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Abstract. Given a compact metric space X and a unital C*-algebra A, we introduce a family
of seminorms on the C*-algebra of continuous functions from X to A, denoted by C(X, A),
induced by classical Lipschitz seminorms that produce compact quantum metrics in the sense
of Rieffel if and only if A is finite-dimensional. As a consequence, we are able to isometrically
embed X into the state space of C(X, A). Furthermore, we are able to extend convergence of
compact metric spaces in the Gromov–Hausdorff distance to convergence of spaces of matrices
over continuous functions on the associated compact metric spaces in Latrémolière’s Gromov–
Hausdorff propinquity.
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1. Introduction and background. Compact quantum metric spaces introduced by
Rieffel [27, 28, 30] (motivated by the work of Connes [8, 9]) provide a framework for the
study of noncommutative metric geometry just as spectral triples provide for noncommu-
tative differential geometry and C*-algebras provide for noncommutative topology. These
spaces are defined using a C*-algebra equipped with a seminorm that serves as non-
commutative analogues to the Lipschitz seminorm on the C*-algebra of complex-valued
continuous functions on a compact metric space. In this article, we will provide families
of quantum metrics for the C*-algebra of continuous functions from a compact metric
space to a finite-dimensional C*-algebra. As an application, we show that convergence
of compact metric spaces in the Gromov–Hausdorff distance can be extended to conver-
gence of spaces of matrices over continuous functions on the associated compact metric
spaces in Latrémolière’s quantum Gromov–Hausdorff propinquity. The canonical mapping
(X, d) 7→ (C(X), Ld) from compact metric spaces to compact quantum metric spaces is
continuous, and in fact a homeomorphism onto its image, from the Gromov–Hausdorff
distance to Rieffel’s quantum distance [29, Proposition 4.7] (this has been known since
2000 and also is true for Latrémolière’s quantum Gromov–Hausdorff propinquity [20, The-
orem 6.6]); this paper proves that (X, d) 7→ (C(X,A), L) remains continuous for the same
topologies, when A is a fixed finite-dimensional C*-algebra and L is introduced in this
paper.

We note of another motivation for our work in this article. The quantum metrics
we introduced will in particular endow standard circle algebras with quantum metrics,
where we define a standard circle algebra to be C(T,A), where T is the circle and A is a
finite-dimensional C*-algebra. Thus, this article is partly motivated by work of the first
author and F. Latrémolière [1–3], in which they brought AF algebras into the realm on
noncommutative metric geometry by, in part, finding various quantum metrics for AF
algebras. Therefore, following the Elliott classification program [13], a next natural step
is to develop quantum metrics for limit circle algebras or AT-algebras or inductive limits
of circle algebras [11, page 159]. But, as done in [3], it is quite beneficial to first place
quantum metrics on the C*-algebras of the inductive sequence that build the inductive
limit. Thus, this article serves to provide a natural family of quantum metrics for circle
algebras as a vital step for this pursuit.

Our construction will be based on the quantum metric induced by the Lipschitz
seminorm on the C*-algebra of continuous functions on a compact metric space (X, dX),
denoted by C(X). Indeed, it is a well-known result (likely due to L. Kantorovich and see
[12] for a reference) that the metric on the state space S (C(X)) defined by

mkLdX
: (µ, ν) ∈ S (C(X))×S (C(X)) 7−→ sup

LdX (f)61
|µ(f)− ν(f)|

metrizes the weak* topology of S (C(X)), the state space of C(X), and

LdX (f) = sup
x,y∈X,x 6=y

|f(x)− f(y)|
dX(x, y)

is the Lipschitz constant of f , which we call the Lipschitz seminorm. Furthermore, the
map

∆ : x ∈ (X, dX) 7−→ δx ∈
(
S (C(X)),mkLdX

)
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is an isometry onto its image, where δx : f ∈ C(X) 7−→ f(x) ∈ C is the Dirac point
mass at x. Of course, even when X is only compact Hausdorff, this map is a homeomor-
phism onto its image. Thus, the contribution of mkLdX

is that this homeomorphism is
strengthened to an isometry in the case when X is compact metric.

The generalization of the Lipschitz seminorm to metric-space valued functions, and in
particular, C*-algebra valued functions, is very natural. This paper studies these general-
izations from the perspective of noncommutative metric geometry. First, in Section 2, the
family of seminorms we develop on C(X,A) will produce quantum metrics if and only if
A is finite-dimensional. Next, for a particular choice of seminorm on C(X,A), the above
C(X) structure will be recovered in the unital C*-subalgebra of scalar-valued functions
denoted by C(X,C1A) where 1A is the identity of A (also in Section 2). In Section 3,
an appropriate analogue to the above map, ∆, will capture the metric structure of X
in the state space via the quantum metric by way of a bi-Lipschitz map for any of the
seminorms we produce, and for particular natural choices of seminorms, the map will be
an isometry just as ∆ is in the classical case, and these cases will still be independent of A
and X. Furthermore, although some of our main results rest on the finite-dimensionality
of A, we note that we are able to prove many crucial algebraic and analytic properties of
our seminorms without the assumption of finite-dimensionality on A. And, finally, in Sec-
tion 4, we extend the convergence of compact metric spaces to a purely noncommutative
setting by way of matrices over spaces of continuous functions.

Now, we provide some necessary background for the results of this paper.

Notation 1.1. Let A be a unital C*-algebra. Denote the C*-norm of A by ‖ · ‖A and
the unit of A by 1A. If B is a C*-subalgebra of A, then we use ‖ · ‖A/B to denote the
quotient norm on A/B induced by the C*-norm of A.

Denote the set of self-adjoint elements of A by sa(A) and the state space of A by S (A).

Notation 1.2. Let A be a C*-algebra. Let L be a seminorm defined on a subspace of
sa(A). Denote this subspace as dom(L) and set L(a) = ∞ for all a ∈ sa(A) \ dom(L) so
that dom(L) = {a ∈ sa(A) : L(a) <∞}.

If L is defined on a subspace of A, then we denote this subspace as dom(L)A and
set L(a) = ∞ for all a ∈ A \ dom(L)A, so that dom(L)A = {a ∈ A : L(a) < ∞} and
dom(L) = dom(L)A ∩ sa(A).

Definition 1.3 ([27,28,30]). A compact quantum metric space (A, L) is an ordered pair
where A is a unital C*-algebra with unit 1A and L is a seminorm defined on a unital
dense subspace of sa(A) such that:

(1) {a ∈ sa(A) : L(a) = 0} = R1A,
(2) the Monge–Kantorovich metric defined, for all two states ϕ,ψ ∈ S (A), by

mkL(ϕ,ψ) = sup
{
|ϕ(a)− ψ(a)| : a ∈ dom(L), L(a) 6 1}

metrizes the weak* topology of S (A),
(3) the seminorm L is lower semi-continuous with respect to ‖ · ‖A.

If (A, L) is a compact quantum metric space, then we call the seminorm L a Lip-norm.
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Remark 1.4. The density condition on dom(L) in the above definition condition guar-
antees that the map mkL is a metric (possibly taking value +∞) on S (A), which follows
by continuity and linearity of states and the fact that every element of a C*-algebra is a
linear combination of self-adjoint elements.

Also, we note that the above definition is more specialized than Rieffel’s definition of a
compact quantum metric space. Indeed, Rieffel’s original definition allowed for order unit
spaces and no lower semi-continuity was required. The purpose of the above definition
is to place Rieffel’s definition within the context of the order unit space of self-adjoint
elements of a unital C*-algebra and to avoid any technical issues that arise from not
requiring the Lip-norm to be lower semi-continuous, which are addressed in [28].

In Rieffel’s pioneering work on compact quantum metric spaces [27], certain equivalent
conditions were given for the requirement that the Monge–Kantorovich metric metrizes
the weak* topology of the state space. These conditions provide a useful tool for verifying
this difficult property. Further equivalences were given in [26]. The following theorem sum-
marizes all known characterizations of Lip-norms and the proof uses both Arzelà–Ascoli
theorem and the classical structure of C(X) with X compact metric and its associated
Lipschitz seminorm, which, in part, explains the term “compact quantum metric space.”

Theorem 1.5 ([26–28]). Let (A, L) be an ordered pair where A is unital C*-algebra and
L is a lower semi-continuous seminorm defined on unital dense subspace of sa(A). The
following are equivalent:

(1) (A, L) is a compact quantum metric space;
(2) the metric mkL is bounded and there exists r ∈ R, r > 0 such that the set

{a ∈ dom(L) : L(a) 6 1 and ‖a‖A 6 r}

is compact in A for ‖ · ‖A;
(3) the set {

a+ R1A ∈ sa(A)/R1A : a ∈ dom(L), L(a) 6 1
}

is compact in sa(A)/R1A for ‖ · ‖sa(A)/R1A
;

(4) there exists a state µ ∈ S (A) such that the set

{a ∈ dom(L) : L(a) 6 1 and µ(a) = 0}

is compact in A for ‖ · ‖A;
(5) for all µ ∈ S (A) the set

{a ∈ dom(L) : L(a) 6 1 and µ(a) = 0}

is compact in A for ‖ · ‖A.

Latrémolière’s quantum Gromov–Hausdorff propinquity [18, 20, 21] is a distance on
the class of compact quantum metric spaces and serves as noncommutative analogue to
the Gromov–Hausdorff distance that has been proven to be an especially profitable contri-
bution to noncommutative metric geometry by expanding the possibilities of continuous
families of C*-algebras as well as extending the notion of finite-dimensional approxima-
tions [17, 32]. In order to obtain an analogue of the Gromov–Hausdorff distance on the
class of compact quantum metric spaces, a form of the Leibniz inequality seems needed for
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the Lip-norm, as was first observed by Latrémolière in [20], which we provide a definition
for now.
Definition 1.6 ([21]). A (C,D)-quasi-Leibniz compact quantum metric space (A, L), for
some C > 1 and D > 0, is compact quantum metric space such that the seminorm L is a
(C,D)-quasi-Leibniz Lip-norm, i.e. for all a, b ∈ dom(L):

max
{

L(a ◦ b), L({a, b})
}
6 C

(
‖a‖AL(b) + ‖b‖AL(a)

)
+DL(a)L(b),

where a ◦ b = (ab + ba)/2 is the Jordan product and {a, b} = (ab − ba)/(2i) is the Lie
product.

When C = 1, D = 0, we call L a Leibniz Lip-norm. When we do not specify C and D,
we call (A, L) a quasi-Leibniz compact quantum metric space.

In particular, the quantum Gromov–Hausdorff propinquity produces a distance on
the class of compact quantum metric spaces of Definition 1.6 with a desirable distance 0
property given, in part, by a *-isomorphism (see Theorem-Definition 1.7, (5)). The fol-
lowing serves as a summary of results we will use in this paper involving Latrémolière’s
propinquity.
Theorem-Definition 1.7 ([20,21]). Let qLCQMS be the class of all quasi-Leibniz com-
pact quantum metric spaces. There exists a class function Λ from qLCQMS× qLCQMS
to [0,∞) ⊆ R such that:
(1) for any (A, LA), (B, LB) ∈ qLCQMS we have

Λ((A, LA), (B, LB)) 6 max
{

diam(S (A),mkLA
),diam(S (B),mkLB

)
}
,

(2) for any (A, LA), (B, LB) ∈ qLCQMS we have
0 6 Λ((A, LA), (B, LB)) = Λ((B, LB), (A, LA)),

(3) for any (A, LA), (B, LB), (C, LC) ∈ qLCQMS we have
Λ((A, LA), (C, LC)) 6 Λ((A, LA), (B, LB)) + Λ((B, LB), (C, LC)),

(4) for any (A, LA), (B, LB) ∈ qLCQMS and for any bridge γ from A to B defined in
[20, Definition 3.6], we have

Λ((A, LA), (B, LB)) 6 λ (γ|LA, LB),
where λ (γ|LA, LB) is defined in [20, Definition 3.17],

(5) for any (A, LA), (B, LB) ∈ qLCQMS, we have:
Λ((A, LA), (B, LB)) = 0

if and only if (A, LA) and (B, LB) are quantum isometric, i.e. if and only if there
exists a *-isomorphism π : A → B with LB ◦ π = LA, and as quantum isometry is
an equivalence relation, Λ induces a metric on the class of equivalence classes up to
quantum isometry of quasi-Leibniz compact quantum metric spaces,

(6) if Ξ is a class function from qLCQMS×qLCQMS to [0,∞) which satisfies properties
(2), (3) and (4) above, then

Ξ((A, LA), (B, LB)) 6 Λ((A, LA), (B, LB))
for all (A, LA) and (B, LB) in qLCQMS.
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Due to this Theorem-Definition, we may introduce the following convention.

