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Summary. The paper contains the proofs of Lp, logarithmic and weak-type estimates
for the second-order Riesz transforms arising in the context of multidimensional Bessel
expansions. Using a novel probabilistic approach, which rests on martingale methods and
the representation of Riesz transforms via associated Bessel-heat processes, we show that
these estimates hold with constants independent of the dimension.

1. Introduction. One of the basic examples of Calderón–Zygmund sin-
gular integral operators in Rd are the so-called Riesz transforms, given by

Rjf(x) =
Γ
(
d+1
2

)
π
d+1
2

p.v.
�

Rd

xj − yj
|x− y|d+1

f(y) dy, j = 1, . . . , d.

These operators and their second-order analogues (linear combinations of
expressions of the form RjRk, j, k = 1, . . . , d) play an important role in
harmonic analysis and the theory of PDEs. In particular, it is well-known
that tight information about the norms of these objects, considered as op-
erators on various function spaces, can be used in the study of regularity of
certain elliptic partial differential equations. The literature on the subject
is extremely vast and exploits a variety of different techniques coming from
analysis and probability theory.
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In the recent years, much effort has been made to extend the estimates for
Riesz transforms to other contexts, in which Rd, equipped with Lebesgue’s
measure, classical laplacian and classical Fourier transform, is replaced with
some other homogeneous space possessing an appropriate differential op-
erator. This problem has been studied in various setups, and the typical
approach rests on careful examination of the pointwise behavior of certain
associated kernels.

The purpose of this paper is to introduce a novel, probabilistic approach
to the study of second-order Riesz transforms arising in the multidimensional
setting of Bessel expansions [3, 4, 5]. To formulate our results, we need to
introduce the basic setup which will be used throughout the paper. Let d ≥ 1
be a fixed dimension and let λ ∈ Rd+ be a fixed multiindex. Consider the space
X = Rd+ equipped with its Borel subsets and the product measure

dµλ(x) =
d∏
j=1

x
2λj
j dxj .

Then the Bessel differential operator, defined initially on C∞c (Rd+) by

∆λ = −∆−
d∑
j=1

2λj
xj

∂xj ,

has a symmetric and nonnegative extension to L2(Rd+, dµλ). It is easy to
check that ∆λ admits the decomposition ∆λ =

∑d
j=1 δ

∗
j δj , where δj = ∂xj

and δ∗j = −∂xj − 2λj/xj is the formal adjoint of δj , j = 1, . . . , d.
The following information on the spectral properties of ∆λ will be needed

later. For any z ∈ Rd+, consider the function

ϕλz (x) =

d∏
j=1

(zjxj)
−λj+1/2Jλj−1/2(zjxj), x ∈ Rd+,

where Jν stands for the oscillating Bessel function of the first kind and order
ν:

Jν(z) =

∞∑
k=0

(−1)k

k!Γ (ν + k + 1)
(z/2)2k+ν

(see [14] for more on Bessel functions). Then ϕλz is an eigenfunction of the
Bessel operator, corresponding to the eigenvalue |z|2: ∆λϕλz = |z|2ϕλz . Fur-
thermore, the family (ϕλz )z can be used to introduce another important ob-
ject, the (modified) Hankel transform Hλ. This operator, defined initially on
C∞c (Rd+), acts by the formula

Hλf(x) =
�

Rd+

ϕλx(y)f(y)µλ(dy),



Estimates for Riesz transforms 77

and plays the role of the Fourier transform from the Euclidean setting. It
can be extracted from the reasoning of Betancor and Stempak [5] that Hλ
extends to an isometry on L2(dµλ) and satisfies Hλ = (Hλ)−1. In addition,
for any f ∈ C∞c (Rd+) and any j = 1, . . . , d, we have the identity

(1.1) Hλ(δ∗j δjf)(z) = |zj |2Hλf(z), z ∈ Rd+.

The Bessel heat semigroup W λ
t = exp(−t∆λ), corresponding to the gen-

erator −∆λ, is given by

W λ
t f = Hλ(e−t|·|2Hλf)

and admits the following representation. If f ∈ L2(dµλ) and x ∈ Rd+, then

W λ
t f(x) =

�

Rd+

W λ
t (x, y)f(y) dµλ(y),

where the kernel W λ
t (·, ·) is given by the formula

(1.2)

W λ
t (x, y) =

1

(2t)d
exp

(
− 1

4t
(|x|2 + |y|2)

) d∏
j=1

(xjyj)
−λj+1/2Iλj−1/2

(
xjyj
2t

)
.

