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1. Introduction and preliminaries. Pushouts of graphs have proven to be very useful
in the theory of free groups [13]. We hope that our approach to pullbacks of graph algebras
through pushouts of underlying graphs will also turn out to be beneficial.

A graph C*-algebra is the universal C*-algebra associated to a directed graph. If one
considers a specific class of morphisms of directed graphs (e.g., see [1, Definition 1.6.2]),
then the graph C*-algebra construction yields a covariant functor from the category of di-
rected graphs to the category of C*-algebras. On the other hand, Hong and Szymański [8]
showed that a pushout diagram in the category of directed graphs can lead to a pullback
of C*-algebras. The purpose of this paper is to find conditions on the pushout diagram of
graphs that give rise to the pullback diagram of the associated graph C*-algebras. This
leads to a notion of an admissible decomposition of a directed graph, which we present
in Section 2. The main result is contained in Section 3 and examples are in Section 4.

Our result is closely related to [9, Corollary 3.4], where it is proven, in an appropriate
form, for k-graphs without sinks. Herein, we focus our attention on 1-graphs but possibly
with sinks. Thus our results are complementary and lead to the following question: Is it
possible to get rid of both of these assumptions (“only 1-graphs” and “no sinks”) at the
same time to prove a more general pushout-to-pullback theorem?

In this paper, by a graph E we will always mean a directed graph, i.e. a quadruple
(E0, E1, sE , rE), where E0 is the set of vertices, E1 is the set of edges, sE : E1 → E0 is the
source map and rE : E1 → E0 is the range map. (The sets E0 and E1 are usually assumed
to be countable.) A graph E is called row finite if each vertex emits only a finite number
of edges. Next, E is called finite if both E0 and E1 are finite. A vertex is called a sink in E
if s−1

E (v) = ∅. By a finite path µ in E we mean a finite sequence of composable edges µ :=
e1e2 . . . ek or a vertex. The length |µ| of the finite path µ is the number k of composable
edges. We treat vertices as paths of length zero. The set of all finite paths for a graph E is
denoted by Path(E). One extends the source and the range maps to Path(E) in a natural
way. We denote the extended source and range maps by sPE and rPE , respectively.
Definition 1.1. The graph C*-algebra C∗(E) of a graph E is the universal C*-algebra
generated by mutually orthogonal projections P :=

{
Pv | v ∈ E0} and partial isome-

tries S :=
{
Se | e ∈ E1} with mutually orthogonal ranges satisfying the Cuntz–Krieger

relations [4, 6]:
S∗eSe = PrE(e) for all e ∈ E1, (CK1)∑

e∈s−1
E

(v)

SeS
∗
e = Pv for all v ∈ E0 that are not sinks, (CK2)

SeS
∗
e ≤ PsE(e) for all e ∈ E1. (CK3)

The datum {S, P} is called a Cuntz–Krieger E-family.
One can show that the above relations imply the standard path-algebraic relations:

S∗fSe = 0 for e 6= f, PsE(e)Se = Se = SePrE(e). (1.1)
Any graph C*-algebra C∗(E) can be endowed with a natural circle action (called the

gauge action)
α : U(1) −→ Aut(C∗(E)) (1.2)
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defined by its values on the generators:

αλ(Pv) = Pv, αλ(Se) = λSe, where λ ∈ U(1), v ∈ E0, e ∈ E1. (1.3)

A subset H of E0 is called hereditary iff, for any v ∈ H such that there is a path starting
at v and ending at w ∈ E0, we have w ∈ H.

Remark 1.2. One can equivalently define the property of being hereditary by replacing
“path” with “edge”.

Next, a subset H of E0 is called saturated iff there does not exist a vertex v /∈ H such
that

0 < |s−1
E (v)| <∞ and rE(s−1

E (v)) ⊆ H. (1.4)

Finally, a subset H of E0 is called unbroken iff there does not exist a vertex v /∈ H (called
a breaking vertex in [1, Definition 2.4.4]) such that it emits infinitely many edges and

0 <
∣∣{e ∈ s−1

E (v) | rE(s−1
E (v)) ⊆ E0 \H

}∣∣ <∞. (1.5)

Unbroken saturated hereditary subsets play a fundamental role in the theory of gauge-
invariant ideals of graph C*-algebras. It follows from [2, p. 1163] that, for any hereditary
subset H, the algebraic ideal generated by {Pv | v ∈ H} is of the form

