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Abstract. This note is an extended version of the talk the second author gave at the ALaNT
conference. We study the problem of constructing the minimal resolutions for the semigroup
rings and use the resolution to extract information about invariants such as Betti numbers,
Hilbert series, regularity etc. We illustrate the results using examples.

1. Notation. Consider a subset a = (a1, . . . an) of positive integers. Denote by 〈a〉 the
subsemigroup of N generated by a. Let k be an arbitrary field. The semigroup ring k[a]
is the ring k[tj , j ∈ 〈a〉]. If φ : k[x1, . . . , xn]→ k[t] is the ring homomorphism defined by
φ(xi) = tai , then the image of φ is k[a] ' k[x1, . . . , xn]/I(a). Here I(a) := kerφ and is
therefore a prime ideal of height n−1 in R := k[x1, . . . , xn]. It is a weighted homogeneous
binomial ideal with the weighting deg xi := ai on R. It is also the defining ideal of the
affine monomial curve C(a) ⊂ Ank parametrically defined by a whose coordinate ring is
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k[a] := Imφ = k[ta1 , . . . , tan ] ' R/I(a). As k[da] is isomorphic to k[a] for all integer
d ≥ 1, we may assume without loss of generality that a1, . . . , an are relatively prime. The
ring k[a] is now the semigroup ring of the numerical semigroup 〈a1, . . . , an〉 ⊂ N generated
by a1, . . . , an. The motivating question is to construct a minimal graded R-free resolution
of k[a].

The ring k[a] is a Cohen–Macaulay domain of dimension one. Hence the projective
dimension of k[a] over R is n − 1, where n is the cardinality of a. The fact that the
ring k[a] is a complete intersection does not depend on the field k by [6, Corollary 1.13].
Further, it is well-known that k[a] is Gorenstein if and only if the numerical semigroup
〈a1, . . . , an〉 ⊂ N is symmetric, which does not depend either on the field k. We will thus
say that a is a complete intersection (respectively Gorenstein) if the semigroup ring k[a]
is a complete intersection (respectively Gorenstein).

When the sequence a minimally generates the semigroup, then the semigroup ring
k[a] has embedding dimension n which is equivalent to the ideal I(a) being contained in
〈x1, . . . , xn〉2. We also say a is numerically independent if it is a minimal generating set
for the semigroup 〈a〉.

2. Principal matrices. If a = {a1, . . . , an}, n ≥ 2, is a set of relatively prime positive
integers, there is an integer g(a) such that x > g(a) =⇒ x ∈ 〈a〉. This implies that for
each i, 1 ≤ i ≤ n, there exists a multiple of ai that belongs to the numerical semigroup
generated by the rest of the elements in the sequence. Denote by ri > 0 the smallest
positive integer such that riai ∈ 〈a1, . . . , ai−1, ai+1, . . . , an〉. So we have

∀ i, 1 ≤ i ≤ n : riai =
∑
j 6=i

rijaj , rij ≥ 0, ri > 0. (1)

Definition 1. The n × n matrix D(a) := (rij), where rii := −ri, is called a principal
matrix associated to a.

The principal matrix D(a) is not uniquely defined. Although the diagonal entries
−ri are uniquely determined, there is not a unique choice for rij in general. We have
the “map” D : N[n] → T ∗n from the set N[n] of sequences of n relatively prime positive
integers to the subset T ∗n of n×n singular matrices with negative integers on the diagonal
and nonnegative integers outside the diagonal. When D(a) has rank n−1, the maximum
possible, we can recover a from D(a) by factoring out the greatest common divisor of the
n maximal minors of the (n− 1)× (n− 1) submatrix of D(a) obtained by removing the
first row. In other words, call D−1 : T ∗n → N [n] the operation that, for M ∈ Tn, takes the
first column of adj(M) and then factors out the g.c.d. to get an element in N [n]. Given
a matrix M ∈ Tn, D(D−1(M)) 6= M in general as the following example shows:
Example 2.

M =


−5 0 1 1
0 −3 1 1
2 1 −3 1
4 1 0 −2


The matrix M has rank 3. We see that D−1(M) = (6, 10, 13, 17) and D(D−1(M)) 6= M .
It is easy to check, for example, that r3 = 2 < 3 for 2 · 13 = 6 + 2 · 10.
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3. Principal matrices and Gorenstein sequences of length 4. In this section, we
denote by Eij the matrix all of whose entries are zeros except for the entry in the ith row
and jth column which is 1. The size of the matrix will be clear from the context.