Here x, y ∈ Rd+, t > 0 and

Iν(z) =
∞∑
k=0

(z/2)2k+ν

k!Γ (ν + k + 1)

stands for the non-oscillating modified Bessel function of the first kind and
order ν (see [14] for details).

We are ready to formulate the main results of this paper. In what follows,
for any vector a = (a1, . . . , ad) ∈ Cd, the operator T a,λ is a Hankel multiplier
with symbol |ξ|−2

∑d
j=1 aj |ξj |2; that is, we have the identity

Hλ(T a,λf)(ξ) = |ξ|−2
d∑
j=1

aj |ξj |2Hλf(ξ), ξ ∈ Rd+.

It is easy to see (using (1.1), for example) that T a,λ can be expressed as a
linear combination of second-order Bessel–Riesz transforms:

T a,λ =
d∑
j=1

aj(R
λ
j )
∗Rλj .

Here Rλj stands for the first-order Riesz transform given by Rλj f(x) =

δjHλ(| · |−1Hλf)(x) and (Rλj )
∗ is its formal adjoint, that is, (Rλj )

∗f(x) =

Hλ(| · |−1Hλ(δ∗j f))(x).
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The primary goal of this paper is to show, using probabilistic methods,
that the operators T a,λ are bounded on various classical spaces. Let us start
with Lp-estimates.

Theorem 1.1. Pick a sequence a = (a1, . . . , ad) such that |aj | ≤ 1,
j = 1, . . . , d. Then for any 1 < p <∞ we have

(1.3) ‖T a,λ‖Lp(Rd+,dµλ)→Lp(Rd+,dµλ) ≤ p
∗ − 1,

where p∗ = max{p, p/(p− 1)}.

In the boundary cases p = 1 and p = ∞, we will establish the corre-
sponding LlogL and exponential inequalities. It will be convenient to use the
functions Φ(t) = et− 1− t and Ψ(t) = (t+1) log(t+1)− t, defined for t ≥ 0.

Theorem 1.2. Pick a sequence a = (a1, . . . , ad) such that |aj | ≤ 1,
j = 1, . . . , d. Then for any K > 1 and any Borel subset A of Rd+ we have

(1.4)
�

A

|T a,λf(x)| dµλ(x) ≤ K
�

Rd+

Ψ(|f(x)|) dµλ(x) +
µλ(A)

2(K − 1)
.

Furthermore, if ‖f‖L∞(Rd+,dµλ)
≤ 1, then

(1.5)
�

Rd+

Φ(|T a,λf(x)|) dµλ(x) ≤
1

2K(K − 1)
‖f‖L1(Rd+,dµλ)

.

We will also establish the corresponding weak-type bounds; for any 1 <
p <∞, we will work with the norm

‖f‖Lp,∞(Rd+,dµλ)
= sup

{
1

µλ(A)1−1/p

�

A

|f(x)|dµλ(x)
}
,

where the supremum is taken over all Borel subsets A of Rd+ satisfying
µλ(A) > 0. We introduce the constants

Kp =

{[
1
2Γ
(2p−1
p−1

)](p−1)/p if 1 < p < 2,

(pp−1/2)1/p if p ≥ 2.

Theorem 1.3. Assume that 1 < p <∞ and let a1, . . . , ad be elements of
the unit ball in C. Then

(1.6) ‖T a,λ‖Lp(Rd+,dµλ)→Lp,∞(Rd+,dµλ)
≤ Kp.

A few comments on the method of proof are in order. A classical argument
used to establish results of the above type studies various delicate properties
of the kernel W λ. Our approach will be completely different and will exploit
probabilistic methods: the above estimates will be deduced from some deep
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results from martingale theory. As a by-product, we obtain constants which
do not depend on the dimension d or the parameter λ.

The paper is organized as follows. In the next section we present the
probabilistic facts which will be needed to establish the aforementioned in-
equalities. Section 3 links the probabilistic and analytic aspects of the paper,
and is devoted to a martingale representation of the operators T a,λ. In the
final part we put all the facts together and establish Theorems 1.1–1.3.

