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Abstract. Motivated by recent results in graph C*-algebras concerning an equivariant pushout
structure of the Vaksman–Soibelman quantum odd spheres, we introduce a class of graphs
called trimmable. Then we show that the Leavitt path algebra of a trimmable graph is graded-
isomorphic to a pullback algebra of a subgraph Leavitt path algebra and the algebra of Laurent
polynomials tensored with another subgraph Leavitt path algebra.

1. Introduction. The goal of this paper is to introduce and apply the concept of a
trimmable graph. We begin by recalling the fundamental concepts of path algebras [6]
and Leavitt path algebras [7, 3, 1, 2]. Then we define a trimmable graph, and prove our
main result: There is a Z-graded algebra isomorphism from the Leavitt path algebra of
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a trimmable graph to an appropriate pullback algebra. The graph C*-algebraic version
of this result is proven in [5], where it was used to analyze the generators of K-groups of
quantum complex projective spaces.

2. Leavitt path algebras

Definition 2.1. A graph Q is a quadruple (Q0, Q1, s, t) consisting of the set of ver-
tices Q0, the set of edges Q1, and the source and target maps s, t : Q1 → Q0 assigning to
each edge its source and target vertex, respectively.

We say that a graph Q′ = (Q′0, Q′1, s′, t′) is a sub-graph of a graph Q = (Q0, Q1, s, t) iff
Q′0 ⊆ Q0 , Q′1 ⊆ Q1 , and the source and target maps s′ and t′ are respective restrictions-
corestrictions of the source and target maps s and t. Furthermore, we say that two edges
are composable if the end of one of them is the beginning of the other one. Now we can
define a path in a graph as a sequence of composable edges. The length of a path is the
number of edges it consists of, infinity included. We treat vertices as zero-length paths
that begin and end in themselves.

Definition 2.2. Let k be a field and Q be a graph. The path algebra kQ is the k-algebra
whose underlying vector space has as its basis the set of all finite-length paths Path(Q).
The product is given by the composition of paths when the end of one path matches the
beginning of the other path. The product is defined to be zero otherwise.

One can check that the path algebra kQ is unital if and only if the set of vertices Q0
is finite. Then the unit is the sum of all vertices. It is also straightforward to verify that
kQ is N-graded by the path length.

To define a Leavitt path algebra, we need ghost edges. For any graph Q=(Q0, Q1, s, t),
we create a new set Q∗1 := {x∗ |x ∈ Q1} and call its elements ghost edges. Now, the source
and the target maps for the extended graph Q̂ := (Q0, Q1

∐
Q∗1, ŝ, t̂) are defined by

ŝ(x) := s(x), ŝ(x∗) := t(x), t̂(x) := t(x), t̂(x∗) := s(x). (1)

Definition 2.3. Let k be a field and Q a graph. The Leavitt path algebra Lk(Q) of
a graph Q is the path algebra of the extended graph Q̂ divided by the ideal generated by
the relations:

1. For all edges xi, xj ∈ Q1 , we have x∗i xj = δijt(xi).
2. For every vertex v ∈ Q0 whose preimage s−1(v) is not empty and finite, we have∑

x∈s−1(v)

xx∗ = v.

In other words, the Leavitt path algebra Lk(Q) of a graph Q is the universal k-algebra
generated by the elements v ∈ Q0 , x ∈ Q1 , x∗ ∈ Q∗1, subject to the relations:

(L1) vivj = δijvi for all vi, vj ∈ Q0,
(L2) s(x)x = xt(x) = x for all x ∈ Q1,
(L3) t(x)x∗ = x∗s(x) = x∗ for all x∗ ∈ Q∗1,
(L4) x∗i xj = δijt(xi) for all xi, xj ∈ Q1, and
(L5)

∑
x∈s−1(v) xx

∗ = v for all v ∈ Q0 such that s−1(v) is finite and nonempty.



LEAVITT PATH ALGEBRAS OF TRIMMABLE GRAPHS 49

Furthermore, note that the N-grading of the path algebra kQ̂ induces a Z-grading
of the Leavitt path algebra Lk(Q) by counting the length of any ghost edge as −1
(see [3, Lemma 1.7]). Let us recall now the Graded Uniqueness Theorem [9, Theorem 4.8]
that shows the importance of this grading. We will need it in the next section.

Theorem 2.4 ([9]). Let Q be an arbitrary graph and k be any field. If A is a Z-graded
ring, and f : Lk(E)→ A is a graded ring homomorphism with f(v) 6= 0 for every vertex
v ∈ Q0, then f is injective.

3. Trimmable graphs. We are now ready for the main definition of the paper. Merely
to focus attention, we assume henceforth that graphs are finite, i.e. that the set of vertices
and the set of edges are both finite.

Definition 3.1. Let Q be a finite graph consisting of a sub-graph Q′ emitting at least
one edge to an external vertex v0 whose only outgoing edge x0 is a loop (i.e. it ends where
it begins). We call such a graph v0-trimmable iff all edges from Q′ to v0 begin in a vertex
emitting an edge that ends inside Q′.

