21]). Let A be a unital C*-algebra, L a lower semi-continuous seminorm
defined on some dense Jordan–Lie subalgebra dom(L) of sa (A) such that

{a ∈ dom(L) : L(a) = 0} = R1A
and, for some C > 1, D > 0,

max{L(a ◦ b), L({a, b})} 6 C
(
‖a‖AL(b) + ‖b‖AL(a)

)
+DL(a)L(b).

The following assertions are equivalent:
(1) (A, L) is a (C,D)-quasi-Leibniz quantum compact metric space,
(2) there exists a state µ ∈ S (A) such that the set

{a ∈ dom(L) : µ(a) = 0, L(a) 6 1}
is compact for ‖ · ‖A,

(3) for all states µ ∈ S (A), the set
{a ∈ dom(L) : µ(a) = 0, L(a) 6 1}

is compact for ‖ · ‖A.
Quasi-Leibniz quantum compact metric spaces form a category for several natural

notions of morphisms [24, 15]. The noncompact theory is more involved [9, 10] and will
not be used in this note.

Much research has been concerned with the development of a noncommutative ana-
logue of the Gromov–Hausdorff distance, starting with the pioneering work of Rieffel
in [24] on the quantum Gromov–Hausdorff distance (for which the question raised in this
note was solved by the second author in [8]). We will work with the quantum Gromov–
Hausdorff propinquity introduced by Latrémolière in [16] to address two inherent difficul-
ties with the construction of such an analogue: working within a class of quantum compact
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metric spaces satisfying a given form of the Leibniz inequality and having the desirable
property that distance zero would imply *-isomorphism of the underlying C*-algebras.

The construction of the quantum propinquity is involved, and we refer to [16, 13,
17, 18, 14, 12, 3, 20, 15] for a detailed discussion of this metric, its basic properties
and some important applications. For our purpose, we will focus on a core ingredient
of the construction of the quantum propinquity called a bridge, which enables us to
appropriately relate two quasi-Leibniz quantum compact metric spaces and compute a
quantity on which the propinquity is based.

Definition 1.5 ([16]). A bridge γ = (D, πA, πB, x) from a unital C*-algebra A to a
unital C*-algebra B consists of a unital C*-algebra D, two unital *-monomorphisms
πA : A ↪→ D and πB : B ↪→ D, and an element x ∈ D such that

S (D|x) = {ϕ ∈ S (D) : ∀ d ∈ D ϕ(xd) = ϕ(dx) = ϕ(d)} 6= ∅.

We associate a quantity to any bridge which estimates, for that given bridge, how far
apart the domain and co-domain of the bridge are.

Notation 1.6. The Hausdorff distance [7] on the space of all compact subspaces of a
metric space (X, d) is denoted by Hausd.

Definition 1.7 ([16]). The length λ (γ|LA, LB) of a bridge γ = (D, πA, πB, x) from
(A, LA) to (B, LB) is the maximum of the following two quantities:

ς (γ|LA, LB) = max
{

HausmkLA
(S (A), {ϕ ◦ πA : ϕ ∈ S (D|x)}),

HausmkLB
(S (B), {ϕ ◦ πB : ϕ ∈ S (D|x)})

}
and

% (γ|LA, LB) = max
{

sup
a∈sa(A)
LA(a)61

inf
b∈sa(B)
LB(b)61

bnγ (a, b), sup
b∈sa(B)
LB(b)61

inf
a∈sa(A)
LA(a)61

bnγ (a, b)
}
,

where bnγ (a, b) =
∥∥πA(a)x− xπB(b)

∥∥
D

for all a ∈ A and b ∈ B.

We note that in the present paper, all our bridges will have the unit for pivot and thus
will have height zero; however the more descriptive Definition 1.7 is useful to state the
following characterization of the quantum propinquity which we will use as our definition
for this work.

Theorem-Definition 1.8 ([16]). Let F : [0,∞)4 → [0,∞) be an increasing function
for the product order, and let QMF be the class of all F -quasi-Leibniz quantum compact
metric spaces. There exists a class function ΛF on QMF × QMF , called the quantum
F -propinquity, such that:

(1) for all (A, LA), (B, LB) in QMF :

0 6 ΛF ((A, LA), (B, LB)) = ΛF ((B, LB), (A, LA))
6 max

{
diam(A, LA),diam(B, LB)

}
,

(2) for all (A, LA), (B, LB) and (D, LD) in QMF :

ΛF ((A, LA), (D, LB)) 6 ΛF ((A, LA), (B, LB)) + ΛF ((B, LB), (D, LD)),
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(3) for all (A, LA) and (B, LB) in QMF and for any bridge γ from A to B, we have

ΛF ((A, LA), (B, LB)) 6 λ (γ|LA, LB),

(4) ΛC,D((A, LA), (B, LB)) = 0 if and only if there exists a *-isomorphism θ : A → B

such that LB ◦ θ = LA.

