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Abstract. We consider four approaches to the analysis of cuts in ordered abelian groups and
ordered fields, their interconnection, and various applications. The notions we discuss are: ball
cuts, invariance group, invariance valuation ring, and cut cofinality.

1. Introduction. In these notes we deal with (Dedekind) cuts in ordered abelian groups
and in ordered fields. (For the definition of the notion of a cut and other notions used
in this Introduction, see Section 2.) We introduce the reader to four approaches to their
classification, the links between them, and several applications. The reader should observe
that a cut in an ordered field is at the same time a cut in its additive group. Hence even
in the case that one is predominantly interested in cuts in ordered fields, up to a certain
point their study can be fruitfully carried out in the setting of ordered abelian groups
and does not need to make use of the field (or ring) multiplication. At the same time the
reader should keep in mind that ordered abelian groups appear in field theory also as
the value groups of valuations. In this case, cuts in the value group can for instance be
generated by pseudo Cauchy sequences in the valued field. If the field is ordered and its
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valuation is the natural valuation induced by the ordering (see below), then it is essential
to study the connection between cuts in the field and induced cuts in the value group.

The first approach to the classification of cuts is to ask whether a cut in an ordered
abelian group is the upper or lower edge of a convex subgroup, or of a coset thereof.
This has been used and studied more or less explicitly by many authors, and various
names have been given to such cuts. We call them ball cuts. They appear implicitly or
explicitly, sometimes with surprisingly different definitions, in [14, 15, 16, 17, 41] for the
study of cuts in ordered fields, in [51] for the study of cuts in ordered abelian groups, and
in several other papers cited in the references. Ball cuts will be introduced and discussed
in Section 3.

Spaces of R-places (i.e., places with residue fields embeddable in R) of ordered fields
are not well understood. It is a longstanding open problem which topological spaces
appear as spaces of R-places. Recently, ball cuts have been used to study these spaces
(cf. [37, 35, 36, 28]). We describe some results in Section 3.2.

Two well known deep open problems in positive characteristic are:

1) resolution of singularities in arbitrary dimension,
2) decidability of the field Fp((t)) of Laurent series over a finite field.

Both problems are connected with the structure theory of valued function fields of pos-
itive characteristic p. The main obstruction here is the phenomenon of the defect. Via
ramification theory, the study of it can be reduced to the study of purely inseparable ex-
tensions and of Galois extensions of degree p. Ball cuts are essential for a classification of
Galois extensions with nontrivial defect which is introduced in [32] and continued in [4].
It will be discussed in Section 3.3.

How “broad” is a given cut? One way to answer this question is to associate to the cut
the maximal set of elements that can be added to the cut sets without changing the cut.
This set turns out to be a convex subgroup of the ordered group; we call it the (additive)
invariance group. This notion was introduced by the author in his thesis [29] in order to
handle valued fields with non-archimedean ordered value groups in connection with the
model theory of valued fields. Invariance groups were also introduced by M. Tressl in his
thesis [47], this time for the study of the model theory of ordered fields (a quick example
for Tressl’s use of invariance groups is given in Section 4.4). Later, A. Fornasiero and
M. Mamino [12] used them in a detailed investigation of cuts of ordered abelian groups,
which they then applied to study so-called double ordered monoids. Moreover, they have
been implicitly used by several other authors (e.g. by R. Rolland in [44]), or even explicitly
defined under different names (e.g. by F. Wehrung in [51], and by D. Kijima and M. Nishi
in [24]). A main link to ball cuts is the fact that invariance groups can help to identify
them (see Theorem 4.3 below). We will discuss invariance groups in Section 4.

In mathematics, objects that are maximal with respect to a certain property are
often of particular interest. In valuation theory, this is so for maximal valued fields,
which have the property that every proper extension will necessarily enlarge value group
or residue field. Ordered abelian groups and fields carry natural valuations which are
canonically derived from their ordering. In Section 4.2 we describe a characterization of
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certain ordered fields maximal with respect to their natural valuation, given by Kijima
and Nishi; it makes essential use of invariance groups. Further, we discuss a generalization
of this result, due to H.-J. Hüper, to the case of valuations whose valuation rings are
convex under the given ordering.

In Section 4.3 we discuss an analogue for the case of ordered abelian groups. We
present the Cohen–Goffman Theorem and a related result by P. Ehrlich, which both
(implicitly) use invariance groups.

The author’s attention was drawn to the importance of invariance groups in the
study of ordered fields by a question of J. Madden. During the Special Semester in Real
Algebraic Geometry and Ordered Structures, Baton Rouge 1996, Madden showed him the
definition of what we now call the invariance valuation ring and asked for the meaning of
it. The answer to his question was first given in the manuscript [30]. Again, the invariance
valuation ring was independently introduced and applied by M. Tressl (see [47, 48, 49]).
The construction of invariance valuation rings appears already in Rolland’s paper [44],
but not in full generality.

Looking at a cut in an ordered field K, one may ask whether it originates in some way
from a cut in the residue field of K with respect to some real place. That is, one would
like to know whether the cut can be translated into some “normal position” such that for
some convex valuation ring O of K with maximal ideal M, it induces a (Dedekind) cut
in the ordered residue field O/M via the residue map. If so, one would like to determine
how this translation can be done. The invariance valuation ring is a key tool to answer
these questions (see Section 5.1).

Further, in the paper [22] F. Jahnke, P. Simon and E. Walsberg introduce certain
invariance valuation rings to exhibit definable valuations in ordered fields which are not
dense in their real closures. The details will be discussed in Section 5.2.

A remark by M. Marshall made it clear to the author of these notes that some of
his earlier results were actually a special case of a more general setting which we will
now sketch. Every ordered field K has a natural valuation v, whose residue field is
an archimedean ordered field; its valuation ring Ov is the smallest of all convex valu-
ation rings of K. Then every convex subgroup of the ordered additive group of K is an
Ov-module.

In the present paper, we use the additive Krull notation for valuations, i.e., the ultra-
metric triangle law reads v(a+ b) ≥ min{v(a), v(b)} and the value group is an additively
written ordered abelian group whose nonnegative elements are precisely the values of the
nonzero elements of Ov . In this notation, the map

M 7→ (vK \ vM, vM),
where vK is the value group of (K, v) and vM := {va | 0 6= a ∈ M}, is a bijection
between the convex subgroups M of K and the cuts in the value group vK. This holds
more generally for any (Krull) valuation v of an arbitrary field K and the set of all
Ov-modules M ⊆ K. Information about M can be read off from the invariance group of
the cut (vK\vM, vM). One can also define the invariance valuation ring of an Ov-module.
The invariance valuation ring of a cut can then be understood as the invariance valuation
ring of the invariance group of the cut.
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Tressl introduced the author to the definition and main properties of the multiplicative
invariance group of a cut in an ordered field, that is, the invariance group of the cut taken
in the multiplicative group of the field. For its properties, see [34], where a detailed study
of ball cuts, invariance groups and invariance valuation rings is presented. Detailed studies
of cuts using these concepts appear also in Tressl’s papers [47, 48, 49] and T. Güldenberg’s
thesis [19].

