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Abstract. Let α be an algebraic integer of degree n ≥ 3. Assume that the extension Q(α)/Q is
Galois. Let Z[conj(α)] be the order of Q(α) generated by the n complex conjugates of α. Apart
from the case that Gal(Q(α)/Q) is the symmetric group Sn, only for the cyclic cubic case are
an explicit Z-basis and the discriminant of Z[conj(α)] known. Here, we prove that there always
exists a Z-basis of Z[conj(α)] containing 1 and α. We deduce a new proof of the cyclic cubic
case. We hope that this new approach could be helpful to settle the unsolved Galois quartic case.
Finally, for α an algebraic integer of any degree n ≥ 2, it is known that the discriminants of the
orders Z[αk] go to infinity as k goes to infinity (without assuming that Q(α)/Q is Galois). Then,
in the Galois cubic and quartic cases, we propose several conjectures related to the apparent
behavior of the orders Z[conj(αk)] as k goes to infinity. In particular, the orders Z[conj(αk)] seem
to behave completely differently from the orders Z[αk], as k ≥ 1 goes to infinity.

1. Introduction. Throughout the paper, let α be an algebraic integer of degree n. Let
0 6= Dα =

∏
1≤i<j≤n

(αj − αi)2 ∈ Z

be the discriminant of its minimal polynomial
Πα(X) = Xn − an−1X

n−1 + . . .+ (−1)na0 ∈ Z[X],
where conj(α) = (α1, . . . , αn) are the complex conjugates of α, i.e. are the n distinct
complex roots of Πα(X). We will consider the order

Z[conj(α)] = Z[α1, . . . , αn],
of the normal closure Q(conj(α)) = Q(α1, . . . , αn) of K = Q(α).
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Let σ1, . . . , σn, be the complex imbeddings of a number field K of degree n. The
discriminant DM of an order M of K is defined by

DM := D(ω1, . . . , ωn) = ∆(ω1, . . . , ωn)2 ∈ Z \ {0}, (1)

where
∆(ω1, . . . , ωn) := det

(
[σi(ωj)]1≤i,j≤n

)
∈ C \ {0} (2)

and Ω = {ωk : 1 ≤ k ≤ n} is any Z-basis of M. It does not depend on the Z-basis of M
(see e.g. [Nar, Chapter II] or [Coh, Chapter 4]). If K = Q(α) and α is an algebraic integer,
then DZ[α] = D(1, α, . . . , αn−1) = Dα. The discriminant of the ring of algebraic integers
ZK of K, i.e. the discriminant of K, is denoted by DK. Let M be an order of K. The
index (ZK : M) is finite and DM = (ZK : M)2DK. In particular, Dα = (ZK : Z[α])2DK if
K = Q(α) and α ∈ ZK. We let M× denote the multiplicative group of units of an order M.

Our goal is to determine a Z-basis for the order Z[conj(α)] and its discriminant
DZ[conj(α)] and to give various applications of these determinations. To date, the only
cases where a Z-basis for Z[conj(α)] has been obtained are the quadratic case (easy), the
symmetric case (Theorem 8) and the cyclic cubic case (Theorem 17). The present paper
which gives a new proof of Theorem 17 based on Theorem 13, might prove useful for
solving the Galois quartic case. In Section 6 we raise many questions to which we have
presently no answer on the behaviors of the orders Z[αk] and Z[conj(αk)] as k goes to
infinity.

Assume that K/Q = Q(α)/Q is Galois. Then ZK is always Galois-invariant. Since Z[α]
is seldom Galois-invariant whereas Z[conj(α)] is always Galois-invariant, we are much
more likely to have ZK = Z[conj(α)] than to have ZK = Z[α]. This makes the study of
these Z[conj(α)] worthwhile. To measure this intuition, at least in the cyclic cubic case, we
computed Table 1. Let Ncyclic(B) be the number of Q-irreducible cubic monic polynomials
Πα(X) = X3−aX2 +bX−c ∈ Z[X] with 0 ≤ a, |b|, |c| ≤ B whose discriminants Dα = f2

α

are squares in Z. (By changing Π(X) into −Π(−X) if necessary, we can indeed assume
that a ≥ 0.) Set K = Q(α). Let Nmonogenic(B) be the number of these polynomials for
which Z[α] = ZK, i.e. for which Dα = DK. Let Ninv(B) ≥ Nmonogenic(B) be the number
of these polynomials for which Z[α] is Galois invariant, i.e. for which Z[α] = Z[conj(α)],
i.e. for which fα divides 3b− a2 and 3ac− b2 (Theorem 17). Let Nconj(B) be the number
of these polynomials for which Z[conj(α)] = ZK, i.e. for which ∆2

α = DK (Theorem 17).
(The computation of the columns for Ncyclic(B) and Ninv(B) took 54370 seconds with
Maple on a MacBook Air laptop computer. The computation of Table 1 on a Mac mini
desk computer using the PARI/GP software for algebraic number theory computations
took 37h40min.)