2. Probabilistic background. As announced in the preceding section,
our arguments depend heavily on probabilistic techniques. Let us introduce
the necessary setup and notation.

Suppose that (Ω,F ,P) is a complete probability space, equipped with
(Ft)t≥0, a nondecreasing family of sub-σ-fields of F , such that F0 contains
all the events of probability 0.

Assume further that X, Y are two adapted martingales taking values in
a certain separable Hilbert space (H, | · |); with no loss of generality, we may
put H = `2. As usual, we impose standard conditions on the trajectories of
these processes: we assume that they are right-continuous and have limits
from the left. Given p ∈ [1,∞], we will write ‖X‖p for the pth moment
of X, given by ‖X‖p = supt≥0 ‖Xt‖p. The symbol [X,Y ] will stand for the
quadratic covariance process of X and Y . See e.g. Dellacherie and Meyer [8]
for details in the case when the processes are real-valued, and extend the
definition to the vector setting by [X,Y ] =

∑∞
k=0[X

k, Y k], where Xk, Y k

are the kth coordinates of X, Y , respectively.
We will say that Y is differentially subordinate to X if the process

([X,X]t−[Y, Y ]t)t≥0 is nonnegative and nondecreasing as a function of t. This
notion appeared for the first time in the discrete-time setting in the works
of Burkholder [6, 7]; the above continuous-time extension was introduced
by Bañuelos and Wang [2] and Wang [13]. The differential subordination
implies many interesting inequalities between the martingales X and Y ; for
an overview of the results, methods and much more, see the monograph by
Osękowski [9].

The inequalities (1.3)–(1.6) will be deduced from their probabilistic coun-
terparts. We start with the following Lp-estimate, proved by Burkholder [6]
in the discrete-time setting and extended to the general context byWang [13].

Theorem 2.1. Suppose that Y is differentially subordinate to X. Then
for any 1 < p <∞ we have

‖Y ‖p ≤ (p∗ − 1)‖X‖p.

To show (1.5), we will need the following statement, established in [10].
Then (1.4) will be obtained with the use of a duality-type argument.
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Theorem 2.2. Assume that X, Y are H-valued martingales such that
‖X‖∞ ≤ 1 and Y is differentially subordinate to X. Then for any K > 1,

(2.1) sup
t≥0

EΦ(|Yt|/K) ≤ 1

2K(K − 1)
‖X‖1.

Finally, to prove (1.6), we will exploit the following fact from [11], which
can be regarded as a dual to the weak-type inequalities between X and Y .

Theorem 2.3. Assume that X, Y are H-valued martingales such that Y
is differentially subordinate to X. Then for any 1 < q <∞ and p = q/(q−1),
(2.2) ‖Y ‖qq ≤ Kq

p‖X‖1‖X‖q−1∞ .

In the remainder of this section, we will provide some basic facts con-
cerning Bessel processes. The interested reader is referred to [12, Chapter
XI] for a systematic presentation of the subject.

Let β = (βt)t≥0 be a standard, one-dimensional Brownian motion. For
every δ ≥ 0 and x ≥ 0, the equation

Zt = x+ 2

t�

0

√
Zs dβs + δt

has a unique strong solution, which is called the square of a δ-dimensional
Bessel process started at x (and denoted by BESQδ(x)). For any x ≥ 0, the
square root of BESQδ(x2) is called a Bessel process of dimension δ started at
x, and is denoted by BESδ(x). The family (BESδ(x))x≥0 is a Markov family
with density

(2.3) pδt (x, y) = t−1(y/x)δ/2−1y exp

(
−x

2 + y2

2t

)
Iδ/2−1

(
xy

t

)
, x, y > 0.

Obviously, the function W λ
t (x, y) given by (1.2) is closely related to the

product
∏d
j=1 p

2λj+1
2t (xj , yj); both functions are essentially equal (the slight

difference in the formulas comes from the fact that W λ
t is the density of the

semigroup with respect to the measure dµλ, while (2.3) refers to Lebesgue
measure).