After ball cuts, invariance group and invariance valuation ring, the fourth approach
to the study of Dedekind cuts is to consider the pair of cardinal numbers (κ, λ) where
κ is the cofinality of the lower cut set and λ is the coinitiality of the upper cut set.
Recall that the coinitiality of a linearly ordered set is the cofinality of this set under
the reversed ordering. Recall further that cofinalities and coinitialities of ordered sets are
regular cardinals. We call (κ, λ) the cofinality of the cut; also the name character has
been used in the literature.

In his groundbreaking and comprehensive work, F. Hausdorff constructs for any given
collection of cofinalities (κ, λ), which satisfy some necessary conditions, a totally ordered
set where this collection is exactly the set of cofinalities of the cuts appearing in this
ordering. One aim of the already cited paper [44] of Rolland is to construct ordered fields
which realize a prescribed set of cut cofinalities.

A much studied property of ordered abelian groups or fields is that of being an ηα-set,
which is equivalent to the absence of cuts of cofinality (κ, λ) with both κ and λ smaller
than ℵα . We discuss a characterization of such ordered abelian groups and fields, due to
N. Alling, in Section 6.1.

In Section 6.2, we present some work of N. Yu. Galanova and G. G. Pestov which
involves cut cofinalities and ball cuts.

More recently, a new aspect of cut cofinalities has been discovered. Transferring the
concept of spherical completeness from ultrametric spaces to other spaces equipped with
distances or topologies, the authors of [38] asked the question whether there are ordered
fields, apart from the reals themselves, in which every chain of closed bounded intervals
has a nonempty intersection. This happens exactly when all appearing cut cofinalities
(κ, λ) satisfy κ 6= λ. The positive answer to the question was first given by S. Shelah in
the paper [45]. In joint work with Shelah and K. Kuhlmann, the author of these notes
gave an alternative construction and a complete characterization of such fields in [39].
We will discuss some details in Section 6.3.

These notes are not intended to be a comprehensive survey on the general theory
of cuts. However, the author hopes that they will initiate discussion and feedback so
that more comprehensive information can be gathered and later be put together in a
monograph on cuts.

2. Notation and preliminaries. For general background from valuation theory, we
recommend [10]. For background on ordered fields, see [40, 42].

2.1. Cuts. Take any ordered set (S,<) (by “ordered”, we will always mean “totally
ordered”). If S1, S2 are nonempty subsets of S and a ∈ S, we will write a < S2 if a < b

for all b ∈ S2, and we will write S1 < S2 if a < S2 for all a ∈ S1.
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A subset S′ of S is called convex in (S,<) if for every two elements a, b ∈ S′ and
every c ∈ S such that a ≤ c ≤ b, it follows that c ∈ S′. A subset S1 of S is an initial
segment of S if for every a ∈ S1 and every c ∈ S with c ≤ a, it follows that c ∈ S1 .
Symmetrically, S2 is a final segment of S if for every a ∈ S2 and every c ∈ S with c ≥ a,
it follows that c ∈ S2 . Note that S1 is an initial segment of S if and only if S1 is convex
and S1 < S \S1 . Note also that ∅ < S and S < ∅ by definition; so ∅ is an initial segment
as well as a final segment of S.

If S1 ⊆ S and S2 ⊆ S are such that S1 < S2 and S = S1 ∪ S2, then we will call
(S1, S2) a cut in S. Then S1 is an initial segment of S, S2 is a final segment of S, and
the intersection of S1 and S2 is empty. We write ΛL = S1 , ΛR = S2 , and

Λ = (ΛL,ΛR).

A cut (ΛL,ΛR) with ΛL 6= ∅ and ΛR 6= ∅ is called a Dedekind cut. If Λ is a cut in S,
(T,<) is an extension of (S,<) and a ∈ T is such that ΛL ≤ a ≤ ΛR, then we will say
that a realizes Λ (in T ).

For any subset M ⊆ S, we let M+ denote the cut

M+ =
(
{s ∈ S | ∃m ∈M : s ≤ m}, {s ∈ S | s > M}

)
.

That is, if M+ = (ΛL,ΛR) then ΛL is the least initial segment of S which contains M ,
and ΛR is the largest final segment having empty intersection with M . If M = ∅ then
ΛL = ∅ and ΛR = M , and if M = S, then ΛL = M and ΛR = ∅. Symmetrically, we set

M− =
(
{s ∈ S | s < M}, {s ∈ S | ∃m ∈M : s ≥ m}

)
.

That is, ifM− = (ΛL,ΛR) then ΛL is the largest initial segment having empty intersection
with M , and ΛR is the least final segment of S which contains M . If M = ∅ then ΛL = M

and ΛR = ∅, and if M = S, then ΛL = ∅ and ΛR = M .
If M = {a}, we will write a+ instead of {a}+ and a− instead of {a}−. These two cuts

are called principal. Hence if M has a largest element a, then M+ = a+ is principal, and
if M has a smallest element a, then M− = a− is principal. The cut (ΛL,ΛR) is principal
if and only if ΛL has a largest element or ΛR has a smallest element. In the literature,
a principal cut is also called realized or filled, a non-principal cut is called a gap, and a
cut for which ΛL has a largest element and ΛR has a smallest element is called a jump.
In [8], Ehrlich calls a cut (ΛL,ΛR) continuous if ΛL is principal but not a jump.

2.2. Valuation theory. Take an ordered abelian group G. Two elements a, b are archi-
medean equivalent if there is some n ∈ N such that n|a| ≥ |b| and n|b| ≥ |a|. The
equivalence class of a is called archimedean class of a and is denoted by [a]. The set
{[a] | 0 6= a ∈ G} is totally ordered by setting [a] < [b] if and only if |a| > n|b| for all
n ∈ N. Then the class of 0 is the largest element in the set, and it only contains the
element 0. The map v : a 7→ va := [a] is the natural valuation of G. It satisfies the
triangle inequality v(a+ b) ≥ min{va, vb} and v(−a) = va. We call {va | 0 6= g ∈ G} the
value set of G (under v).

If G is the additive group of an ordered field K, then by setting [a] + [b] := [ab] we
obtain an addition on the set of archimedean classes that is compatible with the ordering,
and the natural valuation becomes a field (Krull) valuation.
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Take any extension (L|K, v) of valued fields, that is, an extension L|K of fields and
a valuation v on L. By vL and vK we denote the value groups of v on L and on K, and
by Lv and Kv the residue fields of v on L and on K, respectively. Similarly, vz and zv

denote the value and the residue of an element z under v.
A valued field (K, v) is called henselian if the extension of v to every algebraic exten-

sion field L of K is unique, or equivalently, (K, v) satisfies Hensel’s Lemma. A henseliza-
tion of (K, v) is an algebraic extension of (K, v) which is henselian and can be embedded
over K in every other henselian extension field of (K, v). Henselizations exist and are
unique up to valuation preserving isomorphism over K. Therefore, we will speak of the
henselization of (K, v) and denote it by Kh.