Moreover, the quantum propinquity is the largest class function satisfying assertions (1),
(2), (3) and (4).

Notation 1.9. When F is given by Notation 1.1 for some C > 1, D > 0, then ΛF is
simply denoted by ΛC,D, and if C = 1, D = 0, then we may as well just write Λ for Λ1,0.

The quantum propinquity can be applied to compact metric spaces, using the following
encoding of such spaces in our C*-algebraic framework — this construction is in fact the
original model for quantum compact metric spaces. We will employ the following notation
all throughout this paper.

Notation 1.10. The Lipschitz seminorm Lipd for a compact metric space (X, d) is de-
fined for all functions f ∈ C(X) by

Lipd(f) = sup
{
|f(x)− f(y)|

d(x, y) : x, y ∈ X, x 6= y

}
,

allowing for the value ∞.

Theorem 1.11 ([16]). If (X, d) be a compact metric space, then (C(X), Lipd) is a Leibniz
quantum compact metric space. Moreover, for all compact metric spaces (X, dX) and
(Y, dY ), we have

Λ((C(X), LipdX ), (C(Y ), LipdY )) 6 GH((X, dX), (Y, dY )),

where GH is the Gromov–Hausdorff distance [5, 6] and furthermore, the topology induced
by Λ on the class of classical compact quantum metric space is the same as the topology
induced by GH.

We now answer the question: when is a classical compact metric space the limit, not
only of finite dimensional C*-algebras, but actually full matrix algebras, for the quantum
propinquity?

2. Full matrix approximations. The first result of this note provides a way to con-
struct full matrix approximations of finite metric spaces in a rather general context.

Lemma 2.1. If B is a finite dimensional C*-subalgebra of a unital C*-algebra A and
1A ∈ B and if A has a faithful tracial state µ ∈ S (A) then there exists a unique
µ-preserving conditional expectation E : A� B.

Proof. See [12, Step 1 of Theorem 3.5].

Theorem 2.2. Let (X, d) be a finite metric space and let

δ = min{d(x, y) : x, y ∈ X,x 6= y} > 0.

If A is a finite dimensional C*-algebra, if τ is some faithful tracial state on A, and if B
is a C*-subalgebra of A such that:
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(1) 1A ∈ B,
(2) there exists a unital *-isomorphism ρ : C(X)→ B,

then, for any β > 0, and setting for all a ∈ A:

L(a) = max
{
‖a− E(a)‖A

β
, Lipd ◦ ρ−1(E(a))

}
,

where E : A→ B is the conditional expectation such that τ ◦E = τ , we conclude that the
space (A, L) is a (D, 0)-quasi-Leibniz compact quantum metric space, where

D = max
{

2, 1 + β

δ

}
such that

Λ
(
(A, L), (C(X), Lipd)

)
6 β.

Proof. If a ∈ A with L(a) = 0 then a = E(a), and Lipd(ρ−1(E(a))) = 0, so E(a) = λ1A
for some λ ∈ R. Thus a ∈ R1A, as desired. We also note that L(1A) = 0 by assumption.

We also note that since X is finite, dom(Lipd) = C(X) so dom(L) = A.
Since L is the maximum of two (lower semi-)continuous functions over A, we also have

L is (lower semi-)continuous on A.
The map τX = τ ◦ρ is a state of C(X), and thus {f ∈ C(X) : τX(f) = 0, Lipd(f) 6 1}

is compact — since X is finite, this set is actually closed and bounded in the finite dimen-
sional space C(X). Let B > 0 so that if Lipd(f) 6 1 and τX(f) = 0 then ‖f‖C(X) 6 B.

Now if a ∈ sa (A) with L(a) 6 1 and τ(a) = 0 then Lipd ◦ ρ−1(E(a)) 6 1 and
τX(ρ−1(E(a))) = τ ◦ E(a) = τ(a) = 0. Thus ‖E(a)‖A 6 B. Now, ‖a‖A 6 ‖a − E(a)‖A +
‖E(a)‖A 6 β +B. So{

a ∈ sa (A) : L(a) 6 1, τ(a) = 0
}
⊆
{
a ∈ sa (A) : ‖a‖A 6 β +B

}
,

and the right-hand side is compact since A is finite dimensional, so (A, L) is a compact
quantum metric space by Theorem 1.4.