3. Probabilistic representation of second-order Riesz trans-
forms. Now we will explain how second-order Riesz transforms can be ex-
pressed in terms of stochastic integrals involving Bessel processes. Suppose
that f is a smooth, compactly supported, complex-valued function on Rd+ and
let Uf : Rd+× [0,∞)→ C denote the Bessel-heat extension of f : Uf (·, 0) = f
and, for any x ∈ Rd+ and t > 0,

Uf (x, t) =W λ
t f(x) =

�

Rd+

W λ
t (x, y)f(y) dµλ(y),
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where the kernel W λ
t (·, ·) is given by (1.2). This extension is a C∞ function

on Rd+ × R+ and satisfies the PDE

(3.1) ∆λ
xUf +

∂Uf
∂t

= 0,

where ∆λ
x is the Bessel differential operator applied to the x-coordinate. We

will also need the following “square” regularity property of Uf . Note thatW λ
t

extends to a C∞ function on Rd × Rd with the use of the formula

W λ
t (x, y)

=
1

(2t)d
exp

(
− 1

4t
(|x|2 + |y|2)

) d∏
j=1

∞∑
k=0

(xjyj)
2k

(4t)2k+λj−1/2k!Γ (k + λ+ 1/2)

and hence W λ
t (·, y) is a smooth function of x21, . . . , x2d. Clearly, this property

is inherited by the function Uf (·, t).
Now, for a fixed x ∈ Rd+, let Xx = (X1,x1 , X2,x2 , . . . , Xd,xd) be the collec-

tion of independent processes such that for each j = 1, . . . , d, the coordinate
Xj,xj is a Bessel process of dimension 2λj+1, started at xj . For a given posi-
tive number T , we introduce the associated parabolic process F = F (x;T ; f)
by

Ft = Uf (X
x
2t, T − t), t ∈ [0, T ].

The next step is to apply Itô’s formula to F . We have the SPDEs d(Xj,xj )2t =

2X
j,xj
t dBj

t + (2λj + 1) dt, where B = (B1, . . . , Bd) is a Brownian motion
in Rd. Let us rewrite F in the form Ft = Uf (

√
(Xx

2t)
2, T − t), t ∈ [0, T ].

Then Itô’s formula, combined with (3.1), yields

Ft(x;T ; f) = Uf (x, T ) +

t�

0+

∇xUf (Xx
2s, T − s) dB2s, t ∈ [0, T ].

This in particular implies that the process F is a continuous-path martingale.
Note that F is bounded, and hence square-integrable. It follows from classical
facts from stochastic analysis that the quadratic variation of F equals

[F, F ]t = |Uf (x, T )|2 + 2

t�

0+

|∇xUf (Xx
2s, T − s)|2 ds, t ∈ [0, T ].

The next step of the construction is to apply a certain transformation
to F . Suppose that A is a diagonal d× d matrix with each entry in the unit
ball of C. Consider the associated transform of F , given by

Gt = Gt(x;T ; f ;A) =
t�

0+

A∇xUf (Xx
2s, T − s) dB2s, t ∈ [0, T ].
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Then G is a square-integrable martingale, with quadratic covariance process
equal to

[G,G]t = 2

t�

0+

|A∇xUf (Xx
2s, T − s)|2 ds, t ∈ [0, T ].

Since the operator norm ofA does not exceed 1, we see that G is differentially
subordinate to F : the process

[F, F ]t − [G,G]t

= |Uf (x, T )|2 + 2

t�

0+

(|∇xUf (Xx
2s, T − s)|2 − |A∇xUf (Xx

2s, T − s)|2) ds

is nonnegative and nondecreasing. We will show now that an appropriate
projection of the process G leads to a Hankel multiplier. To this end, ob-
serve that for any h ∈ L2(Rd+,dµλ) we have, by the Schwarz inequality and
Fubini’s theorem (and the fact that µλ is the invariant measure for the Bessel
process X),

E
�

Rd+

∣∣GT (x;T ; f ;A)h(Xx
2T )
∣∣ dµλ(x)

≤
( �

Rd+

E|GT (x;T ; f ;A)|2 dµλ(x)
)1/2( �

Rd+

E|h(Xx
2T )|2 dµλ(x)

)1/2
=
( �

Rd+

E[G(x;T ; f ;A), G(x;T ; f ;A)]T dµλ(x)
)1/2

×
(
E

�

Rd+

|h(Xx
2T )|2 dµλ(x)

)1/2

≤
( �

Rd+

E[F (x;T ; f), F (x;T ; f)]T dµλ(x)
)1/2
‖h‖L2(Rd+,dµλ)

=
( �

Rd+

E|FT (x;T ; f)|2 dµλ(x)
)1/2
‖h‖L2(Rd+,dµλ)

=
( �

Rd+

E|f(Xx
2T )|2 dµλ(x)

)1/2
‖h‖L2(Rd+,dµλ)

= ‖f‖L2(Rd+,dµλ)
‖h‖L2(Rd+,dµλ)

.