Assume that L|K is finite and the extension of v from K to L is unique. Then the
lemma of Ostrowski says that

[L : K] = pν · (vL : vK) · [Lv : Kv] with ν ≥ 0, (1)

where p is the characteristic exponent of Kv, that is, p = charKv if this is positive, and
p = 1 otherwise. The factor d = pν is called the defect of the extension (L|K, v). If d = 1,
then we call (L|K, v) a defectless extension; otherwise, we call it a defect extension. Note
that (L|K, v) is always defectless if charKv = 0.

We call a henselian field (K, v) a defectless field if every finite extension of (K, v) is
defectless. An arbitrary field is called a defectless field if its henselization is defectless.

The extension (L|K, v) is immediate if for each z ∈ L \K there is c ∈ K such that
v(z − c) > vz; this holds if and only if the canonical embeddings of vK in vL and of Kv
in Lv are onto.

For z ∈ L, we define

v(z −K) := {v(z − c) | c ∈ K} ⊆ vL ∪ {∞}.

If (L|K, v) is immediate, then v(z − K) is a subset of vK without a maximal element,
and even more, it is an initial segment.

Immediate extensions of valued abelian groups can be defined as in the case of valued
fields. Valued abelian groups and valued fields are called maximal if they do not admit
proper immediate extensions.

2.3. Pseudo Cauchy sequences. A pseudo Cauchy sequence in a valued abelian group
or field is a sequence (aν)ν<λ of elements, indexed by a limit ordinal λ (which is called
the length of the sequence), such that for all ρ < σ < τ < λ,

v(aσ − aρ) < v(aτ − aσ).

In this case, v(aσ−aρ) = v(aρ+1−aρ). If (aν)ν<λ is a pseudo Cauchy sequence, then the
sequence of values (v(aν+1 − aν))ν<λ is strictly increasing. The set {b | ∀ν < λ : v(b) >
v(aν+1−aν)} is called the breadth of the sequence (aν)ν<λ. An element a (in some valued
extension group or field) is a limit of the sequence if v(a − aν) = v(aν+1 − aν) for all
ν < λ. If a is a limit of the sequence, then also a′ is a limit if and only if a − a′ is an
element of the breadth.
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A valued abelian group or field is called spherically complete if it admits a limit for
every pseudo Cauchy sequence. If the valued abelian group G′ is an immediate extension
of the valued group G, then every element a ∈ G′ \ G is the limit of a pseudo Cauchy
sequence in G that does not have a limit in G. Hence, every spherically complete valued
abelian group or field is maximal. The converse is also true; in the case of valued fields this
is shown by I. Kaplansky in [23], where the theory of pseudo Cauchy sequences (which
he calls “pseudo-convergent sequences”) is nicely laid out.

If α is an ordinal, then G is called α-maximal if every pseudo Cauchy sequence in G

of length less than ℵα has a limit in G.

2.4. Hahn products and power series fields. Given a linearly ordered index set I
and for every γ ∈ I an arbitrary abelian group Cγ , we define a group called the Hahn prod-
uct (also called Hahn group), denoted by Hγ∈I Cγ . Consider the product

∏
γ∈I Cγ and

an element c = (cγ)γ∈I of this group. Then the support of c is the set supp c := {γ ∈ I |
cγ 6= 0}. As a set, the Hahn product is the subset of

∏
γ∈I Cγ containing all elements

whose support is a well-ordered subset of I, that is, every nonempty subset of the support
has a minimal element. The Hahn product is a subgroup of the product group. Indeed,
the support of the (componentwise) sum of two elements is contained in the union of
their supports, and the union of two well-ordered sets is again well-ordered.

The support of every nonzero element c in the Hahn product has a minimal element γ0 .
This enables us to define a group valuation by setting vc = γ0 and v0 =∞; this is called
the canonical valuation of the Hahn product Hγ∈I Cγ .

If the Cγ are (not necessarily archimedean) ordered abelian groups, we obtain the
ordered Hahn product, also called lexicographic product, where the ordering is defined
as follows. Given a nonzero element c = (cγ)γ∈I , let γ0 be the minimal element of its
support. Then we take c > 0 if and only if cγ0 > 0. If all Cγ are archimedean ordered,
then the canonical valuation of the Hahn product coincides with the natural valuation
of the ordered Hahn product. The Hahn Embedding Theorem states that every ordered
abelian group G can be embedded in the Hahn product with its set of archimedean classes
as index set and all Cγ equal to the ordered group of real numbers.

Take any ordered abelian group G. If H & H ′ are convex subgroups of G such that
the ordering induced on H ′/H is archimedean (and hence H ′/H can be seen as an
ordered subgroup of the reals), then H ′/H is called an archimedean component of G.
If G = Hγ∈I Cγ and all Cγ are archimedean ordered, then the Cγ are precisely the
archimedean components of G.

Take a field k and an ordered abelian group G. Then k((G)) := Hγ∈G k is a valued
abelian group. Since all supports are well-ordered, a multiplication can be defined as
follows: (cg)g∈G · (c′g)g∈G = (

∑
h+h′=g ch · c′h′)g∈G . Then k((G)) becomes a valued field,

called a power series field. The canonical valuation of the underlying Hahn product makes
it a valued field with value group G and residue field k.

Under their canonical valuation, all Hahn products and all power series fields are
spherically complete and hence maximal. All maximal fields with residue fields of char-
acteristic 0 are power series fields, but for positive residue characteristic this is not true.
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3. Ball cuts. We say that a cut Λ = (ΛL,ΛR) in an ordered abelian group is a group +-
cut if it is induced by the upper edge of a convex subgroup H of G, i.e., if Λ = H+. We
will say that Λ is a group−-cut if it is induced by the lower edge of a convex subgroup H
of G, i.e., if Λ = H−. In both cases, we will call Λ a group-cut. Note that 0+ and 0− are
the only principal group-cuts. We call Λ a ball +-cut (or a ball−-cut) if it is induced by
the upper edge (or lower edge, respectively) of some coset of a convex subgroup H of G,
i.e., if it is of the form (g +H)+ (or (g +H)−, respectively) for some g ∈ G. Ball +-cuts
and ball−-cuts are called ball-cuts, and cosets H + g of convex subgroups H are also
called balls. Note that all group-cuts are ball-cuts.

Ball cuts are called asymmetric cuts in [14, 15, 16, 17, 41]. This name is unfortunate; it
may have been chosen by the authors after they observed that there are no cuts in ordered
fields that are at the same time a ball−-cut and a ball+-cut. But the situation is different
in ordered abelian groups, as the following example shows. Consider the lexicographic
ordering on Z× Z. Then {(0,m) |m ∈ Z}+ = {(1,m) |m ∈ Z}−.