Question 1. Table 1 raises three questions: is it true that

ρmonogenic(B) = Nmonogenic(B)/Ncyclic(B) and ρinv(B) = Ninv(α)/Ncyclic(B)

tend to 0 whereas ρconj(B) = Nconj(B)/Ncyclic(B) tends to a positive limit as B tends to
infinity?
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B Ncyclic(B) Nmonogenic(B) Ninv(B) Nconj(B)
10 62 30 (48.3%) 36 (58.0%) 44 (70.9%)
20 190 64 (33.6%) 77 (40.5%) 137 (72.1%)
40 613 136 (22.1%) 161 (26.2%) 431 (70.3%)
80 1762 277 (15.7%) 330 (18.7%) 1180 (66.9%)

160 5133 565 (11.0%) 667 (12.9%) 3378 (65.8%)
320 13904 1145 (8.2%) 1350 (9.7%) 9030 (64.9%)
640 37529 2283 (6.0%) 2715 (7.2%) 23903 (63.6%)

1280 97451 4616 (4.7%) 5475 (5.6%) 61412 (63.0%)
Table 1

2. Four families of parametrized number fields. To construct parametrized fami-
lies of Galois number fields Km = Q(εm) of a given degree n ≥ 2 of known discriminants
and regulators, one usually starts from explicit parametrized families of Q-irreducible
monic polynomials Πm(X) ∈ Z[X] of a given degree n and of constant coefficient equal
to ±1, where εm is any complex root of Πm(X). The conjugates of εm are algebraic units
and one may hope to extract from them a system of fundamental units for the order
Z[conj(εm)]. This is usually done by using Cusick’s method developed in [Cus], as in
[LL14], [LL16, Section 2], [Bal, Section 3] and [BW, Section 6]. It requires an estimation
of DZ[conj(εm)].

Assume moreover that we are dealing with a family for which the extensions Km/Q
are abelian and for which the discriminants DZ[conj(εm)] = fn−1

m are known beforehand
to be perfect (n − 1)-th-powers, as in Propositions 3, 4 and 5. In that case, for the
probably/conjecturally infinite occurrences for which fm = p is prime, the number field
Km is of conductor p, discriminant pn−1 and has ring of algebraic integers Z[conj(εm)].
Indeed, since pn−1 = DZ[conj(εm)] = (ZKm : Z[conj(εm)])2DKm we infer that DKm > 1 is a
power of p, hence that pn−1 divides DKm by the conductor-discriminant formula, hence
that (ZKm : Z[conj(εm)]) = 1. In that case, the class number of Km divides the class
number h+

p of the real cyclotomic field Q(ζp)+ and we end up with examples of prime
numbers p > 3 for which h+

p is large (see [CW], [SW], [Lou04] and [Lou07]).
We will repeatedly use

Lemma 2. A primitive Dirichlet character χ of order n > 1 coprime with its conductor f
is of square-free conductor.
Proof. Assume that f = d2F is not square-free, where d > 1. Take n∗ such that nn∗ ≡ 1
(mod f). Since f divides (f/d)k for k ≥ 2, we have x ≡ yn (mod f) and χ(x) = χn(y) = 1
whenever x = 1+λ fd ≡ 1 (mod f/d), where y = 1+λn∗ fd . This contradicts the primitivity
of χ modulo f .