Consequently, there is a unique function g = ST,Af ∈ L2(Rd+,dµλ) defined
through the bilinear form
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�

Rd+

g(x)h(x) dµλ(x) = E
�

Rd+

GT (x;T ; f ;A)h(Xx
2T ) dµλ(x)

for h ∈ L2(Rd+,dµλ). (Informally, we can treat g(x) as the projection, or
rather the “conditional expectation” EP [GT (x;T ; f ;A) | Xx

2T = x] with re-
spect to the product, non-probability measure P = P⊗ µλ).

We will prove now that ST,A is a Hankel multiplier and identify the
associated symbol. Using basic properties of stochastic integrals, we note
that for any x ∈ Rd+,

EGT (x;T ; f ;A)h(Xx
2T )

= E
T�

0+

A∇xUf (Xx
2s, T − s) dB2s

T�

0+

∇xUh(Xx
2s, T − s) dB2s

= 2E
T�

0+

〈A∇xUf (Xx
2s, T − s),∇xUh(Xx

2s, T − s)〉ds

= 2

T�

0+

�

Rd+

〈A∇xUf (y, T − s),∇xUh(y, T − s)〉p2s(x, y) dy ds

= 2

T�

0+

�

Rd+

〈A∇xUf (y, T − s),∇xUh(y, T − s)〉W λ
s (x, y) dµλ(y) ds,

where ps(x, y) =
∏d
j=1 p

2λj+1
s (xj , yj) is the transition density of Xx. There-

fore, by Fubini’s theorem and the fact that
	
Rd+
W λ
s (x, y) dµλ(x) = 1 for

each y, we may write

�

Rd+

ST,Af(x)h(x) dµλ(x)

= 2
�

Rd+

T�

0+

�

Rd+

〈A∇xUf (y, T − s),∇xUh(y, T − s)〉W λ
s (x, y) dµλ(x) ds dµλ(y)

= 2
�

Rd+

T�

0+

〈A∇xUf (y, T − s),∇xUh(y, T − s)〉 ds dµλ(y)

= 2
�

Rd+

T�

0+

d∑
j=1

ajjUf (y, T − s)δ∗j δjUh(y, T − s) ds dµλ(y).
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In the last line we have used integration by parts. Now fix ξ ∈ Rd+ and put

h(x) = ϕλξ (x) =

d∏
j=1

(ξjxj)
−λj+1/2Jλj−1/2(ξjxj),

the eigenfunction of ∆λ corresponding to the eigenvalue |ξ|2. Then
Uh(x, t) = ϕλξ (x) exp(−t|ξ|2)

and hence δ∗j δjUh(x, t) = |ξj |2ϕλξ (x) exp(−t|ξ|2). Plugging this in the formula
above, we get

Hλ(ST,Af)(ξ) =
�

Rd+

ST,Af(x)h(x) dx

= 2
d∑
j=1

ajj |ξj |2
�

Rd+

T�

0+

Uf (y, T − s)ϕλξ (y) exp(−(T − s)|ξ|2) ds dµλ(y)

= 2

d∑
j=1

ajj |ξj |2
T�

0+

exp(−(T − s)|ξ|2)Hλ(Uf (·, T − s)) ds.

We have Hλ(Uf (·, t))(ξ) = e−t|ξ|
2Hλf(ξ), which implies

Hλ(ST,Af)(ξ) = 2
d∑
j=1

ajj |ξj |2Hλf(ξ) ·
T�

0+

e−2(T−s)|ξ|
2
ds

= Hλ(f)(ξ) 〈Aξ, ξ〉
|ξ|2

[
1− e−2T |ξ|2

]
.