Convention 1.8. Let CMS denote the class of all compact metric spaces. Let A be a
subclass of CMS, then by (A,GH), we mean the class of all equivalence classes up to
isometry of compact metric spaces topologized by the quotient topology induced by the
Gromov–Hausdorff distance, GH [7, Section 7.3], for which GH induces a metric on this
quotient space. And, when we let (X, dX) ∈ (A,GH), we implicitly mean the equivalence
class of (X, dX) with respect to isometry.

By (qLCQMS,Λ), we mean the class of all equivalence classes up to quantum isometry
of Theorem-Definition 1.7 topologized by the quotient topology induced by the quantum
Gromov–Hausdorff propinquity, Λ. And, when we take (A, L) ∈ (qLCQMS,Λ), we implic-
itly mean the equivalence class of (A, L) with respect to quantum isometry.

We also have the following theorem that establishes the quantum Gromov–Hausdorff
propinquity as a noncommutative analogue of the Gromov–Hausdorff distance on compact
metric spaces.

Theorem 1.9 ([20, Theorem 6.6, Corollary 6.4] and [29, Theorem 13.6]). If given compact
metric spaces (X, dX), (Y, dY ) and LdX , LdY denote their respective Lipschitz seminorms,
then

Λ((C(X), LdX ), (C(Y ), LdY )) 6 GH((X, dX), (Y, dY )),

where GH is the Gromov–Hausdorff distance [7, Section 7.3].
Moreover, with Convention 1.8, the class map

Γ : (X, dX) ∈ (CMS,GH) 7→ (C(X), LdX ) ∈ (qLCQMS,Λ)

is a homeomorphism onto its image.

A main goal of this paper is to generalize the continuity of Γ in this theorem to
matrix-valued continuous functions.

2. Quantum metrics on standard homogeneous C*-algebras. Given a compact
metric space (X, dX) and a finite-dimensional C*-algebra A, the task of equipping C(X,A)
with a Lip-norm may at first seem obvious since we could define the quantity

L(a) = sup
x,y∈X,x 6=y

‖a(x)− a(y)‖A
dX(x, y) for all a ∈ C(X,A).

However, an immediate issue with this quantity is that the kernel of L is not C1C(X,A) if
dim(A) > 1. Thus, we would immediately not satisfy the definition of the Lip-norm and
Theorem 1.5 (the theorem that, in part, motivates the term “compact quantum metric
space”) would be unavailable to us. Hence, in this section, we present various remedies
to this deficit by coupling the quantity L with other quantities and choosing different
norms on A for the quantity in the numerator of L to make a Lip-norm. We will discuss
the advantages of each construction and, in the process, provide new Lip-norms on C(X)
itself.

First, we explicitly define what we mean by a standard homogeneous C*-algebra with
a remark afterward explaining this definition.
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Definition 2.1. A unital separable C*-algebra B is a standard homogeneous C*-algebra
if there exists a compact metric space (X, dX) and a finite-dimensional C*-algebra A such
that B = C(X,A), which is the C*-algebra of continuous A-valued functions on X with
point-wise algebraic and adjoint operations induced by A, supremum norm, and the unit
is the constant 1A function on X.

Remark 2.2. The reason we assume X is compact metric in the previous definition is
because the C*-algebra of a compact quantum metric space is always unital by definition
and separable by [18, Proposition 2.11]. Indeed, if X is compact Hausdorff and A is
finite-dimensional and C(X,A) is separable, then its state space is compact by unital
and metrizable as the unit ball of a the dual of a separable Banach space is metrizable
in the weak* topology. However, X embeds homeomorphically into the state space of
C(X,A) (see proof of Proposition 3.6), which induces a metric on X that agrees with its
topology. The terminology “standard” is taken from [4, Section IV.1.4].

Now, we define some of the seminorms we consider throughout this paper. We note
that we define them in the more general setting than Definition 2.1, in which the C*-
algebra A in C(X,A) need not be finite-dimensional. And, in fact, we can and do prove
many interesting properties about the seminorms of the following definition without the
assumption that A is finite-dimensional. We only assume A is finite-dimensional when it
is necessary in Theorem 2.10, in that this theorem, in part, provides an equivalence for
finite-dimensionality of A. This thus shows that our seminorms are natural choices for
Lip-norms on C(X,A) in the case when A is finite-dimensional.

Definition 2.3. Let (X, dX) be a compact metric space and let A be a unital C*-algebra.
Let C(X,A) denote the unital C*-algebra of continuous A-valued functions on X with
point-wise algebraic and adjoint operations induced by A, supremum norm over X and
with 1C(X,A) the constant 1A function over X. Note that sa(C(X,A)) = C(X, sa(A)).

Let C(X,C1A) = {a ∈ C(X,A) : a(x) ∈ C1A for all x ∈ X}. Define

l
(n)
dX (a) = sup

{
‖a(x)− a(y)‖n

dX(x, y) : x, y ∈ X, x 6= y

}
for all a ∈ sa(C(X,A))

where ‖ · ‖n denotes any norm on A.
Let L(n),q

dX denote the following:

(1) if q = C(X), then for all a ∈ C(X,A) let

L(n),q
dX (a) = max

{
l
(n)
dX (a), ‖a+ C(X,C1A)‖C(X,A)/C(X,C1A)

}
;

(2) if q = C, then for all a ∈ C(X,A) let

L(n),q
dX (a) = max

{
l
(n)
dX (a), ‖a+ C1C(X,A)‖C(X,A)/C1C(X,A)

}
;

(3) if µ ∈ S (C(X,A)) is any state and q = µ, then for all a ∈ C(X,A) let

L(n),q
dX (a) = max

{
l
(n)
dX (a), ‖a− µ(a)1C(X,A)‖C(X,A)

}
.

If A = C, n = C is the usual norm on C, and q = C(X), then we note that L(n),q
dX = l

(n)
dX

and denote this by LdX .
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As a convention, when not specified, n and q will simply be allowed to be any of the
above cases.

We note that the constructions of the above definition are related to the construction
of a norm in [16, Proposition 4.4], where the non-unital case is considered, in which X is
a locally compact separable metric space. However, the seminorm used there is a norm
and uses the norm on C0(X,A) in place of q above. Hence, the norm of [16, Proposition
4.4] applied in our setting would vanish only at 0, which would not provide a possibility
for a Lip-norm. Thus, the fact that we are left to rely on the above choices of q does
require us to do more work to prove that the seminorms of Definition 2.3 form Lip-norms
if and only if A is finite-dimensional.

When A is a finite-dimensional C*-algebra, there are many standard norms that can
be placed on A, which are automatically equivalent by finite-dimensionality. Later in
Sections 3 and 4 we will utilize other norms aside from the C*-norm. But, for now, let
us focus on the algebraic properties of the domain of the seminorms of Definition 2.3.
Note that Proposition 2.4 does not assume finite-dimensionality of A in C(X,A) and thus
finite-dimensionality assumption on A does not appear until Theorem 2.10, where it is,
in fact, a necessity.

Proposition 2.4. Let (X, dX) be a compact metric space and let A be a unital C*-algebra
and let µ ∈ S (C(X,A)) be a state.

With notation from Definition 2.3, if ‖ · ‖n is a norm on A that is equivalent to the
C*-norm ‖ · ‖A, then ker L(n),q

dX = C1C(X,A) and dom(L(n),q
dX )

C(X,A) is a unital *-subalgebra
of C(X,A).

Furthermore, if M > 0, N > 0 such that M‖ · ‖n 6 ‖ · ‖A 6 N‖ · ‖n, then:

(1) if q is either C(X) or C, then L(n),q
dX is a (N/M, 0)-quasi-Leibniz seminorm;

(2) if q = µ, then L(n),q
dX is a (max{N/M, 2}, 0)-quasi-Leibniz seminorm.

Proof. For ker L(n),q
dX = C1C(X,A), first note that if a ∈ C1C(X,A) ⊆ C(X,C1A), then since

a is constant, l(n)
dX (a) = 0 and, for any choice of q, the second expression in the definition

of L(n),q
dX is also 0 and so L(n),q

dX (a) = 0. Hence, we have ker L(n),q
dX ⊇ C1C(X,A).

Next, let a ∈ ker L(n),q
dX . First, consider the case when q = C or q = µ. Since

L(n),q
dX (a) = 0, then

either ‖a+ C1C(X,A)‖C(X,A)/C1C(X,A) = 0 or ‖a− µ(a)1C(X,A)‖C(X,A) = 0.

In either case, we have a ∈ C1C(X,A) and so ker L(n),q
dX = C1C(X,A). Second, assume that

q = C(X). If L(n),q
dX (a) = 0, then l

(n)
dX (a) = 0 implies that a is constant. However, the

expression ‖a + C(X,C1A)‖C(X,A)/C(X,C1A) = 0 implies that a(x) ∈ C1A for all x ∈ X.
Thus a is a constant scalar and so a ∈ C1C(X,A), which implies that ker L(n),q

dX = C1C(X,A).
Next, consider dom

(
L(n),q

dX
)
C(X,A). It is clear that L(n),q

dX is a seminorm and thus

dom
(
L(n),q

dX
)
C(X,A) is a subspace of C(X,A), and we have already shown that it is unital.
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For subalgebra, since ‖ · ‖n is equivalent to ‖ · ‖A, there exist M,N > 0 such that
M‖ · ‖n 6 ‖ · ‖A 6 N‖ · ‖n. Let a, b ∈ dom

(
L(n),q

dX
)
C(X,A). We then have:

‖ab(x)− ab(y)‖n 6
1
M

(
‖ab(x)− a(x)b(y)‖A + ‖a(x)b(y)− a(y)b(y)‖A

)
6

1
M

(
‖a(x)‖A · ‖b(x)− b(y)‖A + ‖a(x)− a(y)‖A · ‖b(y)‖A

)
6

1
M

(
‖a‖C(X,A) · ‖b(x)− b(y)‖A + ‖a(x)− a(y)‖A · ‖b‖C(X,A)

)
= N

M

(
‖a‖C(X,A) · ‖b(x)− b(y)‖n + ‖a(x)− a(y)‖n · ‖b‖C(X,A)

)
(2.1)

for all x, y ∈ X. Thus, since l(n)
dX (a), l(n)

dX (b) <∞, we have l(n)
dX (ab) <∞. Furthermore, the

seminorm l
(n)
dX is (N/M, 0)-quasi-Leibniz. And, clearly, the expression determined by q is

finite on all of C(X,A). Hence, the unital subspace dom
(
L(n),q

dX
)
C(X,A) is a subalgebra.

For *-subalgebra, a similar argument to that of (2.1) applies utilizing the equivalence of
norms and the fact that the adjoint is an isometry with respect to the C*-norm.