Last, we check the quasi-Leibniz property of L. Let a, b ∈ dom(L) and x, y ∈ X. Since
ρ is a *-isomorphism, we now compute:∣∣ρ−1(E(ab))(x)− ρ−1(E(ab))(y)

∣∣
6
∣∣ρ−1(E(ab))(x)− ρ−1(E(aE(b)))(x)

∣∣
+
∣∣ρ−1(E(aE(b)))(x)− ρ−1(E(E(a)b))(y)

∣∣
+
∣∣ρ−1(E(E(a)b))(y)− ρ−1(E(ab))(y)

∣∣
6
∥∥E(a(b− E(b)))

∥∥
A

+
∣∣ρ−1(E(a))(x)ρ−1(E(b))(x)− ρ−1(E(a))(y)ρ−1(E(b)(y))

∣∣
+
∥∥E((a− E(a))b)

∥∥
A

6 ‖a‖AβL(b) + ‖b‖AβL(b)
+
∣∣ρ−1(E(a))(x)ρ−1(E(b))(x)− ρ−1(E(a))(y)ρ−1(E(b))(y)

∣∣.
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Hence

Lipd ◦ ρ−1(E(ab))

= sup
{∣∣ρ−1(E(ab))(x)− ρ−1(E(ab))(y)

∣∣
d(x, y) : x, y ∈ X, x 6= y

}
6 ‖a‖A

β

δ
L(b) + ‖b‖A

β

δ
L(b)

+ sup
{∣∣ρ−1(E(a))(x)ρ−1(E(b))(x)− ρ−1(E(a))(y)ρ−1(E(b))(y)

∣∣
d(x, y) : x, y ∈ X, x 6= y

}
6
β

δ

(
‖a‖AL(b) + L(a)‖b‖A

)
+ Lipd(E(a)E(b))

6
β

δ

(
‖a‖AL(b) + L(a)‖b‖A

)
+ Lipd ◦ E(a)‖b‖A + ‖a‖ALipd ◦ E(b)

6

(
1 + β

δ

)(
‖a‖AL(b) + L(a)‖b‖A

)
. (2.1)

From this and from [3, Lemma 3.2], it follows easily that (A, L) is indeed a (D, 0)-quasi-
Leibniz quantum compact metric space with D = max

{
2, (1 + β

δ )
}
.

We now compute an upper bound for Λ((A, L), (C(X), Lipd)) by exhibiting a particular
bridge from A to C(X).

Let γ = (A, id, ρ, 1A) where id is the identity *-morphism of A. By Definition 1.5, the
quadruple γ is a bridge of height 0, so its length equals to its reach.

If f ∈ C(X) and Lipd(f) 6 1, then
‖ρ(f)− E(ρ(f))‖A

β
= 0

and Lipd(ρ−1(E(ρ(f)))) = Lipd(f) 6 1. So L(ρ(f)) 6 1.
Now, it is immediate that bnγ (ρ(f), f) = ‖ρ(f)− ρ(f)‖A = 0. So

sup
f∈C(X)

Lipd(f)61

inf
a∈sa(A)
L(a)61

bnγ (a, b) = 0.

If a ∈ A with L(a) 6 1, then set f = ρ−1(E(a)). First, by definition of L, we have
Lipd(f) = Lipd(ρ−1(E(a))) 6 L(a) 6 1. Second,

‖a− ρ(f)‖A = ‖a− E(a)‖A 6 β.

Thus
sup

a∈sa(A)
L(a)61

inf
f∈C(X)

Lipd(f)61

bnγ (a, b) 6 β.

Therefore, the reach, and thus the length, of γ is no more than β. Hence by Theorem-
Definition 1.8, we conclude Λ((A, L), (C(X), Lipd)) 6 β as desired.

We now deduce from Theorem 2.2 that compact metric spaces are always limits of
full matrix algebras for the quantum propinquity. A notable component of the following
result is how the constant β of Theorem 2.2 are related to the actual geometry of the
limit classical space.
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Corollary 2.3. If (X, d) is a compact metric space, if Y ⊆ X is a finite subset of X,
and if βY ∈ (0,∞) such that

βY
min{d(x, y) : x, y ∈ Y, x 6= y}

6 1,

then there exists a (2, 0)-quasi-Leibniz quantum compact metric space (A, L) where:

(1) A is the C*-algebra of #Y × #Y -matrices over C and τ is the unique tracial state
on A,

(2) with C(Y ) identified with the diagonal C*-subalgebra of A given by a unital *-iso-
morphism ρ with domain C(Y ) and EY , the unique τ -preserving conditional expec-
tation of A onto ρ(C(Y )), the L-seminorm L is given for all a ∈ A by

L(a) = max
{
‖a− EY (a)‖A

βY
, Lipd ◦ ρ−1(EY (a))

}
, (2.2)

and
(3) Λ((A, L), (C(X), Lipd)) 6 Hausd(X,Y ) + βY .