Thus, ST,A is a Hankel multiplier with symbol 〈Aξ, ξ〉|ξ|−2
[
1− e−T |ξ|2

]
.

4. Proofs of Theorems 1.1–1.3. Equipped with the representation of
the preceding section, we are ready for the proofs of the results announced
in the introduction.

Proof of (1.3). By a straightforward approximation argument, it is
enough to show that�

Rd+

|T a,λf |p dµλ ≤ (p∗ − 1)p
�

Rd+

|f |p dµλ

for any f ∈ C∞c (Rd+). Let A be the diagonal matrix with a1, . . . , ad on the
main diagonal, and let F , G be the associated martingales introduced in the
preceding section. We will combine the differential subordination of these
processes with Theorem 2.1. To this end, recall that q = p/(p − 1) is the
conjugate to p and note that for any h ∈ L2(Rd,dµλ),
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E
�

Rd+

|GT (x;T ; f ;A)h(Xx
2T )| dµλ(x)

≤
( �

Rd+

E|GT (x;T ; f ;A)|p dµλ(x)
)1/p( �

Rd+

E|h(Xx
2T )|q dµλ(x)

)1/q
≤ (p∗ − 1)

( �

Rd+

E|FT (x;T ; f)|p dµλ(x)
)1/p( �

Rd+

E|h(Xx
2T )|q dµλ(x)

)1/q
= (p∗ − 1)‖f‖Lp(Rd+,dµλ)‖h‖Lq(Rd+,dµλ),

by Fubini’s theorem. This, by the very definition of ST,A, implies

(4.1) ‖ST,Af‖Lp(Rd+,dµλ) ≤ (p∗ − 1)‖f‖Lp(Rd+,dµλ).

Now, let T → ∞. Since Hλ is an isometry, we see that ST,Af converges in
L2(Rd+, dµλ) to the function SAf , where SA is the Hankel multiplier with
symbol 〈Aξ, ξ〉/|ξ|2. Hence we can pick a sequence Tn converging to infinity
such that STn,Af converges to SAf µλ-almost everywhere on Rd+. So, Fatou’s
lemma combined with (4.1) gives

‖SAf‖Lp(Rd+,dµλ) ≤ (p∗ − 1)‖f‖Lp(Rd+,dµλ)

and it remains to note that SA coincides with T a,λ.

Proof of (1.5). We may and do assume that ‖f‖L1(Rd,dµλ) < ∞, since
otherwise there is nothing to prove. We also know that f is bounded by 1,
and hence, by the Hölder inequality, f ∈ L2(Rd+, dµλ). Recall the functions
Φ(t) = et − 1− t and Ψ(t) = (t+ 1) log(t+ 1)− t; one easily checks that Ψ ′
and Φ′ are inverse to each other, so

(4.2) ab ≤ Ψ(a) + Φ(b)

for any nonnegative a and b. Now, f is bounded by 1, so the martingale
F (x;T ; f) also enjoys this property. Hence, by (4.2),∣∣∣ �
Rd+

ST,Af(x)h(x) dµλ(x)
∣∣∣ ≤ E

�

Rd+

|GT (x;T ; f ;A)h(Xx
2T )| dµλ(x)

≤ K
�

Rd+

Ψ(|h(Xx
2T )|) dµλ(x) +K

�

Rd+

EΦ(|GT (x;T ; f ;A)|/K) dµλ(x)

≤ K
�

Rd+

Ψ(|h(Xx
2T )|) dµλ(x) +

1

2(K − 1)

�

Rd+

E|FT (x;T ; f)|dµλ(x)

= K
�

Rd+

Ψ(|h(Xx
2T )|) dµλ(x) +

1

2(K − 1)
‖f‖L1(Rd+,dµλ)

.
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Here in the second step we have exploited the inequality (2.1), and the last
identity follows from Fubini’s theorem and the fact that µλ is the invariant
measure for X. Now fix a positive number M and consider the function

h(x) =
ST,Af(x)

|ST,Af(x)|
(
exp(|ST,Af(x)|/K

)
− 1)χ{|ST,Af(x)|≤M},

with the convention h(x) = 0 if ST,Af(x) = 0. This function belongs to
L2(Rd+, dµλ), since |h(x)| ≤ L|ST,Af(x)| for some constant L (here we use
the presence of the characteristic function in the definition of h) and ST,Af ∈
L2(Rd+, dµλ) (which follows from (4.1) and f ∈ L2(Rd+,dµλ)). Plugging h into
the above chain of inequalities, we get