Finally, note that both quotient norms ‖ · ‖C(X,A)/C1C(X,A) and ‖ · ‖C(X,A)/C(X,C1A)
are Leibniz by [31, Theorem 3.1] since both C1C(X,A) and C(X,C1A) are unital C*-
subalgebras of C(X,A). Also, note that for equivalent norms M 6 N or (N/M) > 1 lest
we reach a contradiction. This along with expression (2.1) provides statement (1) of this
proposition.

For statement (2), we note that the function a ∈ C(X,A) 7−→ µ(a)1C(X,A) is a
conditional expectation onto C1C(X,A). Hence, by [3, Lemma 3.2], we conclude that the
seminorm

a ∈ C(X,A) 7−→ ‖a− µ(a)1C(X,A)‖C(X,A)

is (2, 0)-quasi-Leibniz, and this establishes statement (2) with expression (2.1).

We now move onto the analytic properties of the seminorm L(n),q
dX on C(X,A) such as

lower semi-continuity and density of the domain. Towards this goal, in Lemma 2.5, we
prove these properties in the classical case C(X) equipped with its standard Lipschitz
seminorm LdX , which is a well-known result but useful for the proof of the lemma that
follows.

Lemma 2.5. Consider the C*-algebra C(X). The Lipschitz seminorm LdX is lower semi-
continuous on C(X) with respect to ‖ · ‖C(X) and its domain dom

(
LdX

)
C(X) is dense.

Proof. First, we check lower semi-continuity of LdX . Fix x, y ∈ X. Note that the map
Lx,y : f ∈ C(X) 7−→ |f(x)−f(y)|

dX(x,y) ∈ R is continuous. But, we have LdX (f) = sup{Lx,y(f) :
x, y ∈ X}. Hence, since a supremum of real-valued lower semi-continuous functions is
lower semi-continuous, we see that LdX is lower semi-continuous.

Next, we prove density of dom
(
LdX

)
C(X) in C(X). By Proposition 2.4, dom

(
LdX

)
C(X)

is a unital *-subalgebra of C(X). Now, fix a, b ∈ X, a 6= b and consider the function on X
defined by ad(x) = dX(a, x) for all x ∈ X. Clearly, the function ad ∈ C(X). Also, we see
for x, y ∈ X that |ad(x)− ad(y)| = |dX(a, x)− dX(a, y)| 6 dX(x, y). Hence, the function
ad ∈ dom

(
LdX

)
C(X). Finally, ad(b) > 0 = ad(a), which implies that dom

(
LdX

)
C(X)
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separates the points of X. Therefore, the proof is complete by [35, Stone–Weierstrass
Theorem 44.5].

Now, we are prepared to generalize the results of Lemma 2.5 when C is replaced by
any unital C*-algebra. We utilize the argument outlined in [15, Theorem 3.4] to obtain
the following.

Lemma 2.6. Let (X, dX) be a compact metric space and let A be a unital C*-algebra.
Using notation from Definition 2.3, if ‖ · ‖n is a norm on A that is equivalent to the C*-
norm ‖ · ‖A, then the seminorm L(n),q

dX is lower semi-continuous with respect to ‖ · ‖C(X,A)

and the sets dom
(
L(n),q

dX
)
C(X,A) and dom

(
L(n),q

dX
)
are dense in C(X,A) and sa(C(X,A)),

respectively.

Proof. Semi-continuity follows as in the proof of Lemma 2.5 along with the fact that ‖·‖n
is equivalent to ‖ · ‖A.

For density of dom
(
L(n),q

dX
)
C(X,A) in C(X,A), let f ∈ C(X,A). Let ε > 0. As X is

compact, f is uniformly continuous, and thus there exists δ > 0 such that:

dX(x, y) < δ =⇒ ‖f(x)− f(y)‖A < ε/2 (2.2)

for all x, y ∈ X. Define U(y, δ/2) = {x ∈ X : dX(x, y) < δ/2} for all y ∈ X. Again, as
X is compact, the open cover {U(y, δ/2) ⊆ X : y ∈ X} of X has a finite subcover of X
given by y1, . . . , yn ∈ X such that

⋃n
k=1 U(yk, δ/2) = X. Since X is compact Hausdorff,

there exists a partition of unity with respect to the cover {U(y1, δ/2), . . . , U(yn, δ/2)} by
[5, Proposition IX.4.3.3]. In particular, for each k ∈ {1, . . . , n}, there exists a continuous
function pk : X → [0, 1] such that {x ∈ X : pk(x) > 0} 6= ∅ and if we define Vk = {x ∈ X :
pk(x) > 0}, then {V1, . . . , Vn} is an open cover of X and Vk ⊆ Vk

dX ⊆ U(yk, δ/2) for each
k ∈ {1, . . . , n}. Furthermore, we have

∑n
k=1 pk = 1C(X), which is the constant 1 function

on X.
Now, note that by definition of l(n)

dX , we see that if g ∈ C(X) and LdX (g) < ∞,
then for any a ∈ A, a · g ∈ C(X,A), where a · g : x ∈ X 7→ a · g(x) ∈ A, and
l
(n)
dX (a · g) = ‖a‖n · LdX (g) <∞. Next, for all k ∈ {1, . . . , n}, fix some xk ∈ Vk. Let k ∈
{1, . . . , n}. If f(xk) = 0, then clearly f(xk)pk ∈ dom

(
L(n),q

dX
)
C(X,A). If f(xk) 6= 0, then let

qk ∈ dom
(
LdX

)
C(X) such that ‖pk−qk‖C(X) < ε/(2n · ‖f(xk)‖A) by Lemma 2.5. Further-

more, by the comments at the beginning of this paragraph, f(xk) ·qk ∈ dom
(
L(n),q

dX
)
C(X,A)

and
‖f(xk) · pk − f(xk) · qk‖C(X,A) = ‖f(xk)‖A · ‖pk − qk‖C(X) < ε/(2n).

Thus ∥∥∥ n∑
k=1

f(xk) · pk −
n∑
k=1

f(xk) · qk
∥∥∥
C(X,A)

< n · ε/(2n) = ε/2.

Next, define fp =
∑n
k=1 f(xk) · pk ∈ C(X,A) and fε =

∑n
k=1 f(xk) · qk. Note that

fε ∈ dom
(
L(n),q

dX
)
C(X,A) since L(n),q

dX is a seminorm, and note that ‖fp − fε‖C(X,A) < ε/2.
Now, let x ∈ X. Since {V1, . . . , Vn} is a cover of X, we see that ∅ 6= {l ∈ {1, . . . , n} :

x ∈ Vl} = {l ∈ {1, . . . , n} : pl(x) > 0}. Let {l1, . . . , lm} = {l ∈ {1, . . . , n} : pl(x) > 0},
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and in particular, we have pl(x) = 0 if l ∈ {1, . . . , n} \ {l1, . . . , lm}. Since x ∈ Vlj ⊆
U(ylj , δ/2), for all j ∈ {1, . . . ,m}, we have dX(x, xlj ) < δ for all j ∈ {1, . . . ,m}. Hence
by expression (2.2), we gather:

‖f(x)− fp(x)‖A =
∥∥∥( n∑

k=1
pk(x)

)
· f(x)−

n∑
k=1

f(xk) · pk(x)
∥∥∥
A

=
∥∥∥( n∑

k=1
pk(x) · f(x)

)
−

n∑
k=1

f(xk) · pk(x)
∥∥∥
A
6

n∑
k=1

pk(x) · ‖f(x)− f(xk)‖A

=
m∑
j=1

plj (x) · ‖f(x)− f(xlj )‖A <

m∑
j=1

plj (x) · ε/2 6 1 · ε/2

since
∑n
k=1 pk = 1C(X). As x ∈ X was arbitrary, we have ‖f − fp‖C(X,A) 6 ε/2, which

implies that ‖f − fε‖C(X,A) 6 ‖f − fp‖C(X,A) + ‖fp − fε‖C(X,A) < ε/2 + ε/2 = ε, where
fε ∈ dom

(
L(n),q

dX
)
C(X,A), which establishes that dom

(
L(n),q

dX
)
C(X,A) is dense in C(X,A).

Finally, dom
(
L(n),q

dX
)
C(X,A) is a *-subalgebra of C(X,A) by Proposition 2.4, hence

dom
(
L(n),q

dX
)
C(X,A) ∩ sa(C(X,A)) = dom

(
L(n),q

dX
)
is dense in sa(C(X,A)). Indeed, let a ∈

sa(C(X,A)). There exists a sequence (an)n∈N ⊂ dom
(
L(n),q

dX
)
C(X,A) that converges to a.

However, as dom
(
L(n),q

dX
)
C(X,A) is a *-subalgebra, we have(

an + a∗n
2

)
n∈N
⊂ dom

(
L(n),q

dX
)
C(X,A) ∩ sa(C(X,A)) = dom

(
L(n),q

dX
)

and converges to a+a∗
2 = a+a

2 = a, which completes the proof.

Remark 2.7. In Lemma 2.6, the proof of the density of dom
(
L(n),q

dX
)
C(X,A) did not utilize

the C*-algebra structure of A, and this density result would be true if A was any normed
space.

We are on our way to the final steps in proving that we have compact quantum
metric spaces. There are several ways to approach this. We will use [27, Theorem 1.9]
(this is equivalence (2) of Theorem 1.5), which is Rieffel’s first characterization of compact
quantum metric spaces and characterizes when the weak* topology on the state space is
metrized by the Monge–Kantorovich metric (the quantum metric) of Definition 1.3 by a
fascinating application of the Arzelà–Ascoli Theorem. The reason we use equivalence (2)
of Theorem 1.5 is because it requires us to study the diameter of the Monge–Kantorovich
metric, which will provide greater insight into the results of Section 3 (see Remark 3.8).
This is Proposition 2.9. However, we first prove a lemma which is a likely well-known fact
about a characterization of pure states on C(X,A).

Lemma 2.8. Let (X, dX) be a compact metric space and A be a unital C*-algebra. Let
x ∈ X and φ be a pure state on A. If we define φx(a) = φ(a(x)) for all a ∈ C(X,A),
then φx is a pure state on C(X,A).

Furthermore, if µ is a pure state on C(X,A), then there exists x ∈ X and a pure state
φ on A such that µ = φx.
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Proof. It is clear that φx defines a state on C(X,A) for all x ∈ X and all pure states φ
on A. We show that φx is a pure state by verifying the final statement in the lemma.

Let A�C(X) denote the algebra over C formed over the algebraic tensor product of A
and C(X) [6, Section 3.1]. Let A⊗C(X) denote the C*-algebra formed by the completion
of A� C(X) with respect to a C*-norm. This C*-norm exists and is unique since C(X)
is commutative, which is why we do not decorate the tensor (see [6, Propositions 2.4.2
and 3.6.12]). Note that A� C(X) is dense in A⊗ C(X) by definition.

Let T : A ⊗ C(X) → C(X,A) denote the canonical *-isomorphism for which on
elementary tensors is given by T (a ⊗ f) = a · f , where a · f : x ∈ X 7→ a · f(x) ∈ A

(see [25, Theorem 6.4.17]). Let µ be a pure state on C(X,A). Then µ ◦ T is a pure
state on A ⊗ C(X). Now, since C(X) is commutative, there exists a pure state φ on A

and a pure state ν on C(X) such that (µ ◦ T )|A�C(X) = φ � ν by [6, Corollary 3.4.3],
where φ� ν is a complex-valued linear map on A�C(X) given on elementary tensors by
(φ� ν)(a⊗ f) = φ(a)ν(f) (we do not distinguish elementary tensors with � since these
elements are in A � C(X) ⊆ A ⊗ C(X) by definition). However, as ν is a pure state on
C(X), there exists x ∈ X such that ν = δx, where δx : f ∈ C(X) 7→ f(x) ∈ C is the
Dirac point mass at x (combine [10, Theorem VII.8.7] and [25, Theorem 5.1.6]). Thus
(µ ◦ T )|A�C(X) = φ� δx. Hence

µ(T (a⊗ f)) = µ ◦ T (a⊗ f) = (φ� δx)(a⊗ f) = φ(a)δx(f)
= φ(a)f(x) = φ(a · f(x)) = φ(T (a⊗ f)(x)) = φx(T (a⊗ f))

for all a ∈ A, f ∈ C(X) since a⊗ f ∈ A�C(X). By linearity, it is immediate that µ and
φx agree on T (A� C(X)). However, as T is a *-isomorphism, we see that T (A� C(X))
is dense in C(X,A), which implies that µ = φx on C(X,A) by continuity of states. This
completes the proof.