In Tressl’s paper [49], the ball+-cuts are the cuts with signature 1, and the ball−-cuts
are the cuts with signature −1. All non-ball cuts have signature 0. Güldenberg also uses
signatures in his thesis [19], but defines them in a slightly different way.

3.1. Monoids of cuts. On the set of cuts in an ordered abelian group, addition can
be defined in various ways. The two immediately obvious ways to define Λ1 + Λ2 are the
following:

1) set Λ1 + Λ2 := (ΛL1 + ΛL2 )+ = {α+ β | α ∈ ΛL1 , β ∈ ΛL2 }+,
2) set Λ1 + Λ2 := (ΛR1 + ΛR2 )−.

The two additions are usually not the same, but their properties are very similar. The
following fact is easy to prove:

The idempotent elements in these monoids are precisely the group cuts.

Monoids of cuts are studied in [51], [19], [11] and [12]. In the latter paper, the results
are used for the intrinsic construction (without the use of embeddings in power series
fields) of towers of complements to all (possibly fractional) ideals of the valuation ring
in henselian valued fields of residue characteristic 0, and in Kaplansky fields (i.e., valued
fields satisfying “Hypothesis A” in [23]) which do not admit proper immediate algebraic
extensions. They are also used by N. Alling in [1] for the characterization of ηα ordered
abelian groups and fields (see Section 6.1 below). Alling gives credit to A. H. Clifford [5]
for introducing the monoid structure (but it had very probably already been observed
before, when Dedekind completions of ordered abelian groups were considered).

3.2. Applications to spaces of R-places. For any formally real (i.e., orderable)
field K, the question arises which orderings induce the same natural valuations. The
places associated with natural valuations are called R-places as their residue fields are
archimedean ordered and can thus be embedded in R. We will therefore always assume
that the residue field of an R-place is a subfield of R. The above question was answered
in [35] for an interesting special case.
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Take a real closed field R. There is a one-to-one correspondence between orderings P
of R(X) and cuts of R (see [18]). The cut ΛP = (ΛLP ,ΛRP ) corresponding to P is given by
ΛLP = {a ∈ R | a <P X} and ΛRP = {b ∈ R | b >P X}. Conversely, if Λ is a cut in R, then
the set

P =
{
f ∈ R(X) | ∃a ∈ ΛL ∃b ∈ ΛR ∀c ∈ (a, b) : f(c) ∈ Ṙ2}

is an ordering of R(X) with ΛP = Λ (here, Ṙ = R \ {0}).
In [35] the following result is proved:

Theorem 3.1. Two distinct orderings of R(X) induce the same R-place if and only if
they correspond to the upper and lower edges of the same ball, that is, there is a convex
subgroup H of the additive group of R and c ∈ R such that one of the places corresponds
to (H + c)− and the other to (H + c)+.

This means that the space of R-places of R(X) is obtained from the line R by iden-
tifying the upper and lower edges of balls. If this is done for R = R then we obtain
the circle (up to homeomorphism). But if R is a non-archimedean ordered field, then
the structure is much more complex; it may be thought of as an infinite pearl necklace
in which every pearl contains a pearl necklace that is similar to the whole necklace.
The rich self-similarities of this space have been exhibited in [36] by observing that the
transformations a 7→ a+ c, a 7→ ca and a 7→ a−1 all transform balls into balls.

The following result is also proved in [35]:

Theorem 3.2. Take an ordering on R(X) which extends the ordering of R, and take v
to be the natural valuation on R(X) with respect to this ordering. Then X induces in R

a cut of the form (c+H)− or (c+H)+ (as in Theorem 3.1) if and only if vR & vR(X),
and if the former is the case, then v(X − c) is rationally independent over vR.

From this theorem we conclude that a cut of R is a ball cut if and only if the natural
value group vR(X) of the corresponding ordering on R(X) satisfies [vR(X) : 2vR(X)]=2.

In the paper [28] P. Koprowski and K. Kuhlmann consider the more general case of
an algebraic function field F of transcendence degree 1 over a real closed field R. Choose
any smooth projective model of F , i.e., a smooth, projective algebraic curve over R with
function field F . In [26, 27] M. Knebusch shows that the curve consists of finitely many
semialgebraic connected components, each of which can be endowed with a cyclic order.
In [28] this is used to define cuts in these components; the collection of all of them is
taken to be the set of cuts on the curve. The following result is proved:

Theorem 3.3. The space of all cuts on the curve (endowed with the order topology) is
homeomorphic to the space of all orderings on F (endowed with the Harrison topology).

Take any ordering of F and let v denote the natural valuation of F with respect to
this ordering. Note that the value group vR of v on R is divisible since R is real closed.
Therefore, as trdegF |K = 1, there are only two possible cases:

a) vF = vK, which implies that (vF : 2vF ) = 1,
b) vF = vK ⊕ Zα for some α ∈ vF \ vK, whence (vF : 2vF ) = 2.
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By the Baer–Krull Theorem, in the first case there is no other ordering on F that induces
the same place as the given one. In the second case there is exactly one other ordering
that induces the same place.

Now consider the cut that corresponds to the given ordering according to Theorem 3.3.
In analogy to the case of a rational function field discussed above, the authors of [28]
call this cut a ball cut if the second case holds. The following argument justifies this
definition. Pick any element X ∈ F \K. Then F |K(X) is algebraic, thus vF/vK(X) is a
torsion group. This implies that case b) holds for F with the given ordering if and only
if it holds for R(X) with the restriction of this ordering, as the corresponding natural
valuation on R(X) is just the restriction of the natural valuation on F . From this one
obtains:
Proposition 3.4. The following are equivalent:
1) the cut corresponding to the given ordering on F is a ball cut,
2) for some X ∈ F \K, the cut induced by X in R under the restriction of the ordering

to R(X) is a ball cut,
3) for each X ∈ F \K, the cut induced by X in R under the restriction of the ordering

to R(X) is a ball cut.
All results above can be obtained in an abstract setting for abstract real curves.

However, once we embed the curve in an affine space we obtain a clearer picture. Note that
every n-dimensional affine space AnR over R is an ultrametric space with the ultrametric
generated by the natural valuation v of R. The ultrametric distance between points
(x1, . . . , xn) and (y1, . . . , yn) can be defined and computed as follows:

u
(
(x1, . . . , xn), (y1, . . . , yn)

)
= min{v(xi − yi)} = 1

2v
(∑

(xi − yi)2
)
.

Therefore we can consider ultrametric balls in AnR. We say that an ultrametric ball B
in AnR cuts a curve C if B ∩ C 6= ∅ and (AnR \B) ∩ C 6= ∅. In this case B determines a
cut (always more than one) on the curve. In [28] it is shown that such a cut is a ball cut,
and the following theorem is proved:
Theorem 3.5. Every ball cut on a smooth and complete real affine curve in AnR is
induced by some ultrametric ball. If the orderings corresponding to two ball cuts induce
the same R-place, then there is an ultrametric ball in AnR which induces both cuts on
the curve.