�

Rd+

|ST,Af(x)|
(
exp

(
|ST,Af(x)|

K

)
− 1

)
χ{|ST,Af(x)|≤M} dµλ(x)

≤ K
�

Rd+

[
exp

(
|ST,Af(x)|

K

)(
|ST,Af(x)|

K
− 1

)
+ 1

]
χ{|ST,Af(x)|≤M} dµλ(x)

+
1

2(K − 1)
‖f‖L1(Rd+,dµλ)

.

This is equivalent to

�

Rd+

Φ

(
|ST,Af(x)|

K

)
χ{|ST,Af(x)|≤M} dµλ(x) ≤

1

2K(K − 1)
‖f‖L1(Rd+,dµλ)

,

so letting M →∞ and using Fatou’s lemma gives

�

Rd+

Φ

(
|ST,Af(x)|

K

)
dµλ(x) ≤

1

2K(K − 1)
‖f‖L1(Rd+,dµλ)

.

It remains to let T → ∞ and repeat the argument used above in the proof
of the Lp estimate.

Proof of (1.4). We will use duality. We have
�

A

|T a,λf(x)| dµλ(x) =
�

Rd+

T a,λf(x)η(x) dµλ(x),

where η(x) = χA(x)T
a,λf(x)/|T a,λf(x)| (again with the convention η(x) = 0

when T a,λf(x) = 0). Applying the Hankel transform, we see that the last
integral equals
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�

Rd+

Hλ(T a,λf)(ξ)Hλ(η)(ξ) dµλ(ξ) =
�

Rd+

〈Aξ, ξ〉
|ξ|2

Hλf(ξ)Hλ(η(ξ)) dµλ(ξ)

=
�

Rd+

Hλf(ξ)Hλ(T a,λη(ξ)) dµλ(ξ)

=
�

Rd+

f(x)T a,λη(x) dµλ(x),

where A is the diagonal matrix with a1, . . . , an on the main diagonal, and a
stands for the conjugate sequence a1, . . . , an. Now we exploit the inequalities
(1.5) and (4.2), together with the fact that η is bounded by 1. As a result,
we get
�

A

|T a,λf(x)|dµλ(x) ≤ K
�

Rd+

Ψ(|f(x)|) dµλ(x) +K
�

Rd+

Φ

(
|T a,λη(x)|

K

)
dµλ(x)

≤ K
�

Rd+

Ψ(|f(x)|) dµλ(x) +
1

2(K − 1)
‖η‖L1(Rd+,dµλ)

= K
�

Rd+

Ψ(|f(x)|) dµλ(x) +
µλ(A)

2(K − 1)
,

which is the desired assertion.

Proof of (1.6). Arguing as in the proof of the Lp estimate (1.3), we
deduce the inequality

(4.3) ‖T a,λf‖q
Lq(Rd+,dµλ)

≤ Kq
p‖f‖L1(Rd+,dµλ)

‖f‖q−1
L∞(Rd+,dµλ)

from (2.2). Now, fix an arbitrary f ∈ Lp(Rd+, dµλ) and a Borel set A ⊂ Rd+.
As in the proof of (1.4), we write
�

A

|T a,λf(x)|dµλ(x) =
�

Rd+

T a,λf(x)η(x) dµλ(x) =
�

Rd+

f(x)T a,λη(x) dµλ(x),

where η(x) = χA(x)T
a,λf(x)/|T a,λf(x)|. This implies, by Hölder’s inequality

and (4.3),
�

A

|T a,λf(x)|dµλ(x) ≤ ‖f‖Lp(Rd+,dµλ)‖T
a,λη‖Lq(Rd+,dµλ)

≤ Kp‖f‖Lp(Rd+,dµλ)‖η‖
1/q

L1(Rd+,dµλ)
‖η‖1−1/q

L∞(Rd+,dµλ)

≤ Kp‖f‖Lp(Rd+,dµλ)µλ(A)
1/q.

This yields (1.6), since A was arbitrary.
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