We can now combine these results to provide upper bounds for the diameter of the
Monge–Kantorovich metric for our seminorms on C(X,A).
Proposition 2.9. Let (X, dX) be a compact metric space and A be a unital C*-algebra.
Let ϕ ∈ S (C(X,A)).

With notation from Definition 2.3, if ‖ · ‖n is any norm on A that is equivalent to the
C*-norm ‖ · ‖A so that there exist M > 0, N > 0 such that M‖ · ‖n 6 ‖ · ‖A 6 N‖ · ‖n,
then:
(1) (a) if q = C(X), then diam(S (C(X,A)),mkL(n),q

dX
) 6 2 +N · diam(X, dX)

(b) if A = C, then diam(S (C(X,A)),mkL(n),q
dX

) 6 N · diam(X, dX);
(2) q = C or q = ϕ, then diam(S (C(X,A)),mkL(n),q

dX
) 6 2.

Proof. We begin by noting that as dom
(
L(n),q

dX
)
is dense in sa(C(X,A)) by Lemma 2.6,

mkL(n),q
dX

is a metric on S (C(X,A)) (possibly taking value +∞) — see Remark 1.4.
For (1)(a) and (1)(b), assume that q = C(X). First, we establish (1)(a). Thus, let

µ, ν be pure states on C(X,A). By Lemma 2.8, there exist x, y ∈ X and pure states φ, ψ
on A such that µ = φx and ν = ψy. Fix a ∈ dom

(
L(n),q

dX
)
, L(n),q

dX (a) 6 1. Let ε > 0. Since
q = C(X), there exists b ∈ C(X,C1A) such that ‖a − b‖C(X,A) 6 1 + ε. Therefore, as
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b(x) ∈ C1A, we have |φx(b)− ψx(b)| = |φ(b(x))− ψ(b(x))| = 0 since φ, ψ are states on A

and agree on scalars of A. Therefore
|φx(a)− ψx(a)| = |φx(a)− φx(b) + ψx(b)− ψx(a)|

6 |φx(a− b)|+ |ψx(a− b)| 6 2 · ‖a− b‖A 6 2(1 + ε) = 2 + 2ε.
(2.3)

Since ε > 0 was arbitrary, |φx(a)− ψx(a)| 6 2. Next, since L(n),q
dX (a) 6 1, we gather:

|ψx(a)− ψy(a)| = |ψ(a(x))− ψ(a(y))| = |ψ(a(x)− a(y))| 6 ‖a(x)− a(y)‖A
6 N · ‖a(x)− a(y)‖n 6 N · dX(x, y) 6 N · diam(X, dX),

and |µ(a)− ν(a)| = |φx(a)− ψy(a)|
6 |φx(a)− ψx(a)|+ |ψx(a)− ψy(a)| 6 2 +N · diam(X, dX).

Since a ∈ dom
(
L(n),q

dX
)
, L(n),q

dX (a) 6 1 was arbitrary, we see that mkL(n),q
dX

(µ, ν) 6

2+N ·diam(X, dX). Next, since mkL(n),q
dX

is convex in each variable in the sense of [28, Defi-
nition 9.1] and the state space is the closed convex hull of the pure states by [25, Corollary
5.1.10], we have that (1)(a) is proven as µ, ν were arbitrary pure states on C(X,A). For
(1)(b), if A = C, then note that (2.3) would be 0 as there is only one state on C. This
then proves (1)(b).

For (2), the case q = C is immediate from [27, Proposition 1.6] and from the inequality
‖a+ C1A‖A/C1A

6 L(a) for all a ∈ sa(A).
For the case q = ϕ, the fact that

‖a+ C1C(X,A)‖C(X,A)/C1C(X,A) = inf
b∈C1C(X,A)

‖a− b‖C(X,A) 6 ‖a− ϕ(a)1C(X,A)‖C(X,A)

for all a ∈ sa(A) completes the proof again by the argument of case q = C.
Now, we are prepared to prove our main result of this section, which is that the

seminorms of Definition 2.3 will be quasi-Leibniz Lip-norms for C(X,A) if and only if
A is finite-dimensional, and we note that this is the first result that not only assumes
finite-dimensionality of A, but also requires finite-dimensionality of A.
Theorem 2.10. Let (X, dX) be a compact metric space and let A be a unital C*-algebra
and let µ ∈ S (C(X,A)) be a state.

By using notation from Definition 2.3, the following three statements are equivalent:
(i) the pair

(
C(X,A), L(n),q

dX
)
is a quasi-Leibniz compact quantum metric space;

(ii) A is finite-dimensional;
(iii) C(X,A) is a standard homogeneous C*-algebra of Definition 2.1.

Furthermore, if A is finite-dimensional and M > 0, N > 0 such that M · ‖ · ‖n 6
‖ · ‖A 6 N · ‖ · ‖n, then:
(1) if q is either C(X) or C, then L(n),q

dX is a (N/M, 0)-quasi-Leibniz Lip-norm;
(2) if q = µ, then L(n),q

dX is a (max{N/M, 2}, 0)-quasi-Leibniz Lip-norm.
Proof. For (ii) =⇒ (i), assume that A is finite-dimensional, we begin by showing that
the pair

(
C(X,A), L(n),q

dX
)
is a quasi-Leibniz compact quantum metric space. By Proposi-

tion 2.4 and Lemma 2.6, all that remains is to show that the Monge–Kantorovich metric
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metrizes the weak* topology of the state space. Also, by Proposition 2.9 and equiva-
lence (2) of Theorem 1.5, we only need to verify that there exists some D > 0 such that
the set

B1,D =
{
a ∈ sa(C(X,A)) : L(n),q

dX (a) 6 1 and ‖a‖C(X,A) 6 D
}

is totally bounded.
Let D ∈ (0,∞). The set B1,D is equicontinuous since l(n)

dX (a) 6 1 for all a ∈ B1,D
and ‖ · ‖n is equivalent to ‖ · ‖A by finite-dimensionality. Next, {a(x) ∈ A : a ∈ B1,D} ⊆
{b ∈ A : ‖b‖A 6 D} for each x ∈ X. Since A is finite-dimensional, the set {a(x) ∈
A : a ∈ B1,D} is totally bounded for each x ∈ X. Therefore, by a generalization of the
Arzelà–Ascoli Theorem [24, Theorem 7.47.1] and a characterization of the topology on
C(X,A) [24, Theorem 7.46.7 and 7.46.8], the set B1,D is totally bounded in C(X,A) since
X is compact. Thus, by Theorem 1.5, this direction is complete.

For (i) =⇒ (ii), assume that the pair
(
C(X,A), L(n),q

dX
)
is a quasi-Leibniz compact

quantum metric space. By Theorem 1.5, the set B1,D is totally bounded for some
D ∈ (0,∞). Note that it follows that BE,F is also totally bounded for all E,F ∈ (0,∞) by
scaling, where BE,F is defined similarly to B1,D. Now, the space of constant functions of
C(X,A) denoted byK(X,A) is canonically *-isomorphic to A. Denote this *-isomorphism
by

κ : a ∈ A 7−→ (x 7→ a) ∈ K(X,A).

Assume that a ∈ A and ‖a‖A 6 1. Then, we have ‖κ(a)‖C(X,A) 6 1 and l(n)
dX (κ(a)) = 0

since κ(a) is constant. First consider when q = C(X) or q = C, then since quotient norms
are bounded above by the norm that they are induced by, we have:

L(n),q
dX (κ(a)) 6 ‖κ(a)‖C(X,A) 6 1.

Therefore κ(a) ∈ B1,1. In particular,

κ
(
{a ∈ A : ‖a‖A 6 1}

)
⊆ B1,1,

and thus κ
(
{a ∈ A : ‖a‖A 6 1}

)
is totally bounded, which implies that {a ∈ A :

‖a‖A 6 1} is totally bounded since κ is a *-isomorphism. Now, if q = µ, then we would
have:

LA
dX (κ(a)) = ‖κ(a)− µ(κ(a))1C(X,A)‖C(X,A) 6 2‖κ(a)‖C(X,A) 6 2

for a ∈ A such that ‖a‖A 6 1. Thus, since B2,1 is also totally bounded, the same argument
shows that the unit ball of A is totally bounded. Thus, in either case, the C*-algebra A

is finite-dimensional by [33, 1.9(d)]. (ii) ⇐⇒ (iii) is given by definition. Statements (1)
and (2) immediately follow by Proposition 2.4.

Remark 2.11. Theorem 2.10 does not imply that there cannot be quantum metric struc-
ture on C(X,A) for A infinite-dimensional. It simply implies that the family of seminorms
of Definition 2.3 only provide quantum metric structure on C(X,A), when A is finite-
dimensional, and this, in turn, strongly suggests that our seminorms are a natural choice
for the quantum metric structure on C(X,A), when A is finite-dimensional.

The following corollary focuses on a particular case of interest and a motivating idea
for this paper. It shows that we can still recover the classical structure of

(
C(X), LdX

)
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within
(
C(X,A), L(n),q

dX
)
for any finite-dimensional C*-algebra A and a particular choice

of n and q.
Corollary 2.12. If (X, dX) is a compact metric space and A is a finite-dimensional
C*-algebra, then with notation from Definition 2.3, the pair

(
C(X,A), L(A),C(X)

dX
)
is a

Leibniz compact quantum metric space such that L(A),C(X)
dX recovers the standard Lipschitz

seminorm on C(X) denoted by LdX from the canonical *-isomorphism of C(X) onto
C(X,C1A) given by

cX : f ∈ C(X) 7−→ (x ∈ X 7→ f(x)1A) ∈ C(X,C1A).

Hence, we have LdX = L(A),C(X)
dX ◦ cX , and thus

Λ
(
(C(X), LdX ),

(
C(X,C1A), L(A),C(X)

dX
))

= 0.

In particular
(
C(X), LdX

)
=
(
C(X,A), L(A),C(X)

dX
)
, when A = C.

Proof. Fix f ∈ C(X), we have

L(A),C(X)
dX (cX(f)) = max

{
l
(A)
dX (cX(f)), ‖cX(f) + C(X,C1A)‖C(X,A)/C(X,C1A)

}
= max

{
l
(A)
dX (cX(f)), 0

}
= sup

{
‖f(x)1A − f(y)1A‖A

dX(x, y) : x, y ∈ X, x 6= y

}
= sup

{
|f(x)− f(y)| · ‖1A‖A

dX(x, y) : x, y ∈ X, x 6= y

}
= LdX (f).

This along with Theorem 2.10 completes the proof.
The last result of this section shows that when A is finite-dimensional, then any two

seminorms of Definition 2.3 are equivalent regardless of choice of n or q (this is quite
surprising since the quotient norms associated to q = C(X) and q = C have different
kernels on C(X,A) as long as A 6∼= C and thus cannot be equivalent), and the map cX of
the above corollary is bi-Lipschitz. Note that the following Proposition 2.14 rests mainly
on a result of Latrémolière in [19]. First, a definition:
Definition 2.13. Let (X, dX) and (Y, dY ) be two pseudo-metric spaces, where pseudo
means that distance 0 need not provide equal elements.