The converse of the second assertion is not true, a counterexample is given in [28].
The ball mentioned in this assertion can induce more than two cuts on the curve. It is
an open question how to determine the pairs of cuts that induce the same R-place.

3.3. Classification of Artin–Schreier defect extensions. An Artin–Schreier exten-
sion is a field extension L|K of degree p of fields of characteristic p generated by an
element ϑ that satisfies ϑp−ϑ ∈ K. Such an extension has nontrivial defect if and only if
it is immediate. In this case, the cut v(ϑ−K)+ taken in the divisible hull of vK enables
us to distinguish two types of Artin–Schreier defect extensions. We call such an exten-
sion dependent if it can be derived by a transformation from a purely inseparable defect
extension of degree p, and independent otherwise. In [32] the following result is proved:
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Theorem 3.6. An Artin–Schreier defect extension is independent if and only if the cut
v(ϑ−K)+ is a group−-cut.

This classification of Artin–Schreier defect extensions is important because work by
M. Temkin (see e.g. [46]) and by the author indicates that dependent defect appears
to be more harmful to the above cited problems than independent defect. In the pa-
per [7], S. D. Cutkosky and O. Piltant give an example of an extension of valued function
fields consisting of a tower of two Artin–Schreier defect extensions where so-called strong
monomialization fails. As the valuation on this extension is defined by use of so-called
generating sequences, it is hard to determine whether the Artin–Schreier defect extensions
are dependent or independent. However, Cutkosky, L. Ghezzi and S. ElHitti show that
both of them are dependent (see e.g. [9]); this again lends credibility to the hypothesis
that dependent defect is the more harmful one.

Moreover, the classification is an important tool in the proof of the following theorem
in [32]:

Theorem 3.7. A valued field of positive characteristic is henselian and defectless if and
only if each purely inseparable extension is defectless and the field does not allow any
proper immediate algebraic extensions.

This theorem in turn is used in [31] for the construction of an example showing that a
certain natural axiom system for the elementary theory of Fp((t)) (“henselian defectless
valued field of characteristic p with residue field Fp and value group a Z-group”) is not
complete.

It would be desirable to have an analogue of Theorem 3.7 also in the case of valued
fields of mixed characteristic (i.e., valued fields of characteristic 0 with residue fields of
positive characteristic). The obvious problem is to find the suitable definition of “depen-
dent”, since there are no nontrivial purely inseparable extensions in this case. However,
the characterization given in Theorem 3.6 offers a chance for the desired generalization.
But the next problem we meet is the fact that while a Galois extension of degree p of
a field of characteristic p is an Artin–Schreier extension, a Galois extension of degree p
of a field of characteristic 0 is a Kummer extension (provided that the field contains a
primitive p-th root of unity). This problem is overcome in [4] by using a fact proved
in earlier papers of the author of these notes: every Galois defect extension of degree p
of a henselian valued field (K, v) of characteristic 0 with residue characteristic p and
containing a primitive p-th root of unity is generated by an element ϑ whose minimal
polynomial is of the form Xp −X − a+ g(X) where va < 0 and g is a polynomial with
coefficients in the valuation ring. Therefore, we can define that such a defect extension
is independent if and only if the cut v(ϑ − K)+ is a group−-cut. We are able to show
that these independent defect extensions share important properties with the indepen-
dent defect extensions in equal characteristic; this shows that our choice for generalizing
the definition of “independent” is appropriate.

Another justification for our definition in the mixed characteristic case is obtained
from the theory of perfectoid fields, as these allow an exchange of information between
the mixed characteristic case and the case of equal positive characteristic. All Galois
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defect extensions of prime degree of perfectoid fields in the equal characteristic case are
independent, so the same should hold also in the mixed characteristic case. Indeed, this
is proved in [4] even for the larger class of deeply ramified fields in the sense of Section
6.6 of [13], which includes all perfectoid fields. In mixed characteristic as well as in equal
characteristic, all Galois defect extensions of prime degree of deeply ramified fields are
independent. This nourishes the hope that important theorems that have been proved for
defectless fields can also be proved for deeply ramified fields (and other classes of fields
closely related to them and introduced in [4]).

On the other hand, we are still only able to prove a partial analogue of Theorem 3.7.
It is a slightly more general version of the following assertion: Every deeply ramified
field that does not allow any proper immediate algebraic extensions is perfect, henselian
and defectless. So far, it is not known whether there is an exact analogue in mixed
characteristic of the property of being inseparably defectless.

3.4. Approximation of elements in henselizations. Complete valued fields of
rank 1 (i.e., with archimedean ordered value group) are henselian, but for valuations v
of arbitrary rank this does not hold in general. However, there is a connection between
Hensel’s Lemma and completions, but these completions have to be taken for residue
fields of suitable coarsenings of v. This connection was worked out by P. Ribenboim
in [43] who used distinguished pseudo Cauchy sequences to characterize the so-called
stepwise complete fields; it had been shown by W. Krull that these fields are henselian.

Take any immediate extension (L|K, v) of valued fields and z ∈ L\K. We call z weakly
distinguished over K if v(z −K)+ is a ball+-cut, and we call z distinguished over K if
it is a group+-cut. The latter name is chosen since distinguished elements are limits of
distinguished pseudo Cauchy sequences.

Now take an arbitrary valued field (K, v) and extend its valuation v to its algebraic
closure K̃. Then K̃ contains a unique henselization Kh with respect to this extension.
The following result is proved in [33], answering a question by B. Teissier. It has recently
been reproved by Teissier using methods from algebraic geometry.

Theorem 3.8. Each element in Kh \K is weakly distinguished over K.

Note that if (K, v) is of rank 1, then its henselization lies in its completion and every
element a ∈ Kh \K is distinguished over K (with v(a−K)+ = (vK)+).

By “α > v(a−K)” we mean α > v(a− c) for all c ∈ K. Theorem 3.8 is used in [33]
to prove the following result:

Theorem 3.9. Take z ∈ K̃ \K such that

v(a− z) > v(a−K)

for some a ∈ Kh. Then Kh and K(z) are not linearly disjoint over K, that is,

[Kh(z) : Kh] < [K(z) : K]

and in particular, K(z)|K is not purely inseparable.

This theorem has a crucial application in [32] to the classification of Artin–Schreier
defect extensions which we discussed in the previous section. The classification was
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originally obtained in [29] under the additional assumption that the fields in question
are henselian. With the help of Theorem 3.9 this assumption can be dropped, and so the
classification becomes available for valued function fields.

4. The invariance group. For every cut Λ in an ordered abelian group G, we define

G(Λ) := {g ∈ G |ΛL + g = ΛL}

and call it the invariance group of Λ; other authors (e.g. Ehrlich in [8], following Kijima
and Nishi [24]) call it the breadth of the cut Λ. Note that ΛL + g = ΛL is equivalent to
ΛR + g = ΛR.

The proof of the following facts is straightforward (see e.g. [34]).