In symbols, a trimmable graph is described as follows:

Q0 = Q′0 ∪ {v0}, v0 6∈ Q′0 , Q1 = Q′1 ∪ t−1(v0), (2)
s−1(v0) = {x0}, t(x0) = v0 , t−1(v0) \ {x0} 6= ∅, (3)
∀ v ∈ s

(
t−1(v0) \ {x0}

)
: s−1(v) \ t−1(v0) 6= ∅. (4)

The conditions for a trimmable graph guarantee that, when we remove the distinguished
vertex v0, the resulting graph does not have a new sink. (A vertex is called a sink iff it
emits no edge.) One can imagine a v0-trimmable graph like this:

v0
Q′

.

The following graph is a simple example of a v0-trimmable graph:
v2

v1

OO

// v0 rr .

(5)

Note that the direction of the edge joining vertices v1 and v2 is important as the following
graph is no longer v0-trimmable:

v2

��
v1 // v0 rr .

(6)
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We need the trimmability conditions to guarantee the existence of maps given in the
lemma below. This lemma is an algebraic incarnation of a graph-C*-algebraic lemma
proved in [5]. The only difference between their proofs is that here, instead of using the
Gauge Uniqueness Theorem [9, Theorem 4.8], we use the Graded Uniqueness Theorem
[4, Theorem 2.3] (Theorem 2.4).

Lemma 3.2. Let Q be a v0-trimmable graph. Denote by Q′′ the sub-graph of Q obtained
by removing the edge x0. The following formulas define homomorphisms of algebras:

1. π1 : Lk(Q)→ Lk(Q′),

π1(α) :=
{
α if α ∈ Q′0 ∪Q′1 ∪Q′∗1 ,
0 otherwise.

2. π2 : Lk(Q′′)→ Lk(Q′),

π2(α) :=
{
α if α ∈ Q′0 ∪Q′1 ∪Q′∗1 ,
0 otherwise.

3. f : Lk(Q)→ Lk(Q′′)⊗ k[u, u−1],

f(α) :=



α⊗ 1 if α ∈ Q0,

v0 ⊗ u if α = x0,

v0 ⊗ u−1 if α = x∗0,

α⊗ u if α ∈ Q1 \ {x0},
α⊗ u−1 if α ∈ Q∗1 \ {x∗0}.

4. δ : Lk(Q′)→ Lk(Q′)⊗ k[u, u−1],

δ(α) :=


α⊗ 1 if α ∈ Q′0,
α⊗ u if α ∈ Q′1,
α⊗ u−1 if α ∈ (Q′1)∗.

These morphisms are Z-graded for the standard grading on Lk(Q), Lk(Q′), Lk(Q′′), and
the gradings on Lk(Q′)⊗k[u, u−1] and Lk(Q′′)⊗k[u, u−1] given by the standard grading of
the rightmost tensorand. Furthermore, π1 and π2 are surjective, and f and δ are injective.

4. A graded pullback structure. To prove the theorem of the paper, we need a
general lemma along the lines of [8, Proposition 3.1]. We omit its routine proof.

Lemma 4.1. Let A1, A2, B and P be abelian groups. A commutative diagram of group
homomorphisms

P
p1

~~

p2

  
A1

q1   

A2

q2~~
B
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is a pullback diagram if and only if the following conditions hold:

ker(p1) ∩ ker(p2) = {0}, (7)
q−1

1 (q2(A2)) = p1(P ), (8)
p2(ker(p1)) = ker(q2). (9)

Recall that to prove that an algebra P is a pullback algebra, one can proceed as
follows. The first step is to establish the existence of a commutative diagram of algebra
homomorphisms as above. This implies that p1 and p2 define an algebra homomorphism
p into the pullback algebra of A1 and A2 over B. Then one only needs to prove that the
three conditions of Lemma 4.1 are satisfied to conclude that p is an isomorphism. Note
that (7) is equivalent to the injectivity of p, whereas the conjunction of (8) and (9) is
equivalent to the surjectivity of p.

Much as Lemma 3.2, the theorem of the paper is an algebraic incarnation of a graph-
C*-algebraic theorem proved in [5]. This time, the only difference between their proofs is
that here, instead of using [4, Lemma 3.1], we use [2, Lemma 2.4.1] (cf. [9, Lemma 5.6]).

Theorem 4.2. Let π1, π2, f and δ be as in Lemma 3.2. Then the commutative diagram

Lk(Q)
π1

ww

f

))
Lk(Q′)

δ ''

Lk(Q′′)⊗ k[u, u−1]

π2⊗iduu
Lk(Q′)⊗ k[u, u−1]

of graded algebra homomorphisms is a pullback diagram.

Representing pictorially the Leavitt path algebras by their respective graphs, the above
diagram becomes:

v0
Q′

π1

{{

f
''

Q′

δ $$

v0
Q′ ⊗

u

π2⊗idww
Q′ ⊗

u

.
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Note that the only non-standard map in this diagram is f . It can be described verbally
by the assignment

vertex 7−→ vertex⊗ 1,
v0-emitted edge 7−→ v0 ⊗ u,

other edge 7−→ other edge⊗ u.
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