Proof. Set δ = min{d(x, y) : x, y ∈ Y, x 6= y}. By Theorem 2.2, the compact quantum
metric space (A, L) is(2, 0)-quasi-Leibniz since 1 + βY

δ 6 2 and
Λ
(
(A, L), (C(Y ), Lipd)

)
6 βY .

Thus

Λ
(
(A, L), (C(X), Lipd)

)
6 Λ

(
(A, L), (C(Y ), Lipd)

)
+ Λ

(
(C(Y ), Lipd), ((C(X), Lipd))

)
6 βY + Hausd(X,Y ).

This concludes our proof.

Corollary 2.4. Any compact metric space (X, d) is the limit for the quantum propin-
quity of sequences of (2, 0)-quasi-Leibniz quantum compact metric spaces consisting of
full matrix algebras.

Proof. We simply apply Corollary 2.3 to any sequence (Xn)n∈N of finite subsets of X
with limn→∞ Hausd(X,Xn) = 0, which always exists since (X, d) is compact, and to
(βXn)n∈N = ( min{d(x,y):x,y∈Xn, x 6=y}

n )n∈N.

3. Fixed point C*-subalgebras. We now turn to the second result of this note. We
employ conditional expectations again as a key tool, though this time, our conditional
expectations are constructed via group actions and are not used in the definition of
the quantum metrics, unlike the previous section. In this section, we prove a continuity
result for quantum metric spaces constructed as fixed point C*-subalgebras of some given
quasi-Leibniz quantum compact metric space, for some fixed compact group action. We
refer to [19] for more results regarding group actions and quasi-Leibniz quantum compact
metric spaces.

Theorem 3.1. Let (A, L) be a F -quasi-Leibniz quantum compact metric space for some
admissible function F . Let G be a compact metrizable group endowed with a continuous
length function `. Let α be a strongly continuous action of G by *-automorphisms on A

such that L ◦ αg 6 L for all g ∈ G.
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If H is any closed subgroup of G, let AH = {a ∈ A : ∀ g ∈ H αh(a) = a} be the fixed
C*-subalgebra of A for the restriction of the action α to H.

If (Gn)n∈N is a sequence of closed subgroups of G converging to G∞ for the Hausdorff
distance Haus`, then

lim
n→∞

Λ∗F
(
(AGn , L), (AG∞)

)
= 0.

Proof. Let N = N ∪ {∞}. For each n ∈ N, let λn be the left Haar probability measure
on Gn. By [8, Lemma 3.6], the sequence (λn)n∈N weak* converges to λ∞ as measures
over G (where λn is identified with λn(· ∩ Gn) for all n ∈ N), i.e. if f : G → R is a
continuous function, then

lim
n→∞

∫
G

f(g) dλn(g) =
∫
G

f(g) dλ∞(g).

We define, for all n ∈ N and a ∈ A:

En(a) =
∫
G

αg(a) dλn(g)

and, as is well-known and easily checked, En is a conditional expectation of A onto AGn .
We note that for all n ∈ N and a ∈ sa (A):

L(En(a)) 6
∫
G

L(αg(a)) dλn(g) 6
∫
G

L(a) dλn(g) = L(a),

as L is lower semi-continuous.
In particular, let a ∈ sa (AGn) and ε > 0. Note that a = En(a). On the other hand,

by definition, there exists b ∈ dom(L) with ‖a− b‖A < ε. Therefore

‖a− En(b)‖A = ‖En(a− b)‖A 6 ‖a− b‖A < ε

and we note that L(En(b)) 6 L(b) <∞, so En(b) ∈ dom(L) ∩ AGn . Hence dom(L) ∩ AGn
is dense in sa (AGn) since ε > 0 was arbitrary. It then easily follows that (AGn , L) is a
F -quasi-Leibniz quantum compact metric space (where we keep the notation L for the
restriction of L to AGn).

We now establish the convergence of the fixed point C*-algebras. Fix any µ ∈ S (A).
Let ε > 0. Let F be a ε

5 -dense finite subset of S (A) for mkL (note: µ need not be in F).
Let A be a finite ε

5 -dense subset of {a ∈ dom(L) : L(a) 6 1, µ(a) = 0} for ‖ · ‖A.
For each ϕ ∈ F , and a ∈ A, let Na,ϕ ∈ N such that for all n > Na,ϕ, we have∣∣∣∫

G

ϕ(αg(a)) dλn(g)−
∫
G

ϕ(αg(a)) dλ∞(g)
∣∣∣ < ε

5 .