IE(H) := span
{
SxS

∗
y | x, y ∈ Path(E), rPE(x) = rPE(y) ∈ H

}
. (1.6)

Here, for any path µ = e1 . . . ek, we adopt the notation Sµ := Se1 . . . Sek
. Furthermore, if

µ is a vertex, then Sµ := Pµ.
By [2, Proposition 3.4], quotients by closed ideals generated by unbroken saturated

hereditary subsets can also be realised as graph C*-algebras by constructing a quotient
graph. Given a hereditary subset H of E0, the quotient graph E/H is given by

(E/H)0 := E0 \H and (E/H)1 := E1 \ r−1
E (H). (1.7)

Note that the restriction-corestriction of the range map rE to (E/H)1 → (E/H)0 makes
sense for any H, but the same restriction-corestriction of the source map sE exists be-
cause H is hereditary. Moreover, if H is also saturated and unbroken, we obtain the
*-isomorphism

C∗(E)/IE(H) ∼= C∗(E/H), (1.8)

where IE(H) is the norm closure of IE(H).

2. Admissible decompositions of graphs. Given two graphs E = (E0, E1, sE , rE)
and G = (G0, G1, sG, rG), one can define a graph morphism f : E → G as a pair of
mappings f0 : E0 → G0 and f1 : E1 → G1 satisfying

sG ◦ f1 = f0 ◦ sE and rG ◦ f1 = f0 ◦ rE . (2.1)

We call the thus obtained category the category of directed graphs.
A subgraph of a graphE = (E0, E1, sE , rE) is a graph F = (F 0, F 1, sF , rF ) such that

F 0 ⊆ E0, F 1 ⊆ E1, ∀ e ∈ F 1 : sF (e) = sE(e) and rF (e) = rE(e). (2.2)

Next, let F1 and F2 be two subgraphs of a graph E. We define their intersection and
union as follows:



172 P. M. HAJAC, S. REZNIKOFF AND M. TOBOLSKI

F1 ∩ F2 := (F 0
1 ∩ F 0

2 , F
1
1 ∩ F 1

2 , s∩, r∩),
∀ e ∈ F 1

1 ∩ F 1
2 : s∩(e) := sE(e), r∩(e) := rE(e),

F1 ∪ F2 := (F 0
1 ∪ F 0

2 , F
1
1 ∪ F 1

2 , s∪, r∪),
∀ e ∈ F 1

1 ∪ F 1
2 : s∪(e) := sE(e), r∪(e) := rE(e).

(2.3)

Let us recall the pushout construction in the category of sets and directed graphs
following [5]. Assume that X, Y and Z are sets and that f : Z → X and g : Z → Y

are mappings. The pushout P of f and g is defined by P := (X t Y )/ ∼, where ∼ is the
finest equivalence relation such that f(z) ∼ g(z) for all z ∈ Z. If the mappings f and g
are understood, we simply say that P is a pushout of X and Y over Z. Additionally, we
call the diagram

P

X

??

Y

__

Z
f

__

g

??
(2.4)

a pushout diagram of X and Y over Z. Here the upper arrows are compositions of the
natural mappings from X and Y into their disjoint union followed by the quotient map
X t Y → P .

Directed graphs are defined in terms of sets, and therefore the pushout construction
can be applied separately to the set of vertices and the set of edges. The only restriction
is that all the mappings used need to preserve the source map and the range map. If a
graph E has two subgraphs F1 and F2 such that E = F1 ∪ F2, then the diagram

E

F1

??

F2

__

F1 ∩ F2

__ ??
(2.5)

is automatically a pushout diagram of F1 and F2 over their intersection. Let us illustrate
the concept of a pushout diagram of graphs with the following example:

77 gg

77gg

.

(2.6)
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We are now ready to define an admissible decomposition of a graph:

Definition 2.1. An unordered pair {F1, F2} of subgraphs of a graph E is called an
admissible decomposition of E iff the following conditions are satisfied:

(1) E = F1 ∪ F2,
(2) if v is a sink in F1 ∩ F2, then v is a sink in Fi, i = 1, 2,
(3) F 1

1 ∩ F 1
2 = r−1

Fi
(F 0

1 ∩ F 0
2 ), i = 1, 2,

(4) F 0
i \ F 0

j is unbroken in F 0
i and E0, i 6= j, i, j = 1, 2.