Let a = (a1, a2, a3, a4).
If a is Gorenstein but is not a complete intersection, by the characterization in [1,

Theorems 3 and 5], there is a permutation of a which has principal matrix D(a) in the
following form: 

−c1 0 d13 d14
d21 −c2 0 d24
d31 d32 −c3 0
0 d42 d43 −c4

 (2)

with ci ≥ 2 and dij > 0 for all 1 ≤ i, j ≤ 4, the columns summing to zero and all the
columns of the adjoint being relatively prime. The first column of the adjoint of this
matrix is −aT and Bresinsky’s characterization also says that the first column of the
adjoint of every such matrix defines a Gorenstein monomial curve (after removing the
signs).
Definition 3. We say that a 4 × 4 matrix with integer entries A = (aij) is pseudo-
Gorenstein if
(1) the columns add up to zero;
(2) the entries on the diagonal are all negative;
(3) the other entries are all nonnegative;
(4) there are exactly four entries that are zero: a12 = a23 = a34 = a41 = 0.
Remark 4. Any pseudo-Gorenstein matrix A will be of rank 3. So adj (A) has rank 1,
i.e., its columns are all equal up to a multiple. Moreover, since the columns of A add up to
zero, the 4 columns of adj (A) are the same. This means that adj (A) = aT×[−1−1−1−1]
for some a = (a1, a2, a3, a4).

Thus, by Brezinsky, any sequence of length four in k4 that is Gorenstein but not
a complete intersection, can be permuted so that it has a principal matrix which is
pseudo-Gorenstein with the four entries in the first column of the adjoint being relatively
prime. In [4], we prove a slight strengthening to show that if for a pseudo-Gorenstein
matrix D, the first column of the adjoint of D are relatively prime, then it is indeed the
principal matrix of a Gorenstein non-complete intersection, namely the entries in any of
the columns in its adjoint, after removing the signs.
Theorem 5 ([4]). If A is pseudo-Gorenstein and has the first column of the adjoint
relatively prime integers −a1,−a2,−a3,−a4, then it is indeed a principal matrix of the
sequence a1, a2, a3, a4 and it defines a Gorenstein monomial curve which is not a complete
intersection.
Example 6.

A =


−4 0 2 1
3 −6 0 4
1 5 −5 0
0 1 3 −5

 .
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The adjoint of A has as its first column (−70,−87,−101,−78). This, by our criterion,
is now a Gorenstein sequence which is not a complete intersection and A is a principal
matrix associated to this sequence.

However not all pseudo-Gorenstein matrices are Gorenstein as the following example
shows.
Example 7.

A =


−8 0 4 2
2 −4 0 1
6 2 −7 0
0 2 3 −3

 .
It is pseudo-Gorenstein but the columns of adj (A) are not relatively prime. All the
columns of the adjoint are −4a for a = (16, 15, 18, 28). Hence this may not be Gorenstein.
In fact, the principal matrix of (16, 15, 18, 28) is

A =


−3 2 1 0
2 −4 0 1
1 0 −4 2
0 2 3 −3

 .
which is not pseudo-Gorenstein! Thus I(a) is not Gorenstein. Its resolution is

0→ R3 → R8 → R6 → I(a)→ 0.
The following result [4] gives two families of Gorenstein monomial curves in A4

k by
translation from a given Gorenstein curve.
Theorem 8. Given any Gorenstein non-complete intersection sequence a of length 4,
with principal matrix D(a), there exist two vectors u and v in N4 such that for all t ≥ 0,
the sequences (a + tu) and (a + tv) also define Gorenstein non-complete intersections
whenever the entries of the corresponding sequence (a+tu) for the first family and (a+tv)
for the second are relatively prime. Further, their principal matrices are given by

D(a + tu) = D(a) + t(E13 − E33 + E31 − E11)
and

D(a + tv) = D(a) + t(E24 − E44 + E42 − E22).
We can also similarly write the resolution of the semigroup rings, as in [4].

Example 9.

A =


−5 0 1 2
2 −4 0 1
3 2 −4 0
0 2 3 −3

 .
The sequence is (34, 33, 42, 64) is Gorenstein, non-complete intersection, with principal
matrix A.