Lemma 4.1. Take an ordered abelian group G and a Dedekind cut Λ in G. Then G(Λ) is
a convex subgroup of G, and G is the disjoint union of the three convex subsets ΛL−ΛR,
G(Λ) and ΛR − ΛL, with

ΛL − ΛR < G(Λ) < ΛR − ΛL.

Corollary 4.2. The invariance group of Λ is trivial if and only if

ΛR − ΛL = G>0.

The following theorem is proved in [34], but has also been stated (more or less explic-
itly) by other authors:

Theorem 4.3. A cut Λ in an ordered abelian group is a ball cut if and only if it is the
upper or lower edge of a coset of its invariance group, i.e., if there is some g ∈ G such
that Λ = (g + G(Λ))+ or Λ = (g + G(Λ))−.

Remark 4.4. R. Baer [3] introduced the notion eigentlicher Schnitt, that is, a Dedekind
cut Λ in an ordered abelian group G such that for every positive g ∈ G there are a ∈ ΛL
and b ∈ ΛR such that b − a < g. By Lemma 4.1 this condition is equivalent to the
invariance group of G being trivial. Ehrlich [8] calls them Veronese cuts, and Galanova
and Pestov call them fundamental cuts. The non-principal cuts with trivial invariance
groups are called dense in Tressl’s papers [48, 49].

Several authors, e.g. Rolland in [44] and Wehrung in [51], work with the ball+-cuts
G(Λ)+ rather than the invariance groups themselves. The set of all of these cuts in an
ordered abelian group G coincides with the set of cuts H+ where H runs through all
(proper) convex subgroups of G. (Note that G itself is the invariance group of the two
cuts (G, ∅) and (∅, G), which are not Dedekind cuts.)

If Λ is a cut in an ordered field K and is positive (i.e., 0 ∈ ΛL), then it is also a cut in
the ordered abelian multiplicative group of positive elements of K. Its invariance group
there is called the multiplicative invariance group of Λ, and we denote it by G×(Λ).

4.1. Invariance group and pseudo Cauchy sequences. From what we have said
about immediate extensions and pseudo Cauchy sequences in Section 2.3, ordered abelian
groups or fields that are maximal with respect to their natural valuation contain limits
for all pseudo Cauchy sequences. This is why several authors employ pseudo Cauchy
sequences to study and to characterize such ordered abelian groups or fields. Certain



98 F.-V. KUHLMANN

cuts can induce, or be induced by, pseudo Cauchy sequences. For example, if (aν)ν<λ is a
pseudo Cauchy sequences which is also strictly increasing, then it is cofinal in the lower
cut set of the cut Λ = {aν | ν < λ}+, and the following holds (cf. [34]):
Theorem 4.5. The invariance group of {aν | ν < λ}+ is equal to the breadth of the
pseudo Cauchy sequence (aν)ν<λ.

If the pseudo Cauchy sequence lies in an ordered abelian group G, then it induces a
Cauchy sequence (i.e., a pseudo Cauchy sequence with breadth {0}) in G/G(Λ).

4.2. Ordered fields with maximal natural valuation. Take an ordered field K. We
will denote the ordered additive group of K by K+ . In [24], Kijima and Nishi use the
invariance group for the following result:
Theorem 4.6. The following assertions are equivalent:
1) the natural valuation of K is maximal and its residue field is R,
2) for each cut Λ = (ΛL,ΛR) in K, the induced cut (ΛL/G(Λ),ΛR/G(Λ)) in the ordered

abelian group K+/G(Λ) is principal.
Here, the induced cut is

(
{a/G(Λ) | a ∈ ΛL}, {b/G(Λ) | b ∈ ΛR}

)
; note that the two

sets are disjoint by the defining property of G(Λ).
This theorem also holds for any ordered abelian group G in place of the ordered

field K if we replace “its residue field is R” by “all of its archimedean components are
isomorphic to R”; see the next section.

In his thesis [21] Hüper considers ordered fields with arbitrary compatible valuations
(i.e., valuations whose valuation ring is convex, or equivalently, contains the valuation
ring of the natural valuation). We will cite one of his main results; in its formulation he
uses a notion that is derived from Baer’s “eigentlicher Schnitt” (see Remark 4.4) without
explicitly using invariance groups. But using them as follows puts the result in a wider
context:
Theorem 4.7. Take an ordered field K with a compatible valuation v. Then the following
assertions are equivalent:
1) the valuation v is maximal,
2) if H is a Ov-submodule of K not contained in a larger Ov-submodule H ′ such that

there is no Ov-submodule properly between H ′ and H, and if Λ is a cut such that
Λ/H := (ΛL/H,ΛR/H) is a Dedekind cut in K+/H with trivial invariance group,
then Λ/H is principal.
Let us evaluate this theorem for the case of v being the natural valuation. In this case,

condition 2) can be reformulated as follows:
2’) if H is a convex subgroup of K which is not contained in a larger convex subgroup

H ′ such that H ′/H is archimedean ordered, and if Λ is a cut such that Λ/H :=
(ΛL/H,ΛR/H) is a Dedekind cut in K+/H with trivial invariance group, then Λ/H
is principal.

Condition 2’) can be further reformulated and thereby simplified by using the following
two facts:
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Lemma 4.8. Take a Dedekind cut Λ in an ordered abelian group G and a proper convex
subgroup H of G. Then the following assertions hold.

a) Λ/H is a Dedekind cut in G/H if and only if H ⊆ G(Λ).
b) G(Λ/H) = {0} if and only if G(Λ) ⊆ H.

In view of these facts, condition 2) is equivalent to:

2”) if H is a convex subgroup of K+ which is not contained in a larger convex subgroup H ′
such that H ′/H is archimedean ordered, and if Λ is a cut with invariance group H,
then Λ/H is principal.

What is the role of the assumption on H in conditions 2’) and 2”)? If H ′ is a
larger convex subgroup of K+ such that H ′/H is archimedean ordered, then H ′/H is an
archimedean component of K+ and therefore isomorphic to the additive group of Kv. As
the theorem does not assume that the latter is equal to R, H ′/H may have a non-principal
Dedekind cut, which then gives rise to a non-principal Dedekind cut of G/H. So if we
are only interested in maximality, then we have to take this case into account. However,
if we assume in addition to condition 1) that Kv is equal to R, then all Dedekind cuts
in archimedean components are principal, and we can drop the assumption on H. This
shows that Theorem 4.6 is a consequence of Theorem 4.7.

Remark 4.9. In [25], the authors state that “the notion of maximal ordered fields was
first introduced” in earlier papers of theirs, the earliest published in 1987 by Kijimi and
Nishi. This statement is correct only as far as it concerns results published in journals,
as the work of Hüper shows.

