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LOCAL CONVERGENCE FOR MULTISTEP HIGH ORDER
METHODS UNDER WEAK CONDITIONS

Abstract. We present a local convergence analysis for an eighth-order
convergent method in order to find a solution of a nonlinear equation in a
Banach space setting. In contrast to the earlier studies using hypotheses up
to the seventh Fréchet derivative, we use only hypotheses on the first-order
Fréchet derivative and Lipschitz constants. This way, we not only expand
the applicability of these methods but also propose a computable radius of
convergence for these methods. Finally, concrete numerical examples demon-
strate that our results apply to nonlinear equations not covered before.

1. Introduction. One of the most basic and important problem in nu-
merical analysis deals with finding a locally unique solution x∗ of the equa-
tion

(1.1) F (x) = 0,

where F : D ⊂ X→ Y is a Fréchet differentiable operator, X,Y are Banach
spaces and D is a convex subset of X. Let us also denote by L(X,Y) the
space of bounded linear operators from X into Y.

Finding x∗ is important, since numerous problems can be reduced to
equation (1.1) using mathematical modeling [4, 5, 9, 13, 18, 21, 22]. However,
it is not always possible to find the solution x∗ in closed form. Hence, most
methods are iterative. The convergence analysis of iterative methods is usu-
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ally divided into two categories: semi-local and local convergence analysis.
The semi-local convergence analysis is, based on the information around an
initial point, to give criteria ensuring the convergence of the method, while
the local convergence is based on the information around a solution to find
estimates of the radii of convergence balls. An important problem in the
study of iterative procedures is the region of accessibility. Therefore, it is
very important to propose the radius of convergence of iterative methods.

We study the local convergence of the three-step eighth-order convergent
method defined for each n = 0, 1, 2, . . . by

(1.2) yn = xn −A−1n F (xn), xn+1 = yn − 4B−1n F (yn),

where x0 ∈ D is an initial point, An = A(xn) = F ′(xn), Bn = B(xn, yn) =
F ′(xn)+Q(xn)(F (xn))+2F ′

(xn+yn
2

)
+F ′(yn) and for each x ∈ D, Q(x)(·) :

Y→ L(X,Y). That is, Q(x)(y) is a linear operator for each x ∈ D and y ∈ Y.
We can also write Q(x)(y) = Q(x, y). A possible choice for Q is

(1.3) Q(x)(F (x)) = F ′(x).

Many other choices are possible. Method (1.2) reduces to a fourth-order
convergent method studied in [20] in the special case, when X = Y = R, and
for

(1.4) Q(x)G(x) = G′(x),

where G(x) 6= 0 for each x ∈ D − {x∗}. Notice that if G = F then (1.4)
reduces to (1.3). In this case, the fourth-order convergence was shown in [20]
using Taylor series expansions and hypotheses reaching up to the fourth-
order derivative of the involved function, although only the first derivative
appears in (1.2). The function G must satisfy some more conditions, to be
found in [20]. The hypotheses on the derivatives of F restrict the applicability
of method (1.2). As a motivational example, define F on X = Y = R,
D = [−5/2, 3/2] by

F (x) =

{
x3 lnx2 + x5 − x4, x 6= 0,

0, x = 0.

Then x∗ = 1,

F ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x,

F ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Obviously the third-order derivative F ′′′(x) of the function involved is not
bounded on D. Notice in particular that there are a plethora of iterative
methods for approximating solutions of nonlinear equations [1–22]. These
results show that the initial point should be close to the required solution
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for the convergence of the corresponding methods. But, how close should
the initial point be to x∗ for the convergence to hold? These local results
give no information on the radius of the convergence ball for the correspond-
ing method. That is, the initial point is a shot in the dark. Moreover, no
computable error bounds on the distances ‖xn − x∗‖ are provided or any
information on the uniqueness of the solution in a neighborhood of x∗. We
address these problems for method (1.2) in the next section.