Now, let us start with the nicest situation:
Proposition 3. Let α, α′ and α′′ be the three complex roots of the cubic polynomial
Πα(X) = X3 − mX2 + (m − 3)X + 1 ∈ Z[X], Q-irreducible and of discriminant
Dm = f2

m, where fm = m2 − 3m + 9. The simplest cubic field K = Q(α) is cyclic
with Gal(K/Q) = 〈σ〉, where σ(α) = −α2 + (m − 1)α + 2. Hence, the cubic order Z[α]
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is Gal(K/Q)-invariant. Moreover, Z[α]× = 〈−1, α, α′〉, i.e. {α, α′} is a system of fun-
damental units for the order Z[α]. Finally, if 3 - m, then the order Z[α] is equal to the
ring of algebraic integers ZK of K if and only if fm is square-free. This happens infinitely
many often with positive probability.
Proof. Proofs of the assertion on the unit group Z[α]× can be found in [Tho, Theorem
(3.10)] or [LL14, Theorem 1]. Let us prove the assertion on ZK. Let fK be the conductor
of K. Assume that 3 - m and ZK = Z[α]. Then, 3 - fm and f2

K = DK = Dm = f2
m. Hence,

fm = fK is square-free, by Lemma 2. Conversely, if 3 - m and fm is square-free, then K
is of conductor fm, by [Lou07, Theorem 8], hence of discriminant DK = f2

K = f2
m (by

the conductor-discriminant formula). Now, DK = f2
m = Dm = (Z[α] : ZK)2DK yields

(Z[α] : ZK) = 1 and ZK = Z[α]. See also [Wa1, Proposition 1 and Corollary] for an
alternative proof. The last assertion follows from [Ric].

However, we are very unlikely to find usually ourselves in such a nice setting. Usually
the order Z[α] will not be Galois-invariant, in which case we expect more satisfactory
results by working with Z[conj(α)] instead, the smallest Galois-invariant order containing
Z[α]. For example, we have:
Proposition 4. Let α be a root of the quartic polynomial Πα(x) = X4 −mX3 − 6X2 +
mX + 1 ∈ Z[X], with m 6= −3, 0, 3, Q-irreducible and of discriminant Dm = 4f3

m, where
fm = m2 + 16. The simplest quartic field K = Q(α) is a totally real cyclic quartic field
with Gal(K/Q) = 〈σ〉, where

σ(α) = α− 1
α+ 1 =

(
−α3 + (m+ 1)α2 − (m− 5)α− 3

)
/2.

Hence, Z[α] which is not Gal(K/Q)-invariant is never equal to ZK. The Gal(K/Q)-
invariant quartic order Z[conj(α)] admits {1, α, α2, σ(α)} as a Z-basis and is of discrim-
inant DZ[conj(α)] = f3

m. Finally, if m is odd, then Z[conj(α)] = ZK if and only if fm is
square-free. This happens infinitely many often with positive probability.
Proof. Since σ2(α) = α3 −mα2 − 6α + m and σ3(α) = m − α − σ(α)− σ2(α), we have
Z[conj(α)] = Z[α, σ(α)] = Z[α][σ(α)]. Since σ(α)2−(m−2)σ(α)−(α2−(m+2)α+m) = 0,
we have Z[conj(α)] = Z[α] +Z[α]σ(α). Hence, {1, α, α2, α3, σ(α), ασ(α), α2σ(α), α3σ(α)}
is a Z-generating system of Z[conj(α)]. Since α3, ασ(α), α2σ(α) and α3σ(α) are Z-linear
combinations of 1, α, α2 and σ(α), the first assertion follows. Let us now prove the
assertion on ZK. Assume that m is odd and fm = m2 + 16 is square-free. Since α−1/α ∈
Z[α] is a root of X2−mX − 4 of discriminant fm, the real quadratic field K2 = Q(

√
fm)

is a subfield of conductor fm of K and f3
m divides DK (by the conductor-discriminant

formula). Since DZ[conj(α)] = f3
m = (ZK : Z[conj(α)])2DK, we have (ZK : Z[conj(α)]) = 1

and ZK = Z[conj(α)]. (An alternative proof would be to use the fact that if fm is square-
free, then K2 is clearly of conductor fm whereas K is also of conductor fm by [Lou07,
Theorem 14]. Hence, the conductor-discriminant formula gives DK = fK2f

2
K = f3

m =
DZ[conj(α)] and ZK = Z[conj(α)].) Conversely, assume that m is odd and ZK = Z[conj(α)].
Then DK = DZ[conj(α)] = f3

m is odd and DK = fK2f
2
K, by the conductor-discriminant

formula, where the conductor fK2 of the quadratic subfield of K divides fK. Hence fK is
odd and square-free, by Lemma 2. It follows that fK2f

2
K = f3

m is divisible by no fourth
power of any prime and we deduce that fm is square-free.
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Proposition 5. Let α be a root of the quintic polynomial Πα(x) = X5 + m2X4