Fix N > 0. A map π : (X, dX) −→ (Y, dY ) is N -Lipschitz if dY (π(a), π(b)) 6 N ·
dX(a, b) for all a, b ∈ X.

The map π is bi-Lipschitz, if furthermore, there existsM > 0 such thatM ·dX(a, b) 6
dY (π(a), π(b)) 6 N · dX(a, b) for all a, b ∈ X.
Proposition 2.14. Let (X, dX) be a compact metric space and A be a finite-dimensional
C*-algebra. Let µ ∈ S (C(X)).

With notation from Definition 2.3, if ‖ · ‖n and ‖ · ‖m are norms on A and q and p
are either C(X), C or µ, then the seminorms L(n),q

dX and L(m),p
dX are equivalent.

Furthermore, the map cX of Corollary 2.12 is bi-Lipschitz with respect to any L(n),q
dX .

Proof. Since A is finite-dimensional, the norms ‖ · ‖n and ‖ · ‖m are equivalent. Hence,
we have dom

(
L(n),q

dX
)

= dom
(
L(m),p

dX
)
since the terms determined by q and p are finite on
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all of C(X,A). Therefore, by Theorem 2.10 and [19, Corollary 2.5], the seminorms L(n),q
dX

and L(m),p
dX are equivalent. The last statement of this proposition follows from this and

Corollary 2.12.

Remark 2.15. Corollary 2.12 and Proposition 2.14 may suggest that the Lip-norm of
Corollary 2.12 is the best choice from our family of seminorms for a Lip-norm on C(X,A)
for X compact metric and A finite-dimensional. However, we argue that it can depend on
the situation. In particular, we use the flexibility on the choice of a norm on A in Sections
3 and 4 to obtain positive results that may not be possible with the C*-norm on A.

In regards to why we consider other q’s aside from q = C(X), we first consider q = C.
Let Y be a compact metric space and B be a finite-dimensional C*-algebra. Note that
any unital *-monomorphism π : C(X,A) 7−→ C(Y,B), will be an isometry with respect to
the quotient norms associated to q = C but not necessarily preserve the quotient norms
associated to q = C(X). So, if q = C(X), then it would be much more difficult to verify
if π were contractive with respect to the Lip-norms of C(X,A) and C(Y,A) than in the
case of q = C. And, contractivity is vital to results pertaining to the Gromov–Hausdorff
propinquity (see [29, Proposition 8.5] and [3, Theorem 3.5], for example). The reason
to consider q = µ is similar to q = C, except that a unital *-monomorphism need not
preserves all states, but it does occur often enough — especially in the setting of inductive
sequences and inductive limits — and the quantity given by q = µ in the Lip-norm can
be much easier to calculate than a quotient norm.

3. Isometries from metrics into quantum metrics. In order for our seminorms on
C(X,A) of the previous section to be a suitable generalization of the Lipschitz seminorm
on C(X), we claim that there should be a natural embedding of X into the state space of
C(X,A) which captures some of the metric structure of X using the Monge–Kantorovich
metric and not just the topological structure. This is because this happens in the classical
case when A = C as discussed in the introduction. When A is finite-dimensional, the
purpose of this section is to verify that we can accomplish this claim for our entire
family of seminorms of Definition 2.3 by providing a bi-Lipschitz embedding that can
be strengthened to an isometry in many intuitive cases that are still valid for all finite-
dimensional A and compact metric X.

For the remainder of this paper, we restrict our attention to finite-dimensional
C*-algebras that are equal to finite direct sums of complex-valued matrix algebras. This
is so that we can provide explicit estimates and the results of this section are still true
for any finite-dimensional C*-algebra A in C(X,A), which is explained in the following
remark.

Remark 3.1. Since every finite-dimensional C*-algebra B is *-isomorphic to a finite
direct sums of complex-valued matrix algebras [11, Theorem III.1.1], we assume that every
finite-dimensional C*-algebra is equal to

⊕n
k=0Mmk(C) for some n ∈ N, mk ∈ N \ {0}

for k ∈ {0, . . . , n} for the rest of this paper. This will cause no loss of generality for
the results of this section. Indeed, let (X, dX) be a compact metric space, and assume
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π : B −→
⊕n

k=0Mmk(C) is a *-isomorphism, then the map

Π : b ∈ C(X,B) 7−→
(
x ∈ X 7→ π(b(x))

)
∈ C

(
X,

n⊕
k=0

Mmk(C)
)

is a unital *-isomorphism, and L(n),q
dX ◦ Π would define a Lip-norm for C(X,B) with the

same properties of L, and furthermore, the dual map

Π∗ : µ ∈ S
(
C
(
X,

n⊕
k=0

Mmk(C)
))
7→ µ ◦Π ∈ S (C(X,B))

is an isometry between the associated Monge–Kantorovich metrics of L(n),q
dX and L(n),q

dX ◦Π
by [29, Thoerem 6.2].

Definition 3.2. Let A =
⊕n

k=0Mmk(C) be a finite-dimensional C*-algebra for some
n ∈ N and mk ∈ N\{0} for k ∈ {0, . . . , n}. Fix k ∈ {0, . . . , n} and p, q ∈ {1, . . . ,mk}. Let
ek,(p,q) ∈ A denote the matrix unit such that ek,(p,q) = (a1, . . . , an) ∈ A and aj = 0 for
j ∈ {0, . . . , n}\{k} and ak is the matrix inMmk(C) that is 1 in the p-row, q-column entry
and 0 elsewhere. We will use ek,(p,q) to denote this element in A as well as its projection
onto Mmk(C), which is ak.

Notation 3.3. Let (X, dX) be a compact metric space. Assume that A is finite-dimen-
sional and that there exist n ∈ N and mk ∈ N \ {0} for k ∈ {0, . . . , n} such that
A =

⊕n
k=0Mmk(C). Let A ⊗ C(X) denote the C*-algebra formed over the algebraic

tensor product of A and C(X). By [6, Propositions 2.4.2 and 3.6.12], we do not need to
decorate the tensor (see the proof of Lemma 2.8 for details). The map

πA,X
⊗ : a ∈ C(X,A) 7−→

n∑
k=0

mk∑
p,q=1

ek,(p,q) ⊗ akp,q ∈ A⊗ C(X)

is the canonical *-isomorphism, where akp,q ∈ C(X) and for each x ∈ X, the element
akp,q(x) ∈ C is the projection of a(x) onto the p-row, q-column coordinate of Mmk(C)
(continuity of akp,q follows by finite-dimensionality and definition of product topology).
That πA,X

⊗ is a *-isomorphism follows from the observation that it is the inverse of the
map T used in the proof of Lemma 2.8.

For µ ∈ S (A), ν ∈ S (C(X)), let µ ⊗ ν : A ⊗ C(X) −→ C denote the state on
A ⊗ C(X) such that on elementary tensors (µ ⊗ ν)(a ⊗ f) = µ(a)ν(f) for all a ∈ A,
f ∈ C(X) [6, Proposition 3.4.6]. For x ∈ X, let

δx : f ∈ C(X) 7−→ f(x) ∈ C

denote the Dirac point mass at x. The map δx ∈ S (C(X)), and for a state µ ∈ S (A),
let

(1) kAµ =
n∑
k=0

mk∑
p,q=1

∣∣µ(ek,(p,q))
∣∣,

(2) µx = (µ⊗ δx) ◦ πA,X
⊗ ∈ S (C(X,A)),

(3) ∆A
µ : x ∈ (X, dX) 7−→ µx ∈ S (C(X,A)).

(3.1)
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Now, it is easy to show that the map ∆A
µ is a homeomorphism onto its image with

respect to the weak* topology for any state µ ∈ S (A) (we, in fact, verify this in Proposi-
tion 3.6. However, when X is metric we will show that ∆A

µ captures some metric structure
when µ ∈ S (A) is any state by way of the Monge–Kantorovich metric (quantum met-
ric) induced by the seminorms of Definition 2.3. Furthermore, for particular choices of
states, we will be capable of isometrically embedding X into S (C(X,A)), which thus
generalizes the classical case of A = C to the case when A is finite-dimensional (the case
of A = C was discussed in the introduction). Proposition 3.6 also shows that for any
state µ and any of the seminorms of Definition 2.3, we can embed X homeomorphically
into S (C(X,A)) with a k-Lipschitz map, where the constant k depends on µ, the matrix
units of Definition 3.2, and the choice of norm on the finite-dimensional C*-algebra A.
First, we state the following lemma about a certain standard norm on the underlying
vector space of a finite-dimensional C*-algebra, which will prove useful later as well.

Lemma 3.4. Fix n ∈ N and mk ∈ N \ {0} for k ∈ {0, . . . , n}. Let A =
⊕n

k=0Mmk(C)
be a finite-dimensional C*-algebra. Let a = (ak)nk=0 ∈ A, where ak ∈ Mmk(C) for all
k ∈ {0, . . . , n}. Fix k ∈ {0, . . . , n} and let akp,q denote the p-row, q-column entry of the
matrix ak ∈Mmk(C). Let mA = maxk∈{0,...,n}mk.

If ‖ · ‖∞,A denotes the norm on A defined by ‖a‖∞,A = maxk∈{0,...,n} ‖ak‖∞, where
‖ak‖∞ = maxp,q∈{1,...,mk} |(ak)p,q| for each k ∈ {0, . . . , n}, then this norm is equivalent
to ‖ · ‖A by

1
mA
‖ · ‖A 6 ‖ · ‖∞,A 6 ‖ · ‖A.

Proof. The conclusion follows from the table of norm equivalences [14, page 314].

Remark 3.5. If, in Corollary 2.12, we used the norm ‖ · ‖∞,A of Lemma 3.4 instead of
‖ · ‖A, then the map cX would still be an isometry of the Lip-norms LdX and L(∞,A),C(X)

dX
by the same argument of the proof of Corollary 2.12 since the norms ‖ · ‖∞,A and ‖ · ‖A
agree on scalars, but the associated compact quantum metric space would not be Leibniz
but (mA, 0)-quasi-Leibniz by Theorem 2.10 and Lemma 3.4.

Proposition 3.6. Let (X, dX) be a compact metric space and let A =
⊕n

k=0Mmk(C) be
a finite-dimensional C*-algebra, such that n ∈ N and mk ∈ N \ {0} for k ∈ {0, . . . , n}.

By (3.1), if µ ∈ S (A), then the map ∆A
µ is a homeomorphism onto its image with

respect to the weak* topology on S (C(X,A)).
Furthermore, using notation from Definitions 2.3 and 1.3, if ‖ ·‖n is a norm on A and

M,N > 0 such that M · ‖ · ‖n 6 ‖ · ‖A 6 N · ‖ · ‖n, then for all x, y ∈ X, we have

mkL(n),q
dX

(
∆A
µ (x),∆A

µ (y)
)
6 N · kAµ · dX(x, y),

and thus ∆A
µ is N · kAµ -Lipschitz.