In the present study, we expand the applicability of method (1.2) by using
only hypotheses on the first-order derivative of F and generalized Lipschitz
conditions. Moreover, we avoid using Taylor series expansions and use Lips-
chitz parameters instead. We apply the computational order of convergence
(COC) or the approximate computational order (ACOC) to determine the
order of the method, which does not require using derivatives of order higher
than one (see Remark 2.2(d)). Our computable error bounds ‖xn − x∗‖, the
region of accessibility as well as the uniqueness of the solution depend on
Lipschitz-type constants (see Theorem 2.1 and the numerical examples). It
is worth noticing that local convergence results can be used to demonstrate
the degree of difficulty in choosing the initial points. This choice is difficult in
general because of the need of knowing x∗ at least approximately. However,
in Remark 2.2(e), we provide classes of problems where we can find a radius
of convergence without actually knowing x∗ (see also Example 3.2).

The rest of the paper is organized as follows: Section 2 contains the
local convergence analysis of method (1.2). Numerical examples appear in
Section 3.

2. Local convergence. In this section, we present the local convergence
analysis of method (1.2), by using some scalar functions and parameters. Let
w0, v0, w1 be increasing and continuous functions defined on [0,+∞) with
values in [0,+∞) and with w0(0) = 0. Suppose that the equation

(2.1) p(t) = 1

has at least one positive solution, where

p(t) = w0(t) +

1�

0

v0(θt) dθ w1(t)t.

Denote by r0 the smallest such solution. Let v : [0, r0) → [0,+∞) and
w : [0, r0)→ [0,+∞) be increasing and continuous functions with w(0) = 0.
Moreover, define functions g1, h1, q and hq on [0, r0) by

g1(t) =

	1
0w((1− θ)t) dθ

1− w0(t)
+

(
	1
0 v(θt) dθ)(

	1
0 v0(θt) dθ)w1(t)t

(1− w0(t))(1− p(t))
,

h1(t) = g1(t)− 1,
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q(t) =
1

4

(
w0(t) + 4

1�

0

v0(θt) dθ w1(t)t+ 2w0

(
1
2(1 + g1(t))t

)
+ w0(g1(t)t)

)
,

hq(t) = q(t)− 1.

We have h1(0) = hq(0) = −1 < 0 and h1(t)→ +∞, hq(t)→ +∞ as t→ r−0 .
Thus, by the mean value theorem, h1 and hq have zeros in (0, r0). Denote
by r1 and rq the smallest such zero of h1 and hq, respectively. Furthermore,
define functions g2 and h2 on [0, r0) by

g2(t) =

[
1 +

	1
0 v(θg1(t)t) dθ

1− q(t)

]
g1(t),

h2(t) = g2(t)− 1.

Again we have h2(0) = −1 < 0 and h2(t) → +∞ as t → r−q . Let r2 be the
smallest zero of h2 in (0, rq). Finally, define

(2.2) r = min{r1, r2}.

Then, for each t ∈ [0, r),

0 ≤ p(t) < 1,(2.3)
0 ≤ w0(t) < 1,(2.4)
0 ≤ g1(t) < 1,(2.5)
0 ≤ q(t) < 1,(2.6)
0 ≤ g2(t) < 1.(2.7)

Let U(z, ρ), Ū(z, ρ), be respectively the open and closed balls in X with
center z ∈ X and of radius ρ > 0.

Next, we present the local convergence analysis of method (1.2) using the
preceding notations.

Theorem 2.1. Let F : D ⊆ X → Y be a continuously Fréchet differen-
tiable operator. Let functions v0, v, w0, w, w1 be as defined previously and let
r0 be defined by (2.1). Suppose that there exists x∗ ∈ D such that for each
x ∈ D,

(2.8) F (x∗) = 0, F ′(x∗)−1 ∈ L(Y,X)

and

(2.9) ‖F ′(x∗)−1(F ′(x)− F ′(x∗)‖ ≤ w0(‖x− x∗‖).
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Moreover, suppose that for each x, y ∈ D0 := D ∩ U(x∗, r0),

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ w(‖x− y‖),(2.10)
‖F ′(x)‖ ≤ v0(‖x− x∗‖),(2.11)

‖F ′(x∗)−1F ′(x)‖ ≤ v(‖x− x∗‖),(2.12)

‖F ′(x∗)−1Q(x)(F (x))‖ ≤ w1(‖x− x∗‖),(2.13)
Ū(x∗, r) ⊆ D,(2.14)

where Q is as defined previously and the radius of convergence r is given
by (2.2). Then the sequence {xn} generated for x0 ∈ U(x∗, r) − {x∗} by
method (1.2) is well defined, remains in U(x∗, r) for each n = 0, 1, 2, . . . and
converges to x∗. Moreover,

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r,(2.15)
‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖,(2.16)

where the functions g1 and g2 are as defined previously. Furthermore, if

(2.17)
1�

0

w0(θR) dθ < 1 for R ≥ r,

then x∗ is the only solution of F (x) = 0 in D1 := D ∩ Ū(x∗, R).