− 2(m3 + 3m2 + 5m + 5)X3 + (m4 + 5m3 + 11m2 + 15m + 5)X2 + (m3 + 4m2 +
10m + 10)X + 1 ∈ Z[X], Q-irreducible for m ∈ Z and of discriminant Dm = δ2

mf
4
m,

where δm = m3 + 5m2 + 10m+ 7 and fm = m4 + 5m3 + 15m2 + 25m+ 25. The simplest
quintic field K = Q(α) is cyclic with Gal(K/Q) = 〈σ〉, where

σ(α) = −α
2 +mα+ (m+ 2)
(m+ 2)α+ 1 .

The quintic order Z[α] is Gal(K/Q)-invariant if and only if m = −2 and is never equal
to ZK. The Gal(K/Q)-invariant quintic order Z[conj(α)] admits {1, α, α2, σ2(α), σ4(α)}
as a Z-basis, is of discriminant DZ[conj(α)] = f4

m and Z[conj(α)]× = 〈−1, α, σ(α),
σ2(α), σ3(α)〉, i.e. {σk(α) : 0 ≤ k ≤ 3} is a system of fundamental units for the or-
der Z[conj(α)]. Finally, if 5 - m then Z[conj(α)] = ZK if and only if fm is square-free.
Conjecturally, this happens infinitely many often with positive probability.

Proof. Let us prove the assertions on the Z-basis and discriminant. Since σ3(α) =
−m2 − α − σ(α) − σ2(α) − σ4(α) and σ(α) + (m + 2)σ2(α) + (m + 2)σ4(α) ∈ Z[α],
we have Z[conj(α)] = Z[α, σ2(α), σ4(α)]. Set α1 = 1, α2 = α, α3 = α2, α4 = σ2(α) and
α5 = σ4(α). It remains to check that the Z-module M := Zα1 + . . . + Zα5 is a subring
of Z[conj(α)] = Z[α, σ2(α), σ4(α)], i.e. that αiαj ∈ M for 2 ≤ i ≤ j ≤ 5. For β, γ ∈ Q[θ],
we write β ∼ γ whenever β = γ + P (α) for some quadratic polynomial P (X) ∈ Z[X] .
Hence, γ ∈M and β ∼ γ imply β ∈M. Then, using any symbolic manipulation language
like Maple, one can check that

α2α3 = α3 ∼ (m+ 1)σ2(α) + (2m+ 3)σ4(α),
α2α4 = ασ2(α) ∼ −(m+ 2)σ4(α),
α2α5 = ασ4(α) ∼ −σ2(α) +mσ4(α)

are in M. Therefore, αM ⊆M and αiαj ∈M, 2 ≤ i ≤ j ≤ 5 and 2 ≤ i ≤ 3. Moreover, for
4 ≤ i ≤ j ≤ 5, one can check that

α2
4 = (σ2(α))2 ∼ (m+ 1)σ2(α) + (m+ 1)2σ4(α),
α4α5 = σ2(α)σ4(α) ∼ (m+ 1)σ2(α) + (2m+ 3)σ4(α),
α2

5 = (σ4(α))2 ∼ (m+ 2)σ2(α)− (m2 +m)σ4(α)

are in M. Moreover, using δmσ2(α) ∼ −(2m3 +4m2 +3m+2)α3−(2m+3))α4, δmσ4(α) ∼
(m3 + 2m2 + 3m+ 3)α3 + (m+ 1)α4 and

det
(
−(2m3 + 4m2 + 3m+ 2) m3 + 2m2 + 3m+ 3

−(2m+ 3) m+ 1

)
= δm,

we obtain DM = Dm/δ
2
m. Finally, if m 6= −2 then (Z[conj(α)] : Z[α]) = |δm| > 1 and

not being equal to Z[conj(α)], the order Z[α] is not Gal(K/Q)-invariant. For m = −2
we have σ(α) = −α2 − 2α ∈ Z[α] and Z[α] is Gal(K/Q)-invariant. (Our result implies
[GP, Lemma 2]. Indeed, with their notation we have α3 ∼ (m+ 1)σ2(α) + (2m+ 3)σ4(α)
and ω5 ∼ −σ2(α)− 2σ4(α). Hence, {1, α, α2, α3, ω5} is also a Z-basis of Z[conj(α)].)