Proof. To show that ∆A
µ is a homeomorphism onto its image, we do not need to first

show the Lipschitz condition and we do not need that X is metric; however, we still rely
on X being Hausdorff. Let (xλ)λ∈Λ ⊆ X be a net that converges to x ∈ X. Thus, for any
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f ∈ C(X), (f(xλ)λ∈Λ) ⊂ C converges to f(x) ∈ C. Let a ∈ C(X,A) and fix λ ∈ Λ. Then

∆A
µ (xλ)(a) = µxλ(a) = (µ⊗ δxλ)

( n∑
k=0

mk∑
p,q=1

ek,(p,q) ⊗ akp,q
)

=
n∑
k=0

mk∑
p,q=1

µ(ek,(p,q))δxλ(akp,q) =
n∑
k=0

mk∑
p,q=1

µ(ek,(p,q))akp,q(xλ).
(3.2)

Since this sum is finite and λ ∈ Λ was arbitrary, we see that (∆A
µ (xλ)(a))λ∈Λ ⊂ C

converges to ∆A
µ (x)(a) ∈ C. Thus, the net

(
∆A
µ (xλ)

)
λ∈Λ ⊂ S (C(X,A)) converges to

∆A
µ (x) ∈ S (C(X,A)) with respect to the weak* topology since a ∈ C(X,A) was arbi-

trary. Hence, since X is compact and the weak* topology is Hausdorff, ∆A
µ is a homeo-

morphism onto its image.
Next, fix x, y ∈ X and let a ∈ dom

(
L(n,q

dX
)
such that L(n,q

dX (a) 6 1. Using Lemma 3.4,
we have:

1
N
‖a(x)− a(y)‖∞,A 6

1
N
‖a(x)− a(y)‖A 6 ‖a(x)− a(y)‖n 6 dX(x, y),

which provides that ‖a(x)− a(y)‖∞,A 6 NdX(x, y). Hence, following (3.2), we gather:

|∆A
µ (x)(a)−∆A

µ (y)(a)| = |µx(a)− µy(a)|

=
∣∣∣ n∑
k=0

mk∑
p,q=1

µ(ek,(p,q))akp,q(x)−
n∑
k=0

mk∑
p,q=1

µ(ek,(p,q))akp,q(y)
∣∣∣

6
n∑
k=0

mk∑
p,q=1

∣∣µ(ek,(p,q))
∣∣∣∣akp,q(x)− akp,q(y)

∣∣
6 N

( n∑
k=0

mk∑
p,q=1

∣∣µ(ek,(p,q))
∣∣)dX(x, y) = NkAµ dX(x, y),

which implies that mkL(n),q
dX

(∆A
µ (x),∆A

µ (y)) 6 NkAµ dX(x, y) for all x, y ∈ X by Definition
1.3, and the proof is complete.

In order to produce bi-Lipschitz maps and isometries, we want to know more infor-
mation about the expression kAµ , which requires us to focus our attention on particular
states. We will consider the family of tracial states of A. We note that the following
theorem does include all tracial states on A by [11, Example IV.5.4].

Theorem 3.7. Let (X, dX) be a compact metric space and let A =
⊕n

k=0Mmk(C) be a
finite-dimensional C*-algebra, such that n ∈ N and mk ∈ N \ {0} for k ∈ {0, . . . , n}. Let
‖ · ‖n be a norm on A, let M,N > 0 be such that M · ‖ · ‖n 6 ‖ · ‖A 6 N · ‖ · ‖n and let
µ ∈ S (C(X,A)). Let v = (v0, . . . , vn) ∈ Rn+1 such that vk ∈ [0, 1] for all k ∈ {0, . . . , n}
and 1 =

∑n
k=0 vk.

If we let trAv =
⊕n

k=0 vktrmk : A −→ C, where trmk = 1
mk

Tr is the unique tracial state
on Mmk(C) for all k ∈ {0, . . . , n}, then using notation from Definitions 2.3, 1.3, and
expression (3.1), we deduce that

∆A
trAv

: (X, dX) −→
(
S (C(X,A))mkL(n,q

dX

)
,
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is bi-Lipschitz, and in particular :

(1) if q = C(X), then for all x, y ∈ X

M · dX(x, y) 6 mkL(n),C(X)
dX

(
∆A

trAv
(x),∆A

trAv
(y)
)
6 N · dX(x, y);

(2) if q = C, then:

(a) if M · diam(X, dX) 6 1, then for all x, y ∈ X

M · dX(x, y) 6 mkL(n),C
dX

(
∆A

trAv
(x),∆A

trAv
(y)
)
6 N · dX(x, y);

(b) if M · diam(X, dX) > 1, then for all x, y ∈ X
1

diam(X, dX) · dX(x, y) 6 mkL(n,C
dX

(
∆A

trAv
(x),∆A

trAv
(y)
)
6 N · dX(x, y);

(3) if µ ∈ S (C(X,A)) and q = µ, then:

(a) if 2M · diam(X, dX) 6 1, then for all x, y ∈ X

M · dX(x, y) 6 mkL(n,µ
dX

(
∆A

trAv
(x),∆A

trAv
(y)
)
6 N · dX(x, y);

(b) if 2M · diam(X, dX) > 1, then for all x, y ∈ X
1

2 · diam(X, dX) · dX(x, y) 6 mkL(n),µ
dX

(
∆A

trAv
(x),∆A

trAv
(y)
)
6 N · dX(x, y).

Proof. We begin by calculating kAtrAv , which is independent of the choice of q:

kAtrAv =
n∑
k=0

mk∑
p,q=1

|trAv (ek,(p,q))| =
n∑
k=0

vk
mk

mk∑
p,q=1

∣∣trmk(ek,(p,q))
∣∣

=
n∑
k=0

vk
mk

mk∑
p,q=1,p=q

1 =
n∑
k=0

vk
mk

mk =
n∑
k=0

vk = 1

by definition of the trace of a matrix Tr and matrix units (Definition 3.2), where in the
second line we view each ek,(p,q) as an element of Mmk(C). This establishes the upper
bounds for statements (1), (2) and (3).

For statement (1) and the lower bound, assume q = C(X). Fix x, y ∈ X. Define the
function

ydX : z ∈ X 7−→ dX(y, z) ∈ R (3.3)

and note that ydX ∈ sa(C(X)). Next, define YdX (z) = ydX (z)1A for all z ∈ X, and thus
YdX ∈ sa(C(X,C1A)). We thus have for w, z ∈ X:

‖MYdX (w)−MYdX (z)‖n = M‖YdX (w)− YdX (z)‖n 6 ‖YdX (w)− YdX (z)‖A
= |ydX (w)− ydX (z)| = |dX(y, w)− dX(y, z)| 6 dX(w, z). (3.4)

Hence MYdX ∈ dom
(
L(n,C(X)

dX
)
with L(n,C(X)

dX (MYdX ) 6 1 since

‖MYdX + C(X,C1A)‖C(X,A)/C(X,C1A) = 0
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by construction. From Notation 3.3, note further that πA,X
⊗ (YdX ) = 1A⊗ydX ∈ A⊗C(X).

Therefore∣∣∆A
trAv

(x)(MYdX )−∆A
trAv

(y)(MYdX )
∣∣ =

∣∣trAv x(MYdX )− trAv y(MYdX )
∣∣

= M
∣∣(trAv ⊗ δx)(1A ⊗ ydX )− (trAv ⊗ δy)(1A ⊗ ydX )

∣∣
= M

∣∣δx(ydX )− δy(ydX )
∣∣ = M |dX(y, x)− dX(y, y)| = MdX(x, y).

(3.5)

Thus MdX(x, y) 6 mkL(n,C(X)
dX

(
∆A

trAv
(x),∆A

trAv
(y)
)
by Definition 1.3.

For statement (2) and the lower bound, assume q = C. First assume that
M · diam(X, dX) 6 1. Fix x, y ∈ X. Now, consider MYdX , which still satisfies (3.4).
However, in the quotient norm, we have∥∥MYdX + C1C(X,A)

∥∥
C(X,A)/C1C(X,A)

6
∥∥MYdX −M · diam(X, dX)1C(X,A)

∥∥
C(X,A)

6M sup
z∈X

∥∥dX(y, z)1A − diam(X, dX)1A
∥∥
A
6M sup

z∈X

∣∣dX(y, z)− diam(X, dX)
∣∣

= M sup
z∈X

(diam(X, dX)− dX(y, z)) 6M · diam(X, dX) 6 1,

(3.6)

since diam(X, dX) > dX(y, z) > 0 for all y, z ∈ X. Therefore, the assumption
L(n,C

dX (MYdX ) 6 1 and the argument of expression (3.5) applies, which proves (a) of
statement (2).

For (b) of statement (2), assume that M · diam(X, dX) > 1. By (3.4) and since
diam(X, dX) > 0, we have for all w, z ∈ X:∥∥∥∥ 1

diam(X, dX) YdX (w)− 1
diam(X, dX) YdX (z)

∥∥∥∥
n

= 1
M · diam(X, dX)

∥∥MYdX (w)−MYdX (z)
∥∥

n 6
1

M · diam(X, dX) dX(w, z) < dX(w, z).

By the same argument of (3.6),∥∥∥∥ 1
diam(X, dX) YdX + C1C(X,A)

∥∥∥∥
C(X,A)/C1C(X,A)

6 1.

Following the process of expression (3.5), (2)(b) is proven. Statement (3) follows the same
process as statement (2) along with the observation that for y ∈ X∥∥YdX − µ(YdX )1C(X,A)

∥∥
C(X,A) 6 2‖YdX‖C(X,A) = 2 sup

z∈X
‖dX(y, z)1A‖A

= 2 sup
z∈X
|dX(y, z)| 6 2 · diam(X, dX),

which completes the proof.

Remark 3.8. In Theorem 3.7 and in statements (2) and (3), the diameter of the metric
space X appears. This is not too surprising because in Proposition 2.9 we do not see
any relationship between the bound on the Monge–Kantorovich metric and the metric
space X in the cases of q = C and q = µ. Thus, it makes sense for the diameter to appear
in these cases in Theorem 3.7 to somewhat correct this discrepancy.
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In the next corollary, we will see that particular choices of norms on A in Theorem
3.7 will provide us with isometries. Indeed:

Corollary 3.9. Let (X, dX) be a compact metric space and let A be a finite-dimensional
C*-algebra such that A =

⊕n
k=0Mmk(C), such that n ∈ N and mk ∈ N \ {0} for k ∈

{0, . . . , n}. Let µ ∈ S (C(X,A)). Let v = (v0, . . . , vn) ∈ Rn+1 such that vk ∈ [0, 1] for all
k ∈ {0, . . . , n} and 1 =

∑n
k=0 vk.

If ‖ · ‖n = ‖ · ‖A or ‖ · ‖n = ‖ · ‖∞,A of Lemma 3.4, then using notation from Theorem
3.7, we see that:

(1) if q = C(X), then ∆A
trAv

is an isometry;
(2) if q = C, then:

(a) if diam(X, dX) 6 1, then ∆A
trAv

is an isometry;
(b) if diam(X, dX) > 1, then for all x, y ∈ X

1
diam(X, dX) · dX(x, y) 6 mkL(n),C

dX

(
∆A

trAv
(x),∆A

trAv
(y)
)
6 dX(x, y);

(3) if µ ∈ S (C(X,A)) and q = µ, then:

(a) if 2 · diam(X, dX) 6 1, then ∆A
trAv

is an isometry;
(b) if 2 · diam(X, dX) > 1, then for all x, y ∈ X

1
2 · diam(X, dX) · dX(x, y) 6 mkL(n),µ

dX

(
∆A

trAv
(x),∆A

trAv
(y)
)
6 dX(x, y).

In particular, if X = T is the circle as either a subset of C or quotient space of [0, 1] with
their standard metrics, then ∆A

trAv
is an isometry when q = C(T) or q = C.

Proof. If ‖ · ‖n = ‖ · ‖A, then the conclusions follow immediately from Theorem 3.7. The
case of ‖ · ‖n = ‖ · ‖∞,A follows from the same arguments in the proof of Theorem 3.7
along with the observation that as YdX is scalar-valued:

‖YdX (w)− YdX (z)‖∞,A = |ydX (w)− ydX (z)| = ‖YdX (w)− YdX (z)‖A

for y ∈ X and all w, z ∈ X.