Here u = (10, 9, 10, 16). Set at = a + tu. Note that for any odd value of t, the entries
of at are all even and hence are not relatively prime so at is not a Gorenstein non-complete
intersection sequence in this case. When t is even, a common divisor to the entries of at
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must divide (42 + 10t) − (34 + 10t) = 8 so p = 2 is the only possible prime common
divisor and since 33 + 9t is odd, the entries of at are relatively prime. Thus, for any even
value of t, the sequence at = a + tu is Gorenstein and it is not a complete intersection.

Its principal matrix is At =


−5− t 0 1 + t 2

2 −4 0 1
3 + t 2 −4− t 0

0 2 3 −3

. Note that when t is odd, it is

clear from the first row of the matrix A1 above that the last column of its adjoint is not
relatively prime and hence it is not the principal matrix of a Gorenstein non-complete
intersection.

If A is a pseudo-Gorenstein matrix, then there is a Gorenstein ideal associated to it:
considering the vector a as in Remark 4 and the matrix φ(a) in [4, p. 676], the Pfaffian
ideal of its 4× 4 minors is an ideal generated by 5 elements (4 are the ones given by the
rows of the matrix A, the fifth comes from Bresinsky’s description) whose resolution is
exactly the one we described at the end of [4] and it is Gorenstein as long as the ideal
has height 3. The thing is that this ideal might not coincide with I(a), one can just say
that it is contained in I(a). If it is equal to I(a), then of course I(a) will be Gorenstein
and A = D(a).

Remark 10. By [9, Theorem 10.2.10], the Cohen–Macaulay type of I(a) coincides with
the number of elements ` ∈ N that are not in the semigroup S = 〈a〉 and such that
` + s ∈ S for all s ∈ S. Of course, the Frobenius number of S, which is the smallest
integer g(S) such that x > g(S) =⇒ x ∈ 〈a〉, is always such an element so I(a) is
Gorenstein if and only if it is the only one.

Question 11. Can one tell the Cohen–Macaulay type from the principal matrix or its
adjoint when it is of maximal rank?

4. Arithmetic sequences. In this section, we will consider arithmetic sequences a =
(a1, a1 + d, . . . , a1 + nd) of length (n + 1), which are relatively prime and minimally
generate the semigroup 〈a〉.

In [3], we construct minimal resolutions for all these semigroup rings and derive for-
mulae for various invariants. These form a very important class of semigroup rings.

Example 12. Consider the arithmetic sequence a = (7, 11, 15, 19, 23, 27). In this case,
the semigroup is symmetric.

Let F be the Eagon–Northcott complex resolving the ideal J ⊂ R = k[x1, . . . , x6] of
2× 2 minors of the 2× 5 matrix which must be contained in IA, namely

J = I2

(
x1 x2 x3 x4 x5
x2 x3 x4 x5 x6

)
.

Then, if F : 0→ F4 → F3 → F2 → F1 → F0 = R→ R/J → 0 is the resolution of R/J ,
the resolution of R/Ia is

0→ R = R∗ → F4 ⊕ F ∗1 → F3 ⊕ F ∗2 → F2 ⊕ F ∗3 → F1 ⊕ F ∗4 → R→ R/Ia → 0

which is symmetric. Here F ∗ denotes the dual HomR(F,R).
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How do we know that this semigroup is symmetric? In [3], we show the following.

Theorem 13. When the semigroup is minimally generated by an arithmetic sequence
a = (a1, a1 + d, a1 + 2d, . . . , a1 + nd), all the Betti numbers of the semigroup ring k[a]
are determined by a1 modulo n and the Cohen–Macaulay type of the resolution is a1 − 1
modulo n, unless when a1 − 1 is a multiple of n where it is n.

Thus, an arithmetic sequence (a1, a1 +d, . . . , a1 +nd) is symmetric if a1 ≡ 2 modulo n.
In Example 12, we have 7 ≡ 2 modulo 5. So, (7, 11, 15, 19, 23, 27) is symmetric but
(7, 11, 15, 19, 23, 27, 31) is not symmetric.