Observe that Diagram (2.6) gives an example of an admissible decomposition of a
graph. Note also that if {F1, F2} is an admissible decomposition of E, then E is auto-
matically a pushout of F1 and F2 over their intersection by (1) in Definition 2.1. The goal
of this paper is to use the other admissibility conditions to obtain a pullback diagram of
the associated graph C*-algebras.

Definition 2.1 prompts the following two lemmas.

Lemma 2.2. Let {F1, F2} be an admissible decomposition of a graph E. Then we have
F1 ∩ F2 = Fi/(F 0

i \ (F 0
1 ∩ F 0

2 )) and Fi = E/(E0 \ F 0
i ), for i = 1, 2.

Proof. First, note that F 0
i \ (F 0

1 ∩ F 0
2 ) is hereditary in Fi. Indeed, take e ∈ F 1

i . Then
sFi

(e) /∈ F 0
1 ∩ F 0

2 implies e /∈ F 1
1 ∩ F 1

2 . Hence, by Definition 2.1(3), rFi
(e) /∈ F 0

1 ∩ F 0
2 . By

Remark 1.2 we are done. Therefore, we can define Fi/(F 0
i \ (F 0

1 ∩ F 0
2 )), which coincides

with F1 ∩ F2 due to Definition 2.1(3).
Next, note that

E0 \ F 0
i = (F 0

i ∪ F 0
j ) \ F 0

i = F 0
j \ F 0

i = F 0
j \ (F 0

i ∩ F 0
j ), (2.7)

where j 6= i and j = 1, 2, so we already know that E0 \ F 0
i is hereditary in Fj . To see

that it is hereditary in E, we only need to exclude edges starting in E0 \ F 0
i and ending

in E0 \ F 0
j . They do not exist because E1 = F 1

i ∪ F 1
j , so E0 \ F 0

i is hereditary in E.
It remains to verify that F 1

i = r−1
E (F 0

i ). To this end, taking advantage of the admis-
sibility of (Fi ∩ Fj) ⊆ Fi, we compute

r−1
E (F 0

i ) \ F 1
i = r−1

Fj
(F 0
i ) \ F 1

i = r−1
Fj

(F 0
i ∩ F 0

j ) \ F 1
i = (F 1

i ∩ F 1
j ) \ F 1

i = ∅. (2.8)

Therefore, as F 1
i ⊆ r

−1
E (F 0

i ), we conclude that F 1
i = r−1

E (F 0
i ), as desired.

Lemma 2.3. Let {F1, F2} be an admissible decomposition of a graph E. Then the subset
F 0
i \ (F 0

1 ∩ F 0
2 ) is saturated in F 0

i and in E0 for i = 1, 2.

Proof. If F 0
i \ (F 0

1 ∩ F 0
2 ) were not saturated in F 0

i , then there would exist a vertex v in
F 0
i \ (F 0

i \ (F 0
1 ∩ F 0

2 )) = F 0
1 ∩ F 0

2 (2.9)
such that

s−1
Fi

(v) 6= ∅ and rFi(s−1
Fi

(v)) ⊆ F 0
i \ (F 0

1 ∩ F 0
2 ). (2.10)

Thus we would have a vertex in F1 ∩ F2 that is a sink in F1 ∩ F2 but not in Fi, which
contradicts Definition 2.1(2).

Much in the same way, suppose that F 0
i \ (F 0

1 ∩ F 0
2 ) is not saturated in E0. Then

there exists a vertex
w ∈ E0 \ (F 0

i \ (F1 ∩ F 0
2 )) = F 0

j , (2.11)
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where j 6= i and j = 1, 2, such that

s−1
E (w) 6= ∅ and rE(s−1

E (w)) ⊆ F 0
i \ (F 0

1 ∩ F 0
2 ). (2.12)

Hence, there is e ∈ s−1
E (w) such that rE(e) /∈ F 0

j . As E1 = F 1
i ∪ F 1

j , it follows that
e ∈ F 1

i , so w = sE(e) ∈ F 0
i . Consequently, w is a sink in F1 ∩ F2 but not in Fi, which

again contradicts Definition 2.1(2).