4. Convergence of standard homogeneous C*-algebras and finite-dimensional
approximations. By Theorem 1.9, the topology induced by the Gromov–Hausdorff
distance GH on compact metric spaces homeomorphically embeds into the quantum
Gromov–Hausdorff propinquity topology by the following class map:

Γ : (X, dX) ∈ (CMS,GH) 7−→ (C(X), LdX ∈ (qLCQMS,Λ),

where CMS is the class of compact metric spaces and qLCQMS is the class of all quasi-
Leibniz compact quantum metric spaces. The bijection is with respect to the equivalence
relations of isometry on the domain and quantum isometry on the codomain. However,
this result was true with Rieffel’s quantum distance distq in 2000 [29, combine Proposition
4.7, Corollary 7.10, and Theorem 13.16]. And, since 2000, the question of whether the
continuity of Γ extends to matrices over C(X) has been left unanswered. More formally,
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this question asks if for all n ∈ N \ {0}, there exist Lip-norms LnX such that the map

ΓMn : (X, dX) ∈ (CMS,GH) 7−→
(
Mn(C(X)), LnX

)
∈ (qLCQMS,Λ) (4.1)

is continuous. To be clear, this question involves not just continuity, but also asks what
the Lip-norms LnX should be. In this section, we finally answer this question by presenting
Lip-norms from our work in previous sections for which continuity of this map does hold.
This will also produce finite-dimensional approximations forMn(C(X)) as every compact
metric space may be approximated in the Hausdorff distance by finite subsets. We note
that in this section we prove the continuity of the map in (4.1) in slightly more generality
and for spaces of the form C(X,A), where (X, dX) is any compact metric and A is a fixed
finite-dimensional C*-algebra and note that C(X,Mn(C)) is canonically *-isomorphic to
Mn(C(X)).

The idea of our proof relies on a result of E. J. McShane [23, Theorem 1], which
informally states that one can extend a real-valued K-Lipschitz map defined on a subset
of a metric space to a K-Lipschitz map on the whole space. The real-valued condition is
key as this is not true in general for complex valued functions (see [34, Example 1.5.7].
McShane’s Theorem was used successfully by Latrémolière in [20, Theorem 6.6] along
with the fact that Lip-norms need only be defined on self-adjoints (real-valued functions
in this case) to show continuity of Γ. However, for Mn(C) with n > 2, the self-adjoint
elements may have complex entries. This has been the obstruction that has made this
problem difficult to solve. Our solution is provided by the simple observation that Lip-
norms are seminorms defined on a subspace of the R-vector space of self-adjoint elements
of a C*-algebra. We now define the seminorms which will provide our convergence results
of this section, which are similar to the seminorms of (1) of Definition 2.3.

Notation 4.1. Let (X, dX) be a compact metric space and A be a finite-dimensional
C*-algebra such that there exists n ∈ N and ml ∈ N \ {0} for l ∈ {0, . . . , n} with
A =

⊕n
l=0Mml(C).

For λ ∈ C, let Re(λ) denote its real part and Im(λ) its imaginary part. Define
|λ|∞ = max{|Re(λ)|, |Im(λ)|}, which defines an R-norm over C, and we note that
|λ|∞ 6 |λ| 6

√
2|λ|∞ for all λ ∈ C. For a = (alj,k)l∈{0,...,n},j,k∈{1,...,ml} ∈ sa(A), where

(alj,k)j,k∈{1,...,ml} ∈Mml(C) for all l ∈ {0, . . . , n}, define

‖a‖∞,AR = max
l∈{0,...,n},j,k∈{1,...,ml}

|alj,k|∞,

which is a norm over sa(A), but is not a norm over A with respect to C.
Define mA = maxl∈{0,...,n}ml. By Lemma 3.4,

‖a‖∞,AR 6 ‖a‖A 6
√

2 ·mA · ‖a‖∞,AR (4.2)

for all a ∈ A. For all a ∈ sa(C(X,A)), using notation from Definition 2.3, define

L(∞,AR)
dX (a) = max

{
l
(∞,AR)
dX (a), inf

r∈R
sup
x∈X
‖a(x)− r1A‖∞,AR

}
.

We note that the idea to circumvent the difficulties of McShane’s Theorem [23, The-
orem 1] by utilizing the real and imaginary parts of complex numbers has appeared in
the literature before and in particular in work of Latrémolière in [22, Remark 3.13].
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Using the previous section, we summarize some of the quantum metric structure
associated to the Lip-norm of the above definition.

Proposition 4.2. Let (X, dX) be a compact metric space and A be a finite-dimensional
C*-algebra such that there exist n ∈ N and ml ∈ N \ {0} for l ∈ {0, . . . , n} with A =⊕n

l=0Mml(C). Let mA = maxl∈{0,...,n}ml.
Using Notation 4.1, we see that

(
C(X,A), L(∞,AR)

dX
)
is a (

√
2 · mA, 0)-quasi-Leibniz

compact quantum metric space for which

diam(S (C(X,A)),mkL(∞,AR)
dX

) 6 2
√

2 ·mA.

Proof. First, although ‖ · ‖∞,AR is only a norm on sa(A), we note that the results from
Section 2 used in this proof are valid for ‖ · ‖∞,AR since ‖ · ‖∞,AR satisfies (4.2) on A.

For the quasi-Leibniz condition, we first note that C1C(X,A) satisfies best approxima-
tion in C(X,A) since C1C(X,A) is finite-dimensional. That is, if a ∈ sa(A), there exists
λ ∈ C such that ‖a+ C1C(X,A)‖C(X,A)/C1C(X,A) = ‖a− λ · 1C(X,A)‖C(X,A). Furthermore,
since a ∈ sa(A), we can assume that λ ∈ R since λ+λ∗

2 is also a best approximation. In
summary, we have that ‖a+C1C(X,A)‖C(X,A)/C1C(X,A) = ‖a+R1C(X,A)‖C(X,A)/R1C(X,A) .
But, by definition,

‖a+ C1C(X,A)‖C(X,A)/C1C(X,A) = inf
r∈R
‖a− r1C(X,A)‖C(X,A) = inf

r∈R
sup
x∈X
‖a(x)− r1A‖A.

Hence, by (4.2), we have the equivalence

inf
r∈R

sup
x∈X
‖(·)(x)− r1A‖∞,AR 6 ‖(·) + C1C(X,A)‖C(X,A)/C1C(X,A)

6
√

2 ·mA · inf
r∈R

sup
x∈X
‖(·)(x)− r1A‖∞,AR .

(4.3)

However, as ‖(·) +C1C(X,A)‖C(X,A)/C1C(X,A) is (1, 0)-quasi-Leibniz by [31, Theorem 3.1],
then infr∈R supx∈X ‖(·)(x)−r1A‖∞,AR is (

√
2·mA, 0)-quasi-Leibniz by the same argument

of Proposition 2.4, which provides the desired quasi-Leibniz condition for L(∞,AR)
dX .

Next, we note that the expression infr∈R supx∈X ‖(·)(x) − r1A‖∞,AR is simply the
quotient norm onto the scalars of C(X, sa(A) equipped with the supremum norm induced
by ‖ · ‖∞,AR , i.e. supx∈X ‖a(x)‖∞,AR for all a ∈ C(X, sa(A)). Thus, as R1C(X,A) is a
closed subspace of the Banach space C(X, sa(A)) with respect to this norm, then the
kernel of L(∞,AR)

dX is R1C(X,A). The domain of L(∞,AR)
dX is dense by Lemma 2.6. Expression

(4.3) produces the bound on the diameter of the Monge–Kantorovich metric by [27,
Proposition 1.6]. Thus, the fact that

(
C(X,A), L(∞,AR)

dX
)
is a (

√
2 ·mA, 0)-quasi-Leibniz

compact quantum metric space follows from Theorem 2.10.

Remark 4.3. Similar conclusions to Proposition 2.14 and the results of Section 3 can be
made with respect to the Lip-norm L(∞,AR)

dX , but we do not need them here and do not
list them for the purpose of presentation.

We are ready to prove one of our main convergence results, which will show that
our Lip-norm capitalizes on the real structure of sa(A) in more ways than one. Indeed,
the second quantity in the expression of L(∞,AR)

dX pertains to bounds on elements in
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sa(C(X,A)). In particular, we require a more powerful version of McShane’s theorem
in that we need our Lipschitz extensions to preserve upper and lower bounds as well.

Theorem 4.4. Let A be a finite-dimensional C*-algebra such that there exists n ∈ N and
ml ∈ N \ {0} for l ∈ {0, . . . , n} with A =

⊕n
l=0Mml(C). Let mA = maxl∈{0,...,n}ml.

If we use Notation 4.1, Theorem 4.2, and Convention 1.8, the class map

ΓA : (X, dX) ∈ (CMS,GH 7→
(
C(X,A), L(∞,AR)

dX
)
∈ (qLCQMS,Λ)

is well-defined and continuous.
In particular, we have for any compact metric spaces (X, dX), (Y, dY ):

Λ
((
C(X,A), L(∞,AR)

dX
)
,
(
C(Y,A), L(∞,AR)

dY
))

6
√

2 ·mA ·GH((X, dX), (Y, dY )). (4.4)

Proof. Proving inequality (4.4 would prove both well-defined and continuity of ΓA with
respect to the stated equivalence relations of Convention 1.8. This proof follows the
general strategy of the proof of [20, Theorem 6.6].

Let δX,Y = GH((X, dX), (Y, dY )) > 0. Let ε > 0. By definition of the Gromov–
Hausdorff distance [7, Definition 7.3.10], there exists a metric space (Z, dZ) and isometries
(not necessarily surjective) fX : (X, dX)→ (Z, dZ) and fY : (Y, dY )→ (Z, dZ) such that
the Hausdorff distance HausdZ (fX(X), fY (Y )) 6 δX,Y + ε

8
√

2·mA
. Now, define a metric

dXtY on the disjoint union X t Y by:

dXtY (α, β) =


dX(α, β), if α, β ∈ X,
dZ(fX(α), fY (β)) + ε

8
√

2·mA
, if α ∈ X, β ∈ Y,

dZ(fX(β), fY (α)) + ε
8
√

2·mA
, if α ∈ Y, β ∈ X,

dY (α, β), if α, β ∈ Y.

Clearly X and Y embed isometrically into (X t Y, dXtY ) with respect to their associated
metrics and

HausdXtY (X,Y ) 6 δX,Y + ε

4
√

2 ·mA

(4.5)

by [7, Remark 7.3.2], where X,Y are viewed as subspaces of X t Y .
Define W =

{
(x, y) ∈ X × Y : dXtY (x, y) 6 δX,Y + ε

2
√

2·mA

}
. By construction, W is

compact in the product topology on X × Y , and thus we equip W with this topology.
Now, fix x ∈ X. By definition of the Hausdorff distance and expression (4.5), there exists
y ∈ Y such that dXtY (x, y) 6 δX,Y + ε

4
√

2·mA
+ ε

4
√

2·mA
= δX,Y + ε

2
√

2·mA
. Thus, for

every x ∈ X, there exists y ∈ Y such that (x, y) ∈ W . Similarly, for every y ∈ Y ,
there exists x ∈ X such that (x, y) ∈ W . In particular, the canonical projections ρX :
(x, y) ∈ W 7→ x ∈ X and ρY : (x, y) ∈ W 7→ x ∈ Y are surjections and are continuous
by definition of the product topology. Therefore, the two maps πX : f ∈ C(X) 7→
f ◦ ρX ∈ C(W ) and πY : f ∈ C(Y ) 7→ f ◦ ρY ∈ C(W ) are unital *-monomorphisms.
Hence, we define a unital *-monomorphism πA

X : C(X,A) → C(W,A), where for every
a = (alj,k)l∈{0,...,n},j,k∈{1,...,ml} ∈ C(X,A)

πA
X

(
(alj,k)l∈{0,...,n},j,k∈{1,...,ml}

)
= (πX ◦ alj,k)l∈{0,...,n},j,k∈{1,...,ml} (4.6)



106 K. AGUILAR AND T. BICE

and πA
Y : C(Y,A) → C(W,A) is defined in the same way. Therefore, the tuple γX,Y,ε =(

C(W,A), 1C(W,A), π
A
X , π

A
Y

)
defines a bridge from C(X,A) to C(Y,A) by [20, Defini-

tion 3.6]. We claim that this bridge’s length [20, Definition 3.17] is less than or equal
to
√

2 ·mA · δX,Y + ε
2 . First, we note that the bridge’s height [20, Definition 3.16] is 0

since the pivot is the identity 1C(W,A). Thus, we are left to find an upper bound for the
bridge’s reach [20, Definition 3.14].