5. Gluing. We say a sequence c is a gluing of two relatively prime sequences a and b if
c = k1a∪k2b with k1 and k2 relatively prime and such that k1 ∈ 〈b〉\b, k2 ∈ 〈a〉\a. This
is equivalent to the notion of gluing defined in [8]. The assumptions k1 /∈ b and k2 /∈ a
are there to ensure that C = c = k1a ∪ k2b minimally generates the semigroup 〈c〉.

In [5], we construct minimal resolutions of the semigroup rings k[c] obtained by gluing.
Let a = (a1, . . . , ap), b = (b1, . . . , bq), so that c = (k1a1, . . . , k1ap, k2b1, . . . , k2bq). Setting
Ra = k[x1, . . . , xp] and Rb = k[y1, . . . , yq], one has k[a] = Ra/I(a) and k[b] = Rb/IB .
Then k[c] = R/I(c) where R = k[x1, . . . , xp, y1, . . . , yq] = Ra ⊗k Rb.

We will now see what c being a gluing means in terms of the minimal generating set
of I(c). The following lemma collects some easy observations; see [5].

Lemma 14. Let c = k1a ∪ k2b be a gluing of a and b. Then:

(1) If a and b are numerically independent then so is c.
(2) Since k1 ∈ 〈b〉 and k2 ∈ 〈a〉, there exist nonnegative integers αi, βj such that

k1 =
∑q
j=1 βjbj and k2 =

∑p
i=1 αiai.

(3) The ideal I(c) is minimally generated by the union of minimal generating sets of the
ideals I(a) and I(b), and exactly one other element

ρ =
p∏
i=1

xαi
i −

q∏
j=1

y
βj

j ∈ R.

(4) ρ is homogeneous of degree k1k2 if one gives to each variable in R the corresponding
weight in c = (k1a1, . . . , k1ap, k2b1, . . . , k2bq).

Now we are ready to state the theorem on resolutions.

Theorem 15 ([5]). Suppose that c is a gluing of a and b with c = k1A ∪ k2B and let
Fa and Fb be minimal resolutions of k[a] and k[b] respectively. Then, a minimal graded
free resolution of the semigroup ring k[c] is obtained as the mapping cone of the map of
complexes ρ : Fa⊗Fb → Fa⊗Fb, where ρ is induced by multiplication by ρ. In particular,
(I(a) ·R+ I(b) ·R :R ρ) = I(a) ·R+ I(b) ·R.

Example 16. Consider the sequence c = (187, 289, 425, 323, 140, 364, 336) which is a
gluing since c = k1a ∪ k2b for a = (11, 17, 25, 19), b = (5, 13, 12), k1 = 17 = 5 +
12 ∈ 〈b〉 and k2 = 28 = 11 + 17 ∈ 〈a〉. Set Ra = k[x1, . . . , x4], Rb = k[y1, y2, y3]
and R = k[x1, . . . , y3]. The ideal I(a) ⊂ Ra is minimally generated by 5 binomials,
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f1 = x1x3 − x2x4, f2 = x4
4 − x3

2x3, f3 = x4
2 − x1x

3
4, f4 = x2

3 − x3
1x2, f5 = x4

1 − x3x4. The
ring k[a] ' Ra/I(a) is Gorenstein, and its minimal free resolution is

0→ Ra


f1
f2
f3
f4
f5


−→ R5

a


0 x3 x3

1 x3
2 x3

4
−x3 0 0 x1 x2
−x3

1 0 0 x4 x3
−x3

2 −x1 −x4 0 0
−x3

4 −x2 −x3 0 0


−→ R5

a

(
f1 . . . f5

)
−→ Ra → k[a]→ 0.

The ideal I(b) ⊂ Rb is generated by 3 binomials, g1 = y5
1 − y2y3, g2 = y3

2 − y3
1y

2
3 ,

g3 = y3
3 − y2

1y
2
2 , it is Hilbert–Burch, and the minimal free resolution of k[b] ' Rb/I(b) is

0→ R2
b

 y2
3 y2

2
y2

1 y3
y2 y3

1


−→ R3

b

(
g1 g2 g3

)
−→ Rb → k[b]→ 0.

The tensor product of these two resolutions provides a minimal free resolution of R/J
where J = I(a) ·R+ I(b) ·R:

0→ R2 → R13 → R26 → R22 → R8 → R→ R/J → 0 .

Note that the differentials can be easily written down if needed.