Proof. We shall show by induction that the sequence {xn} is well defined
in U(x∗, r) and converges to x∗. From the hypothesis x0 ∈ U(x∗, r)− {x∗},
(2.1)–(2.3) and (2.9), we have

(2.18) ‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ w0(‖x0 − x∗‖) < w0(r) < 1.

It follows from (2.18) and the Banach Lemma on invertible operators [4, 5]
that F ′(x0)−1 ∈ L(Y,X) is well defined and

(2.19) ‖F ′(x0)−1F ′(x∗)‖ ≤
1

1− w0(‖x0 − x∗‖)
·

To show that y0 is well defined, it suffices by the first substep of method
(1.2) that A−10 ∈ L(Y,X). Using (2.1), (2.2), (2.4), (2.9) and (2.11), we get

(2.20) ‖F ′(x∗)−1(A0 − F ′(x∗))‖
≤ ‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖+ ‖F (x0)‖ ‖F ′(x∗)−1Q(x0)‖

≤ w0(‖x0 − x∗‖) +

1�

0

v0(θ‖x0 − x∗‖) dθ w1(‖x0 − x∗‖)‖x0 − x∗‖

= p(‖x0 − x∗‖) < p(r) < 1,

so A−10 ∈ L(Y,X) is well defined and

(2.21) ‖A−10 F ′(x∗)‖ ≤ 1

1− p(‖x0 − x∗‖)
·
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In view of the relations (1.2), (2.1), (2.2), (2.5), (2.10), (2.11), (2.18) and
(2.20), we get

(2.22) ‖y0 − x∗‖
= ‖(x0 − x∗ − F ′(x0)−1F (x0)) + F ′(x0)

−1(A0 − F ′(x0))A−10 F (xn)‖
≤ ‖F ′(x0)−1F ′(x∗)‖

×
∥∥∥ 1�

0

F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))− F ′(x0))(x0 − x∗) dθ
∥∥∥

+ ‖F ′(x0)−1F ′(x∗)‖ ‖F ′(x∗)−1(A0 − F ′(x0))‖
× ‖A−10 F ′(x∗)‖ ‖F ′(x∗)−1F (x0)‖

≤
	1
0w((1− θ)‖x0 − x∗‖) dθ ‖x0 − x∗‖

1− w0(‖x0 − x∗‖)

+

	1
0 v0(θ‖x0 − x

∗‖) dθ
	1
0 v(θ‖x0 − x∗‖) dθ w1(‖x0 − x∗‖)‖x0 − x∗‖2

(1− w0(‖x0 − x∗‖))(1− p(‖x0 − x∗‖))
= g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

which shows (2.18) for n = 0 and y0 ∈ U(x∗, r). Next, we must show that
B−10 ∈ L(Y,X). By (2.1), (2.2), (2.6), (2.9), (2.11), (2.12) and (2.22), we get
in turn

(2.23) ‖(4F ′(x∗))−1(B0 − 4F ′(x∗))‖

≤ 1

4

[
‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖+ 4‖F ′(x∗)−1Q(x0)(F (x0))‖

+ 2

∥∥∥∥F ′(x∗)−1(F ′(x0+y0
2

)
−F ′(x∗)

)∥∥∥∥+‖F ′(x∗)−1(F ′(y0)−F ′(x∗))‖
]

≤ 1

4

(
w0(‖x0 − x∗‖) + 4

1�

0

v0(θ‖x0 − x∗‖) dθ w1(‖x0 − x∗‖)‖x0 − x∗‖

+ 2w0

(
1
2(‖x0 − x∗‖+ ‖y0 − x∗‖)

)
+ w0(‖y0 − x∗‖)