3. Pullbacks of graph C*-algebras. Let {F1, F2} be an admissible decomposition of
a graph E. Then, by Lemma 2.2 and Lemma 2.3, we can take advantage of the formula
(1.8) to define the canonical quotient maps:

π1 : C∗(E) −→ C∗(E)/IE(F 0
2 \ F 0

1 ) ∼= C∗(F1),

π2 : C∗(E) −→ C∗(E)/IE(F 0
1 \ F 0

2 ) ∼= C∗(F2),

χ1 : C∗(F1) −→ C∗(F1)/IF1(F 0
1 \ (F 0

1 ∩ F 0
2 )) ∼= C∗(F1 ∩ F2),

χ2 : C∗(F2) −→ C∗(F2)/IF2(F 0
2 \ (F 0

1 ∩ F 0
2 )) ∼= C∗(F1 ∩ F2).

(3.1)

Note that quotient maps are automatically U(1)-equivariant for the gauge action.
This brings us to the main theorem:

Theorem 3.1. Let {F1, F2} be an admissible decomposition of a graph E. Then there
exist canonical quotient gauge-equivariant ∗-homomorphisms rendering the diagram

C∗(E)
π1

xx

π2

&&

C∗(F1)

χ1
&&

C∗(F2)

χ2
xx

C∗(F1 ∩ F2)

(3.2)

commutative. Moreover, this is a pullback diagram of U(1)-C*-algebras.

Proof. Note first that all the canonical surjections in the diagram are well defined due to
the admissibility conditions of the decomposition of the graph E (see the discussion at the
beginning of this section). The commutativity of the diagram is obvious as all maps are
canonical surjections. Finally, using [10, Proposition 3.1] and the surjectivity of χ1 and χ2,
to prove that (3.2) is a pullback diagram, it suffices to show that kerπ1 ∩ kerπ2 = {0}
and that kerχ2 ⊆ π2(kerπ1).

Since kerπ1 and kerπ2 are closed ideals in a C*-algebra, we know that

kerπ1 ∩ kerπ2 = kerπ1 kerπ2. (3.3)

Next, as F 0
1 \F 0

2 and F 0
2 \F 0

1 are saturated hereditary subsets of E0, it follows from (1.8)
that

kerπ1 = IE(F 0
2 \ F 0

1 ) and kerπ2 = IE(F 0
1 \ F 0

2 ). (3.4)

Furthermore, using the characterization (1.6) of ideals generated by hereditary subsets,
we know that an arbitrary element of kerπ1 kerπ2 is in the closed linear span of elements



PULLBACKS OF GRAPH C*-ALGEBRAS 175

of the form SαS
∗
βSγS

∗
δ , where α, β ∈ Path(E) with

rPE(α) = rPE(β) ∈ F 0
2 \ F 0

1 , (3.5)
and γ, δ ∈ Path(E) with

rPE(γ) = rPE(δ) ∈ F 0
1 \ F 0

2 . (3.6)
The conclusion kerπ1∩kerπ2 = {0} follows from the analysis of all possible paths satisfy-
ing the above conditions. Indeed, it follows from Definition 1.1 that S∗βSγ 6= 0 is possible
only if sPE(β) = sPE(γ). As E1 = F 1

1 ∪ F 1
2 , rPE(β) ∈ F 0

2 \ F 0
1 and rPE(γ) ∈ F 0

1 \ F 0
2 , if

β = e1 . . . em and γ = f1 . . . fn, we infer that
rE(em−1) = sE(em) ∈ F 0

2 and rE(fn−1) = sE(fn) ∈ F 0
1 . (3.7)

Hence rE(em−1) ∈ F 0
1 ∩F 0

2 or rE(em−1) ∈ F 0
2 \F 0

1 . Now, we continue by induction using
Definition 2.1(3) for the intersection case of the alternative. This brings us to conclusion
that sPE(β) ∈ F 0

2 . Much in the same way, we argue that sPE(γ) ∈ F 0
1 . It follows that

sPE(β) = sPE(γ) ∈ F 0
1 ∩ F 0

2 . Furthermore, as rPE(β) ∈ F 0
2 \ F 0

1 and rPE(γ) ∈ F 0
1 \ F 0

2 ,
we conclude that β 6= γ, so there exists the smallest index i such that ei 6= fi. Now,
remembering the relation (CK1) and (1.1), we compute

S∗βSγ = S∗ei+1...em
S∗ei

S∗ei−1
. . . S∗e1

Se1 . . . Sei−1SfiSfi+1...fn

= S∗ei+1...em
S∗ei

Sfi
Sfi+1...fn

= 0. (3.8)
Finally, if β or γ is a path of length zero, i.e. a vertex, then it is straightforward to
conclude that S∗βSγ = 0.