4.3. Archimedean complete ordered abelian groups. An ordered abelian group
(G,<) is called archimedean complete (a notion introduced by H. Hahn) if every proper
ordered abelian group extension (G′, <) of (G,<) introduces new archimedean classes, or
in other words, the natural valuation on (G′, <) has a larger value set than on G. Hence
the archimedean complete ordered abelian groups are precisely the ordered abelian groups
that are maximal with respect to their natural valuation and whose archimedean compo-
nents are as large as possible, that is, isomorphic to the additive group of real numbers.
Hahn shows in [20] that archimedean complete ordered abelian groups are precisely the
ones that admit an order preserving isomorphism onto a so-called Hahn product with
all of its archimedean components equal to the additive group of real numbers. (Hahn
products are the analogues for ordered abelian groups of the power series fields.)

Archimedean complete ordered abelian groups G are characterized in the paper [6]
by L. W. Cohen and C. Goffman as follows:

Theorem 4.10. An ordered abelian group (G,<) is archimedean complete if and only if
for every proper convex subgroup H, the ordered factor group G/H is dense and every
cut in G/H with trivial invariance group is principal.

Ehrlich revisits this topic in [8]. Relying on the theorem of Cohen and Goffman,
Ehrlich proves:
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Theorem 4.11. An ordered abelian group (G,<) is archimedean complete if and only if
for every cut Λ, the induced cut in G/G(Λ) is principal, but not a jump.

Since ordered fields admit no jumps, this theorem can be seen as an analogue of
Theorem 4.6. Ehrlich shows that the induced cut has trivial invariance group; this is a
special case of part b) of Lemma 4.8.

We recommend Ehrlich’s paper [8] for interesting historical remarks and a detailed
list of references.

4.4. Model theory of ordered fields with cuts. In [47, 48, 49], Tressl studies the
model theory of real closed fields with a fixed cut. Given a model M of an o-minimal
extension T of the theory of real closed fields in a language L, he determines the model
theoretic properties of M in the language L(D) where D is a predicate for the left cut
set ΛL of a fixed cut Λ in M . If (M1,ΛL1 ) and (M2,ΛL2 ) are two structures obtained in
this way, conditions are found for (M1,ΛL1 ) and (M2,ΛL2 ) to be elementarily equivalent
in the language L(D) enhanced by parameters from a common elementary substructure
of M and M ′. The main result is rather technical in nature, but for special classes of cuts,
the situation is much easier. To illustrate this, the following theorem is taken from [49]:

Theorem 4.12. Let A ≺M1,M2 be models of T and let Λ1,Λ2 be non-principal cuts in
M1,M2 respectively, with trivial invariance groups. Then (M1,ΛL1 ) ≡A (M2,ΛL2 ) if and
only if the restrictions of Λ1 and Λ2 to A coincide.

5. The invariance valuation ring. The invariance valuation ring of a cut Λ in an
ordered field K is defined as

O(Λ) := {b ∈ K | bG(Λ) ⊆ G(Λ)}.

We denote its maximal ideal {b ∈ K | bG(Λ) & G(Λ)} by M(Λ).
According to Lemma 4.1 G(Λ) is a convex subgroup of the ordered additive group K+

of K, and we have already noted in the Introduction that every convex subgroup of K+
is an Ov-module, where v denotes the natural valuation. In this way, the above definition
becomes a special case of the following notion. Take any valued field K with valuation
ring Ov and an Ov-module M in K. The invariance valuation ring of an Ov-module M
in K is defined as

O(M) := {b ∈ K | bM ⊆M}.

The relation between multiplicative invariance group and invariance valuation ring is
determined in [34]. Also Tressl and Güldenberg obtain results on this topic.

5.1. Projecting cuts into residue fields. Take a convex valuation ring O of an or-
dered field K, with maximal ideal M. Its residue field O/M is again an ordered field,
with the ordering induced through the residue map. We will say that the cut Λ can be
projected into the residue field O/M if there are elements a, c ∈ K such that c > 0 and
cΛ + a induces a Dedekind cut(

((cΛL + a) ∩ O)/M, ((cΛR + a) ∩ O)/M
)

(2)

in O/M via the residue map.
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The following theorem shows for which convex valuation ringsO a cut can be projected
into the associated residue field. For a proof, see [34].

Theorem 5.1.

1) Take any convex valuation ring O of (K,<). If O(Λ) & O, then the cut Λ can be
projected into the residue field O/M. If O & O(Λ), then it cannot be projected into
O/M.

2) The cut Λ can be projected into O(Λ)/M(Λ) if and only if (vG(Λ))− is a ball +-cut.

5.2. Definable valuation rings in ordered fields. It is obvious that if a cut (that
is, its lower cut set ΛL) is definable in some extension of the language of ordered rings,
then so is G(Λ). It then follows that also the invariance valuation ring is definable.

This observation is put to work in [22], where the following is proved:

Proposition 5.2. Take an ordered field K with real closure R. If K is not dense in R,
then K admits a nontrivial valuation definable in the language of ordered rings.

The idea of the proof is as follows. If K is not dense in R, then there is an element
r ∈ R \K and a positive element a ∈ R such that |r − c| > a for all c ∈ K. Since R|K
is algebraic, the set K>0 of positive elements in K is coinitial in R>0, so we can choose
a ∈ K. If we set ΛL = {c ∈ K | c < r}, then we obtain a cut Λ such that ΛR−ΛL & K>0.
By Corollary 4.2, its invariance group is thus nontrivial. This implies that the invariance
valuation ring is not all of K, so the associated valuation is nontrivial. Since r lies in a
real closure of K, the set ΛL = {c ∈ K | c < r} is definable, and by what we said above,
so are the invariance valuation ring and thus also the associated valuation.

The above arguments also prove the following general principle:

If the lower cut set of some Dedekind cut with nontrivial invariance group in an ordered
field is definable, then the field admits a nontrivial definable valuation ring.

Similarly, if an Ov-module M in a valued field (K, v) is definable, then so is its
invariance valuation ring O(M). If K 6= M 6= {0}, then O(M) is a nontrivial valuation
ring. This yields the following general principle:

If a proper nontrivial Ov-module in a valued field (K, v) is definable, then the field admits
a nontrivial definable valuation ring containing Ov .

Note that if a cut Λ is definable in the value group vK in a suitable language of valued
fields, then the Ov-module {a ∈ K | va ∈ ΛR} is also definable, and it is proper and
nontrivial if and only if the cut is a Dedekind cut.

6. Cut cofinalities. Recall that by the cofinality of the cut Λ we mean the pair (κ, λ)
where κ is the cofinality of ΛL, and λ is the coinitiality of ΛR.

6.1. Ordered abelian groups and fields that are ηα-sets. Take any ordinal α. An
ηα-set is an ordered set S such that for any two subsets A ⊆ S and B ⊆ S of cardinality
less than ℵα with A < B, there is some s ∈ S such that A < s < B. This is equivalent to
saying that S does not admit any cuts of cofinality (κ, λ) where both κ and λ are smaller
than ℵα . In [1], Alling proves:
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Theorem 6.1.

a) An ordered abelian group is an ηα-set if and only if it is α-maximal, its value set with
respect to the natural valuation is an ηα-set, and all of its archimedean components
are isomorphic to Z or R.

b) An ordered field is an ηα-set if and only if it is α-maximal, its value group with respect
to the natural valuation is an ηα-set, and its residue field is R.