Let N = max{Na,ϕ : a ∈ A, ϕ ∈ F} and n > N . Let ϕ ∈ F , a ∈ A. We then
compute:∣∣∣ϕ(En(a)− E∞(a))

∣∣∣ =
∣∣∣ϕ(∫

G

αg(a) dλn(g)−
∫
G

αg(a) dλ∞(g)
)∣∣∣

=
∣∣∣∫
G

ϕ(αg(a)) dλn(g)−
∫
G

ϕ(αg(a)) dλ∞(g)
∣∣∣ 6 ε

5 .

Let ψ ∈ S (A) and ϕ ∈ F such that mkL(ϕ,ψ) < ε. Let a ∈ sa (A) with L(a) 6 1.
Since µ(a − µ(a)1A) = 0 and L(a − µ(a)1A) = L(a) 6 1, there exists b ∈ A such that
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‖(a− µ(a)1A)− b‖A < ε
5 . Now, since L(En(a)) 6 L(a) 6 1, we have:∣∣ψ(En(a)− E∞(a))
∣∣ =

∣∣ψ(En(a))− ψ(E∞(a))
∣∣

6
∣∣ψ(En(a))− ϕ(En(a))

∣∣+
∣∣ϕ(En(a))− ϕ(E∞(a))

∣∣+
∣∣ϕ(E∞(a))− ψ(E∞(a))

∣∣
6 2 ε5 +

∣∣ϕ(En(a))− ϕ(E∞(a))
∣∣

= 2 ε5 +
∣∣ϕ(En(a− µ(a)1A)− E∞(a− µ(a)1A))

∣∣
6 2 ε5 +

∣∣ϕ(En(a− µ(a)1A)− En(b))
∣∣

+
∣∣ϕ(En(b)− E∞(b))

∣∣+
∣∣ϕ(E∞(b)− E∞(a− µ(a)1A)

)∣∣
6 2 ε5 + 2

∥∥(a− µ(a)1A)− b
∥∥
A

+
∣∣ϕ(En(b)− E∞(b))

∣∣ 6 4 ε5 + ε

5 = ε.

Thus, for all a ∈ sa (A) with L(a) 6 1 and for all n > N , since En(a) − E∞(a) is
self-adjoint, we have ∥∥En(a)− E∞(a)

∥∥
A
6 ε.

We now work with the bridge γ = (A, ιn, ι∞, 1A) where ιn : AGn ↪→ A is the canonical
injection for all n ∈ N. As the pivot of this bridge is the unit, this bridge has height 0.

Now, let a ∈ sa (AGn) (so a = En(a)) with L(a) 6 1 for n > N . We compute:∥∥a− E∞(a)
∥∥
A

=
∥∥En(a)− E∞(a)

∥∥
A
6 ε.

If a ∈ sa (AG∞) with L(a) 6 1 and n > N then∥∥a− En(a)
∥∥
A

=
∥∥E∞(a)− En(a)

∥∥
A
6 ε.

Hence, the reach of the bridge γ is no more than ε.
We can apply Theorem 3.1 for various new convergence results.

Corollary 3.2. Let σ be a multiplier of Zd, with d ∈ N \ {0, 1}. Let ` be a continuous
length function on Td =

{
(z1, . . . , zd) ∈ Cd : ∀ j ∈ {1, . . . , d} |zj | = 1

}
. We denote the

dual action of Td on the quantum torus Aσ = C∗(Zd, σ) by α. For any closed subgroup
G of Td, we denote the fixed point C*-subalgebra of Aσ for α restricted to G as AGσ .

For all a ∈ Aσ, we set

L(a) = sup
{
‖a− αz(a)‖Aσ

`(z) : z ∈ Td \ {(1, . . . , 1)}
}
.

If (Gn)n∈N is a sequence of closed subgroups of Td converging to some closed subgroup
G∞ of Td for the Hausdorff distance Haus` induced by the invariant metric defined by `
on Td, then

lim
n→∞

Λ∗
(
(AGnσ , L), (AG∞

σ , L)
)

= 0.

Proof. The seminorm L is a Leibniz L-seminorm, as shown in [22], and by construction
L ◦ αz = L for all z ∈ Td. Thus, we are in the setting of Theorem 3.1, and the conclusion
follows.

Corollary 3.2 differs from [8, Theorem 4.4] and its version for the propinquity [14] as
the continuous length function involved in our new corollary is fixed, unlike [8, Theorem
4.4], and thus the convergence result is not due to changing the geometry of the torus,
but rather by averaging over a convergent sequence of closed subgroups.
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