Thus, let a = (alj,k)l∈{0,...,n},j,k∈{1,...,ml} ∈ sa(C(X,A)) such that L(∞,AR)
dX (a) 6 1.

First, this implies that LdX (Re(alj,k)) 6 1 and LdX (Im(alj,k)) 6 1 for all l ∈ {0, . . . , n},
j, k ∈ {1, . . . ,ml}. For all l ∈ {0, . . . , n}, j, k ∈ {1, . . . ,ml}, let

R̂e(alj,k), ̂Im(alj,k) : X t Y → R

denote the Lipschitz-constant preserving extensions of Re(alj,k), Im(alj,k), respectively,
constructed in [23, Theorem 1 and Corollary 2] with respect to dXtY that have the same
greatest lower bounds and least upper bounds of Re(alj,k), Im(alj,k), respectively.

Now, for every l ∈ {0, . . . , n}, j, k ∈ {0, . . . ,ml}, define

blj,k = R̂e(alj,k)|Y + i ̂Im(alj,k)|Y ,

where |Y denotes restriction to Y ↪→ X t Y . And, note that by construction b =
(blj,k)l∈{0,...,n},j,k∈{1,...,ml} ∈ sa(C(Y,A)) and l(∞,AR)

dY (b) 6 1.
Next, by the proof of Proposition 4.2 and the fact R1C(X,A) is finite-dimensional and

thus satisfies best approximation, there exists ka ∈ R such that

sup
x∈X
‖a(x)− ka1A‖∞,AR = inf

r∈R
sup
x∈X
‖a(x)− r1A‖∞,AR 6 1 (4.7)

since L(∞,AR)
dX (a) 6 1. However, as a ∈ sa(C(X,A)), we have Im(alj,j) = 0 and thus

Im(blj,j) = 0 by construction, which implies blj,j = R̂e(alj,j)|Y for all l ∈ {0, . . . , n} and
j ∈ {1, . . . ,ml}. Therefore, if z ∈ Y , then by (4.7) and preservation of greatest lower
bounds and least upper bounds of McShane’s extensions

−1 6 inf
y∈Y

{
R̂e(alj,j)(y)− ka

}
6 blj,j(z)− ka 6 sup

y∈Y

{
R̂e(alj,j)(y)− ka} 6 1, (4.8)

and so supy∈Y |blj,j(y) − ka| 6 1 for all l ∈ {0, . . . , n} and j ∈ {1, . . . ,ml}. Similarly,
supy∈Y |blj,k(y)|∞ 6 1 for all l ∈ {0, . . . , n} and j, k ∈ {1, . . . ,ml}. Hence, as ka is only
subtracted from diagonal entries, we conclude:

inf
r∈R

sup
y∈Y
‖b(y)− r1A‖∞,AR 6 sup

y∈Y
‖b(y)− ka1A‖∞,AR 6 1,

which was all that remained to show that L(∞,AR)
dY (b) 6 1.

Now, let (x, y) ∈W . Fix l ∈ {0, . . . , n}, j, k ∈ {1, . . . ,ml}. We have:∣∣(πX ◦ alj,k)(x, y)− (πY ◦ blj,k)(x, y)
∣∣
∞ =

∣∣alj,k(x)− blj,k(y)
∣∣
∞

= max
{∣∣R̂e(alj,k)(x)− R̂e(alj,k)(y)

∣∣, ∣∣ ̂Im(alj,k)(x)− ̂Im(alj,k)(y)
∣∣}

6 max
{

dXtY (x, y), dXtY (x, y)
}
6 δX,Y + ε

2
√

2 ·mA

.
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Hence
sup

(x,y)∈W

∥∥(πA
X ◦ a)(x, y)− (πA

Y ◦ b)(x, y)
∥∥
∞,AR

6 δX,Y + ε

2
√

2 ·mA

,

and therefore, by (4.2):∥∥(πA
X ◦ a)1C(W,A) − 1C(W,A)(πA

Y ◦ b)(x, y)
∥∥
C(W,A) 6

√
2 ·mA · δX,Y + ε

2 .

The argument is symmetric if we began with an element in b ∈ sa(C(Y,A)) such that
L(∞,AR)

dY (b) 6 1. Hence, the reach of the bridge γX,Y,ε is bounded above by the quantity√
2 ·mA · δX,Y + ε

2 by [20, Definition 3.14], and thus so is its length. Thus, by Theorem-
Definition 1.7, we have

Λ
((
C(X,A), L(∞,AR)

dX
)
,
(
C(Y,A), L(∞,AR)

dY )
)
6
√

2 ·mA · δX,Y + ε

2 ,

for all ε > 0. Thus

Λ
((
C(X,A), L(∞,AR)

dX
)
,
(
C(Y,A), L(∞,AR)

dY
))

6
√

2 ·mA · δX,Y
=
√

2 ·mA ·GH((X, dX), (Y, dY )),

which completes the proof.

As a corollary, we show that we may find finite-dimensional approximations to C(X,A)
when X is compact metric and A is finite-dimensional. Thus, we provide many new
examples of the propinquity extending the notion of approximate finite-dimensionality
since C(X,A) need not be an AF algebra in general.

Corollary 4.5. Let A be a finite-dimensional C*-algebra such that there exists n ∈ N
and ml ∈ N \ {0} for l ∈ {0, . . . , n} with A =

⊕n
l=0Mml(C). Let mA = maxl∈{0,...,n}ml.

If (X, dX) is a compact metric space, there there exists a sequence (Xn)n∈N of finite
subsets of X such that

lim
n→∞

Λ
((
C(Xn,A), L(∞,AR)

dX
)
,
(
C(X,A), L(∞,AR)

dX
))

= 0.

In particular, as C(Xn,A) is finite-dimensional for all n ∈ N, there exists a sequence of
finite-dimensional C*-algebras equipped with (

√
2 · mA, 0)-quasi-Leibniz Lip-norms con-

verging in the propinquity to C(X,A) equipped with a (
√

2·mA, 0)-quasi-Leibniz Lip-norm.

Proof. Since X is compact metric and thus totally bounded, there exists a sequence
(Xn)n∈N of finite subsets of X, such that limn→∞ HausdX (Xn, X) = 0. As the Gromov–
Hausdorff distance is bounded above by the Hausdorff distance on compact subsets of a
fixed compact metric space, the conclusion follows by Theorem 4.4.

Now, on C(X), the classical Lipschitz seminorm LdX differs from the Lip-norm L(∞,CR)
dX

of Notation 4.1 in general due its inclusion of the quotient norm. Thus, our setting does
not recover the setting of Theorem 1.9 in general. However, if we allow ourselves to focus
on classes of compact metric spaces with a fixed upper bound on diameter and we further
provide a slight adjustment to our Lip-norms L(∞,AR)

dX with respect to this bound, then
we can recover Theorem 1.9 when A = C by Theorem 4.4 on these particular classes of
compact metric spaces.
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Theorem 4.6. Let A be a finite-dimensional C*-algebra such that there exists n ∈ N and
ml ∈ N \ {0} for l ∈ {0, . . . , n} with A =

⊕n
l=0Mml(C). Let mA = maxl∈{0,...,n}ml.

Fix K > 0. Denote the class of compact metric spaces with diameter less than or equal
to K by CMSK .

For every (X, dX) ∈ CMSK , if we define for all a ∈ sa(C(X,A))

L(∞,AR)
dX ,K (a) = max

{
l
(∞,AR)
dX (a), 2

K
· inf
r∈R

sup
x∈X
‖a(x)− r1A‖∞,AR

}
,

and use Convention 1.8, then:

(1)
(
C(X,A), L(∞,AR)

dX ,K
)
is a (

√
2·mA, 0)-quasi-Leibniz compact quantum metric space such

that diam(S (C(X,A)),mkL(∞,AR)
dX,K

) 6 K ·
√

2 ·mA,

(2) the map ΓA of Theorem 4.4 is well-defined and continuous if L(∞,AR)
dX and CMS are

replaced with L(∞,AR)
dX ,K and CMSK , and

(3) if n = 0 and m0 = 1 so that A = C, then L(∞,CR)
dX ,K = LdX on sa(C(X)), and thus the

map ΓC of Theorem 4.4 with, L(∞,CR)
dX and CMS replaced with L(∞,CR)

dX ,K and CMSK , is
a homeomorphism onto its image.

In particular, if K is any compact class of compact metric spaces with respect to the
Gromov–Hausdorff distance topology, then (1)–(3) are true for CMSK replaced with K,
wherever CMSK appears and the K > 0 used for the Lip-norms is any fixed bound on the
diameter of all compact metric spaces in K.

Proof. The proof of (1) follows from the methods of Section 2. The proof of (2) follows
from the proof of Theorem 4.4 along with the fact that K is fixed. Thus, (3) remains.

We note that l(∞,CR)
dX = LdX on sa(C(X)). Thus, to show L(∞,CR)

dX ,K = LdX on sa(C(X)),
we only need to verify that 2

K · infr∈R supx∈X ‖f(x) − r1C‖∞,CR 6 LdX (f) for all
f ∈ sa(C(X)). However, in this setting, the quantity infr∈R supx∈X ‖(·)(x) − r1C‖∞,CR

on sa(C(X)) is simply the quotient norm with respect C1C(X) and the supremum norm
with respect to absolute value. Therefore, for all f ∈ sa(C(X)), we have:

2
K
· inf
r∈R

sup
x∈X
‖f(x)− r1C‖∞,CR = 2

K
· |f(xm)− f(xM )|

2 , (4.9)

where xm achieves the minimum of f on X and xM achieves the maximum of f on X.
Now, if diam(X, dX) = 0, then C(X) = C, and so any Lip-norm is the 0-seminorm on
sa(C(X)), which completes this case. So, for the remainder of the proof, we assume that
diam(X, dX) > 0. Thus

2
K
· |f(xm)− f(xM )|

2 6 sup
x,y∈X

{
|f(x)− f(y)|

K

}
6 sup
x,y∈X

{
|f(x)− f(y)|
diam(X, dX)

}
= sup
x,y∈X,x 6=y

{
|f(x)− f(y)|
diam(X, dX)

}
6 sup
x,y∈X,x 6=y

{
|f(x)− f(y)|

dX(x, y)

}
= LdX (f).

Thus, it must be the case that 2
K · infr∈R supx∈X ‖f(x) − r1C‖∞,CR 6 LdX (f) by (4.9),

which completes the proof of (3).
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For the remaining statement, we simply note that any compact class of compact metric
spaces with respect to the Gromov–Hausdorff distance topology is a subclass of CMSK
for come K > 0 by the Gromov Compactness Theorem [7, Theorem 7.4.15].
Remark 4.7. Similar conclusions to Proposition 2.14 and the results of Section 3 can
be made with respect to the Lip-norm L(∞,AR)

dX ,K of Theorem 4.6, but we do not need them
here and do not list them for the purpose of presentation.

Furthermore, we note that (1) and (3) of Theorem 4.6 would still be true if K were
replaced by diam(X, dX). However, for (2), the K is used in a non-trivial yet subtle way
since we must compare these spaces in the propinquity and if K were allowed to vary
then the method used involving expression (4.8) would fail. And, the importance of (2)
is to show that we truly are extending the continuity of the map Γ of Theorem 1.9 to the
matricial case on the subclass CMSK .
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