)
≤ q(‖x0 − x∗‖) < q(r) < 1,

so that B−10 ∈ L(Y,X) is well defined by the second substep of method (1.2)
and

(2.24) ‖B−10 F ′(x∗)‖ ≤ 1

4(1− q(‖x0 − x∗‖))
·

Then, by the last substep of method (1.2), and by (2.1), (2.2), (2.7), (2.11),
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(2.22) and (2.24), we have

(2.25) ‖x1 − x∗‖ ≤ ‖y0 − x∗‖+ 4‖B−10 F ′(x∗)‖ ‖F ′(x∗)−1F (y0)‖

≤ g1(‖x0 − x∗‖)‖x0 − x∗‖+

	1
0 v(θ‖y0 − x∗‖) dθ g1(‖x0 − x∗‖)‖x0 − x∗‖

1− q(‖x0 − x∗‖)
= g2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

which shows (2.16) for n = 0 and z0 ∈ U(x∗, r). By simply replacing x0, y0, x1
by xk, yk, xk+1 in the preceding estimates we arrive at (2.15) and (2.16).
Then, in view of the estimates

(2.26) ‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < r, c = g2(‖x0 − x∗‖) ∈ [0, 1),

we deduce that limk→∞ xk = x∗ and xk+1 ∈ U(x∗, r).
Finally, to show the uniqueness part, let y∗ ∈ D1 with F (y∗) = 0. Define

T =
	1
0 F
′(x∗ + θ(x∗ − y∗)) dθ. Using (2.5) and (2.12), we get

(2.27) ‖F ′(x∗)−1(T − F ′(x∗))‖ ≤
1�

0

w0(θ‖y∗ − x∗‖) dθ ≤
1�

0

w0(θR) dθ < 1.

It follows from (2.27) that T is invertible. Then, in view of the identity

(2.28) 0 = F (x∗)− F (y∗) = T (x∗ − y∗),
we conclude that x∗ = y∗.

Remark 2.2. (a) It follows from (2.10) that condition (2.12) can be
replaced by

(2.29) v(t) = 1 + w0(t) or v(t) = 1 + w0(r0),

since

(2.30) ‖F ′(x∗)−1[(F ′(x)− F ′(x∗)) + F ′(x∗)]‖
= 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖
≤ 1 + w0(‖x− x∗‖) = 1 + w0(t) for ‖x− x∗‖ ≤ r0.

(b) If w0 is strictly increasing, then we can choose

(2.31) r0 = w−10 (1)

instead of (2.1).
(c) If w0, w, v are constant functions (the proof of Theorem 2.1 goes

through also in this case), then

(2.32) r1 =
2

2w0 + w

and

(2.33) r ≤ r1.
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Therefore, the radius of convergence r cannot be larger than the radius of
convergence r1 for Newton’s method

(2.34) xn+1 = xn − F ′(xn)−1F (xn).

Notice also that the earlier radius of convergence given independently by
Rheinboldt [19] and Traub [22] is

(2.35) rTR =
2

3w1
,

and by Argyros [4, 5],

(2.36) rA =
2

2w0 + w1
,

where w1 is the Lipschitz constant for (2.6) on D. But

(2.37) w ≤ w1, w0 ≤ w1,

so

(2.38) rTR ≤ rA ≤ r1
and

(2.39) rTR/rA → 1/3 as w0/w → 0.

The radius of convergence q used in [4] is smaller than the radius rDS given
by Dennis and Schnabel [4],

(2.40) q < rSD =
1

2w1
< rTR.

However, q cannot be computed using the Lipschitz constants.
(d) The order of convergence of method (1.2) was shown in [20] using

hypotheses on up to the seventh-order derivative of F . We have only used
hypotheses on the first-order derivative of F . The order of convergence can
be determined by using the computational order of convergence COC given
by

(2.41) ξ = lim
n→∞

ln ‖xn+2−x∗‖
‖xn+1−x∗‖

ln ‖xn+1−x∗‖
‖xn−x∗‖

,

or the approximate computational order of convergence (ACOC) [14] given
by

(2.42) ξ∗ =
ln ‖xn+2−xn+1‖
‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

for sufficiently large n,

which do not require higher than first derivatives. The parameter ξ∗ does not
even require the knowledge of x∗. Notice also that in the case of convergence
there exists k = 0, 1, 2, . . . such that xn = xn+k = ξ∗.
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(e) The results obtained here can be used for operators F satisfying the
autonomous differential equation [4, 5] of the form

(2.43) F ′(x) = P (F (x))

where P is a known continuous operator. Since F ′(x∗) = P (F (x∗)) = P (0),
we can apply the results without actually knowing the solution x∗. As an
example let F (x) = ex − 1. Then we can choose P (x) = x+ 1.