Finally, the extra minimal generator in I(c) is ρ = x1x2− y1y3 and the mapping cone
induced by multiplication by ρ gives a minimal resolution of k[c] as R-module:

0→ R2 → R15 → R39 → R48 → R30 → R9 → R→ k[c]→ 0.

The differentials are given by the mapping cone construction.

We obtain many corollaries from the theorem, some new and some recovering results
known for semigroup rings by other methods. Using the explicit resolution, we can read
off many invariants, such as Hilbert series, Cohen–Macaulay type, Betti numbers and
ranks for syzygies, etc. We list all the corollaries in one statement.

Corollary 17. Suppose that c = k1a ∪ k2b is a gluing. Then:

(1) The ith Betti number βi of k[c] is given, in terms of the Betti numbers of k[a] and
k[b], by the formulae

∀ i ≥ 0 : βi =
i∑

i′=0
βi′(a)[βi−i′(b) + βi−i′−1(b)] =

i∑
i′=0

βi′(b)[βi−i′(a) + βi−i′−1(a)].

(2) The Cohen–Macaulay type is given by Type(k[c]) = Type(k[a])Type(k[b]).
(3) k[c] is Gorenstein, respectively a complete intersection, if and only if k[a] and k[b]

are both Gorenstein, respectively complete intersections.
(4) If neither k[a] nor k[b] is Gorenstein, then the Cohen–Macaulay type of k[c] is not

prime.
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(5) The graded Betti numbers are given by the formula

βi,j(c) =
i∑

i′=0

( ∑
r,s/k1r+k2s=j

βi′r(a)
[
βi−i′,s(b) + βi−i′−1,s−k1(b)

])
(6) The regularity can be seen as

reg(k[c]) = k1 reg(k[a]) + k2 reg(k[b]) + (p+ k2 − 1)(q + k1 − 1)− pq.

(7) The Hilbert series of k[c] is given by Hc(t) = (1− tk1k2)Ha(tk1)Hb(tk2).
(8) If the minimal free resolutions of k[a] and k[b] admit a differential graded algebra

structure, then k[c] inherits the structure from that of k[a] and k[b]. That is, we can
explicitly construct a multiplication on the minimal resolution of k[c] if we know the
multiplication on those of k[a] and k[b].

Recall that if a resolution F admits a multiplication which makes it an associative,
graded commutative differential graded algebra, we say it has a differential algebra struc-
ture or a DG algebra structure.

Consider Example 16. Say, we want the second Betti number. By Corollary 17, one has
β2(c) =

∑2
i′=0 βi′(b)[β2−i′(a)+β2−i′−1(a)] = β2(a)+β1(a)β1(b)(β1(a)+1)+β2(b) ·1 =

5 + 5 + 3 · 6 + 2 = 30.
Here is another example of gluing.

Example 18.
c = (450, 522, 576, 612, 305, 732, 793) = k1a ∪ k2b

with a = (25, 29, 32, 34), b = (5, 12, 13), k1 = 18 and k2 = 61. The Betti numbers of k[a]
and k[b] are

i 0 1 2 3
βi(a) 1 7 10 4

i 0 1 2
βi(b) 1 3 2 .

Applying our formula in corollary, one infers that β0 = β0(c) = 1, and

β1 = 1(3 + 1) + 7.1 = 11 = 1(7 + 1) + 3.1
β2 = 1(2 + 3) + 7(3 + 1) + 10.1 = 43 = 1.(10 + 7) + 3(7 + 1) + 2.1
β3 = 1.2 + 7(2 + 3) + 10(3 + 1) + 4.1 = 81
β4 = 7.2 + 10(2 + 3) + 4(3 + 1) = 80 = 1.4 + 3(4 + 10) + 2(10 + 7)
β5 = 10.2 + 4(2 + 3) = 40 = 3.4 + 2(4 + 10)
β6 = 4.2 = 8,

and the minimal free resolution of k[c] shows as

0→ R8 → R40 → R80 → R81 → R43 → R11 → R→ k[c]→ 0 .

In Examples 16 and 18 above, the resolution of the minimal semigroup ring does
admit a DG algebra structure. This is because both k[a] and k[b] have resolutions of
length less than three and hence admit a DG algebra structure and by our corollary, the
resolution of k[c] must admit a DG algebra structure.
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