Every ℵα-saturated ordered abelian group or field is an ηα-set. For the converse, the
reader may note that divisible ordered abelian groups and real closed fields are o-minimal.
This implies that for them the property of being an ηα-set is equivalent to that of being
ℵα-saturated. For results on the variety of ηα ordered abelian groups or fields, for fixed α,
see [2].

Ball cuts and invariance groups do not appear explicitly in [1] or [2]. But Rolland
draws a connection in [44]. He states that an ordered abelian group is an ηα-set if and
only if its value set is an ηα-set and for every Dedekind cut Λ with nontrivial invariance
group G(Λ), the coinitiality of the upper cut set of G(Λ)+ is not less than ℵα.

6.2. Cuts in ordered power series fields. The papers [14, 15, 16, 17] of Galanova
and Pestov are devoted to the study of cuts in power series fields and in restricted power
series fields (in the latter, the cardinalities of the supports of the power series are bounded
by a given cardinal number). We cite three theorems from [17]. The cardinality of a set S
is denoted by |S|, and |S|+ denotes its successor cardinal.

Theorem 6.2. Take any ordered abelian group G. Then all cuts in the power series field
R((G)) are ball cuts.

The proof of this theorem in [17] is long and technical. Let us give the sketch of a
shorter and more conceptual proof. We write K = R((G)). Every cut Λ in K is realized
in some ordered field extension L of K (for instance, if L is a |K|+-saturated elementary
extension of the ordered field K). As a power series field, K is maximal with respect to
its natural valuation. Extend v to the natural valuation of L. Then it follows that for
every x ∈ L \K there is some a ∈ K such that v(x − a) = max{v(x − c) | c ∈ K} since
otherwise, x would be a limit of some pseudo Cauchy sequence in K without a limit
in K, contradicting the fact that K is maximal. The value v(x− a) can only be maximal
if either v(x− a) /∈ vK or there is d ∈ K such that vd = v(x− a) and d−1(x− a)v /∈ Kv.
But the latter cannot be the case: since Kv = R and v on L is a natural valuation, we
must have that Lv = Kv. Hence γ := v(x − a) /∈ vK. We leave it as an exercise to the
reader to show that Λ = (a+ {b ∈ K | vb > γ})+ or Λ = (a+ {b ∈ K | vb > γ})−.

Theorem 6.3. Take any ordered abelian group G and a cardinal number κ such that
ℵ0 < κ < |G|. Denote by R((G, κ)) the subfield of R((G)) consisting of all power series
with support of cardinality less than κ. Take a non-ball cut in R((G, κ)) of cofinality
(λ, λ). Then λ is equal to the cofinality of κ. In particular, if κ is regular, then λ = κ.

Theorem 6.4. Take a non-principal cut Λ in some ordered field K with trivial invariance
group, and let (κ, κ) be its cofinality. Then κ is equal to the cofinality of K.
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In [44], Rolland states the existence of power series fields that admit cuts with preas-
signed cofinalities (κi, λi), i ∈ I, where the κi and λi are infinite regular cardinals. The
proof he gives is insufficient, but the result also follows from the work we will discuss
in the next section. He uses it to show the existence and to (partially) characterize the
ordered fields which admit a closed bounded interval and a continuous function which is
unbounded on this interval.

6.3. Symmetrically complete ordered abelian groups and fields. A Dedekind
cut with cofinality (κ, λ) is called symmetric if κ = λ, and asymmetric otherwise. Note
that the notion of symmetry used by Galanova and Pestov is quite different from the
one defined here. However, Pestov states in [41] (without proof or reference) that if a
cut in an ordered field is symmetric in their sense (i.e., it is not a ball cut), then it is
also symmetric in the sense of the above definition. A proof is given by Galanova in [14].
In [44], Rolland states the same in full generality for non-ball cuts in ordered abelian
groups. The statement is correct, but his proof appears to have a serious gap.

A linearly ordered set (I,<) is called symmetrically complete if every symmetric cut
in I has cofinality (1, 1), i.e., is a jump. In dense linear orderings (and hence in ordered
fields) there are no jumps. Consequently, a dense linear ordering is symmetrically com-
plete if and only if all of its cuts are asymmetric.

For example, Z and R are symmetrically complete, but Q is not. In Z and R, every
Dedekind cut is principal; in Z all of them have cofinality (1, 1), and in R they have
cofinalities (1,ℵ0) and (ℵ0, 1). In contrast, in Q the Dedekind cuts have cofinalities (1,ℵ0),
(ℵ0, 1) and (ℵ0,ℵ0).

In [39] it is shown that a symmetrically complete ordered abelian group is spherically
complete with respect to its natural valuation and hence a Hahn product, with all of its
archimedean components isomorphic to R. Similarly, a symmetrically complete ordered
field is spherically complete with respect to its natural valuation and hence a power series
field, with residue field R. For Hahn products with all of its archimedean components
isomorphic to R the set of all cut cofinalities is computed from the set of all cut cofinalities
of the value set of its natural valuation, and a similar computation is done for power
series fields with residue field R. Based on this computation, a full characterization of
symmetrically complete ordered abelian groups and fields is obtained. We will now cite
a selection of the main results from [39].

We call an ordered set strongly symmetrically complete if it is symmetrically complete
and does not have any cuts with cofinalities (1,ℵ0) or (ℵ0, 1).

Theorem 6.5. A non-archimedean ordered field is symmetrically complete if and only if
it is spherically complete with respect to its natural valuation, has residue field R and a
dense strongly symmetrically complete value group.

A nontrivial densely ordered abelian group is symmetrically complete if and only if
it is spherically complete with respect to its natural valuation v, has a dense strongly
symmetrically complete value set, and all archimedean components are isomorphic to R. It
is strongly symmetrically complete if and only if in addition, the value set has uncountable
cofinality.
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In particular, it follows that symmetrically complete ordered abelian groups are di-
visible and symmetrically complete ordered fields are real closed.

Further, it is shown in [39] that every ordered set can be extended to a dense strongly
symmetrically complete ordered set with uncountable cofinality. The reader may note
that this result is not explicitly stated in Hausdorff’s work. The authors of [39] also tried
to give a construction that is as short as possible. It turns out that the constructed
orderings are themselves lexicographic, as are the orderings on Hahn products and power
series fields. Such orderings deserve to be studied in more detail.

Using the above results and the fact that every ordered set is the natural value set
of some Hahn product with all components isomorphic to R, and every ordered abelian
group is the natural value group of some power series field with residue field R, the
following result of [45] is reproved:

Theorem 6.6. Every ordered field can be embedded in a symmetrically complete ordered
field. Every ordered abelian group can be embedded in a symmetrically complete ordered
abelian group.
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