Next, again taking advantage of (1.6) and (1.8), we obtain
kerχ2 = IF2(F 0

2 \ F 0
1 ) = span

{
SαS

∗
β | α, β ∈ Path(F2), rPF2(α) = rPF2(β) ∈ F 0

2 \ F 0
1
}
.

Any element of IF2(F 0
2 \ F 0

1 ) is an element of IE(F 0
2 \ F 0

1 ), and π2(Sα) = Sα for all
α ∈ Path(F2). Hence IF2(F 0

2 \F 0
1 ) ⊆ π2(IE(F 0

2 \F 0
1 )). Finally, from the continuity of π2,

we conclude that kerχ2 ⊆ π2(kerπ1).
Remark 3.2. One can also prove Theorem 3.1 in the setting of Leavitt path algebras [1].
A proof of the Leavitt version of Theorem 3.1 is completely analogous due to [1, Corol-
lary 2.5.11]. Furthermore, in the case of row-finite graphs, one should compare Theo-
rem 3.1 with [12, Theorem 3.3].

4. Examples. We end the paper by providing motivating examples from noncommuta-
tive topology.

4.1. Even quantum spheres. Not only does the graph at the top of Diagram (2.6)
representing the generic Podleś quantum sphere [11] admit a natural admissible decom-
position, but also the finite graphs L2n [7, Section 5.1] representing, respectively, the
C*-algebras C(S2n

q ) of all even quantum spheres enjoy natural admissible decomposi-
tions {F 1

2n, F
2
2n}. Here C∗(F 1

2n) = C∗(F 2
2n) coincides with the C*-algebra C(B2n

q ) of the
Hong–Szymański quantum 2n-ball [8, Section 3.1], and C∗(F 1

2n ∩ F 2
2n) coincides [7, Sec-

tion 4.1] with the C*-algebra C(S2n−1
q ) of the boundary Vaksman–Soibelman quantum

odd sphere [14]. Thus we recover in terms of graphs the classical fact that an even sphere
is a gluing of even balls over the boundary odd sphere.
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As Theorem 3.1 applies, we infer that the diagram

C(S2n
q )

π1

yy

π2

%%

C(B2n
q )

χ1
%%

C(B2n
q )

χ2
yy

C(S2n−1
q )

(4.1)

is a pullback diagram. This fact was already proved in [8, Proposition 5.1] by direct
considerations of generators and relations.

The case n = 3 is illustrated by the diagram:

:: dd

.

::dd

(4.2)

4.2. Quantum lens space L3
q(l; 1, l). The C*-algebra C(L3

q(l; 1, l)) of the quantum lens
space L3

q(l; 1, l) can be viewed as the graph C*-algebra (e.g., see [3]) of the graph L3
l :

· · ·

v0
0

v1
0 v1

1 v1
l−2 v1

l−1 .

(4.3)
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The graph L3
l enjoys an admissible decomposition {L3

k, L
3
l−k}, where k ∈ {1, . . . , l − 1},

yielding, by Theorem 3.1, the pullback diagram:
C(L3

q(l; 1, l))
π1

ww

π2

((

C(L3
q(k; 1, k))

χ1
''

C(L3
q(l − k; 1, l − k))

χ2
uu

C(S1) .

(4.4)

Recall that C∗(L3
1) ∼= C(S3

q ), so, for l = 2, we obtain the following pullback diagram:

C(L3
q(2; 1, 2))

π1

xx

π2

&&

C(S3
q )

χ1
&&

C(S3
q )

χ2
xx

C(S1) .

(4.5)

Since the above diagram is U(1)-equivariant, it induces a pullback diagram for
U(1)-fixed-point subalgebras:

C(WP 1
q (1, 2))

π1

xx

π2

&&

C(CP 1
q )

χ1
''

C(CP 1
q )

χ2
ww

C .

(4.6)

Here C(CP 1
q ) and C(WP 1

q (1, 2)) denote the quantum complex projective space (see [7,
Section 2.3]) and the quantum weighted projective space (see [3, Section 3]), respectively.
Interestingly, the C*-algebras in the above diagram can be viewed as graph C*-algebras,
and an infinite graph representing C(WP 1

q (1, 2)) is a pushout of infinite graphs repre-
senting C(CP 1

q ) over the graph consisting of one vertex and no edges representing C (see
Diagram (4.7) below). Better still, this example is also within the scope of Theorem 3.1.

(∞) (∞)

(∞)

66

(∞)

hh

55ii

(4.7)

Here edges with (∞) denote countably infinitely many edges.
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