3. Numerical examples and applications. We present some exam-
ples pertaining to the theoretical results of Section 2. We use the choice
of Q given by (1.3) in all examples, so by (2.12) and (2.13), we can set
w1(t) = v(t).

Example 3.1. Let X = Y = C[0, 1] and consider the nonlinear integral
equation of mixed Hammerstein type [10,13], defined by

(3.1) x(s) =

1�

0

G(s, t)

(
x(t)3/2 +

x(t)2

2

)
dt,

where the kernel G is the Green function defined on [0, 1]× [0, 1] by

(3.2) F (s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t.

The solution x∗(s) = 0 is the same as the solution of (1.1), where F : D ⊂
C[0, 1]→ C[0, 1] defined by

(3.3) F (x)(s) = x(s)−
t�

0

G(s, t)

(
x(t)3/2 +

x(t)2

2

)
dt.

Notice that

(3.4)
∥∥∥t�
0

G(s, t) dt
∥∥∥ ≤ 1

8
.

Then

F ′(x)y(s) = y(s)−
t�

0

G(s, t)

(
3

2
x(t)1/2 + x(t)

)
dt,

so since F ′(x∗(s)) = I, we have

(3.5) ‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ 1
8

(
3
2‖x− y‖

1/2 + ‖x− y‖
)
.

Therefore, we can choose

w0(t) = w(t) = 1
8

(
3
2 t

1/2 + t
)
,
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and by Remark 2.2(a),

v0(t) = v(t) = 1 + w0(t).

The results in [13, 20] cannot be used to solve this problem, since F ′ is
not Lipschitz. However, our results do apply. Based on the above choices of
functions and (2.2), we get r = 0.00619113.

Example 3.2. Suppose that the motion of an object in three dimensions
is governed by the system of differential equations

(3.6)
f ′1(x)− f1(x)− 1 = 0,

f ′2(y)− (e− 1)y − 1 = 0,

f ′3(z)− 1 = 0,

with x, y, z ∈ D for f1(0) = f2(0) = f3(0) = 0. Then the solution of the
system is given for w = (x, y, z)T by the function F := (f1, f2, f3) : D → R3

defined by

(3.7) F (v) =

(
ex − 1,

e− 1

2
y2 + y, z

)T

.

The Fréchet derivative is given by

F ′(v) =

e
x 0 0

0 (e− 1)y + 1 0

0 0 1

 .
Then w0(t) = L0t, w(t) = Lt and v0(t) = v(t) = M , where L0 = e − 1 <
L = e1/L0 = 1.789572397 and M = e1/L0 = 1.7896. Consequently, we get
r = 0.0027781.

Example 3.3. Let X = Y = C[0, 1] be the space of continuous functions
defined on [0, 1], equipped with the max norm. Let D = Ū(0, 1). Define F
on D for each x ∈ D by

(3.8) F (ϕ)(x) = φ(x)− 5

1�

0

xθϕ(θ)3 dθ.

We get

(3.9) F ′(ϕ(ξ))(x) = ξ(x)− 15

1�

0

xθϕ(θ)2ξ(θ) dθ for each ξ ∈ Ω.

Then x∗ = 0, L0 = 7.5, L = 15 and M = 2. Using method (1.2) for w0(t) =
L0t, v0(t) = v(t) = 2 and w(t) = Lt, we get r = 0.0013404.

Example 3.4. Returning to the motivational example in the introduc-
tion of this paper, we have L = L0 = 96.662907 and M = 2. Using
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method (1.2) for w0(t) = L0t, v(t) = 2, w(t) = Lt and v0(t) = 6, we ob-
tain r = 0.001.
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