The assertion on Z[conj(α)]× follows from [SW, Theorem (3.5)] and [Jean, Theorem
2.2.2], once we notice that the crucial point of their proofs is not that they are working



112 S. R. LOUBOUTIN

with ZK but with a Galois-invariant order of K. (See also the imprecise statement in [GP,
Lemma 3] where they should have made the same assumption on m as in their Lemma 1.)

The proof of the last assertion is similar to the proof of the cubic case given in the
proof Proposition 3, by using [Lou07, Lemma 21] or [Jean, Théorème 1] instead of [Lou07,
Theorem 14].

Even working with Z[conj(α)] is sometimes not satisfactory enough (notice that the
Z-basis of Z[conj(α)] and M′ in the following Proposition 6 are of the type considered in
Proposition 10):
Proposition 6. As in [Wa2], let α be a root of the quartic polynomial Πα(x) = X4 −
m2X3−(m3+2m2+4m+2)X2−m2X+1 ∈ Z[X], with −1 6= m ∈ Z odd, Q-irreducible of
odd discriminant Dm = (m+2)4fmF

2
m, where fm = m2 +4 and Fm = m(m+2)(m2 +4).

Set β = (α − 1)2/(m + 2) and γ = (α − 1)3/(m + 2). Then K = Q(α) is a totally real
cyclic quartic field with Gal(K/Q) = 〈σ〉, where

σ(α) = α3 − (m2 −m+ 2)α2 −m(m2 +m+ 3)α+m− γ. (3)
Hence, Z[α] which is not Gal(K/Q)-invariant is never equal to ZK. The Gal(K/Q)-
invariant quartic order Z[conj(α)] admits {1, α, α2, σ(α)} as a Z-basis and DZ[conj(α)] =
(m+2)2fmF

2
m. The module M′ := Z+Zα+Zβ+Zγ is a Gal(K/Q)-invariant order of K

and DM′ = fmF
2
m. Hence, Z[conj(α)] is never equal to ZK. Finally, M′ = ZK if and only

if Fm is square-free. This happens infinitely many often with positive probability.
Proof. Set M := Z+Zα+Zα2+Zγ. Then Z[α] ⊆M ⊆ Z[conj(α)]. Now, αγ = (m2−3)γ+
δ ∈M, where δ ∈ Z[α], and γ2 ∈ Z[α] ⊆M. Hence M is a subring of Z[conj(α)] containing
α, σ(α), by (3), σ2(α) = 1/α ∈ Z[α] and σ3(α) = m2 − α− σ(α)− σ2(α). Therefore, we
do have Z[conj(α)] = M = Z + Zα + Zα2 + Zσ(α). Hence, (Z[conj(α)] : Z[α]) = m + 2
and DZ[conj(α)] = Dα/((Z[conj(α)] : Z[α]))2 = (m+ 2)2fmF

2
m.

Now, β2 − (m − 2)αβ − mα2 = 0. Hence, β ∈ ZK and M′ ⊆ ZK. Since one can
check that σ(α) ∈ M′, by (3), σ(β) + (m4 − 3m2 + m − 1)β − m2γ ∈ Z[α] ⊆ M′ and
σ(γ)− (m4 +m3 + 2m− 1)γ ∈ Z[α] ⊆M′, the module M′ is indeed Gal(K/Q)-invariant.
Finally, it is easy to check that M′ is multiplicatively closed.

For the last assertion, we notice that K2 = Q(α+1/α) = Q(
√
m2 + 4) is the quadratic

subfield of K. Hence, if M′ = ZK, then DK = DM′ = fmF
2
m is odd. Therefore, by the

conductor-discriminant formula we have fmF 2
m = DK = fK2f

2
K, where fK2 and fK are

square-free, by Lemma 2. It follows that Fm is square-free. Conversely, if Fm is square-
free, it is proved in [Wa2, Section 1] that DK = fmF

2
m. Hence, DK = DM′ and ZK = M′.

Question 7. Throughout his paper L. C. Washington assumes that Fm is square-free
and determines a system of fundamental units for ZK, see [Wa2, Theorem page 766]. It
would be worth checking whether his proof gives a stronger result, the determination of a
system of fundamental units for the order M′. The same question applies to the simplest
quartic fields considered in Proposition 4 and [Gras] and also to the recent paper [BW].

3. A Z-generating system of Z[conj(α)]. To date, the only cases where a Z-basis for
Z[conj(α)] has been obtained are the quadratic case (easy), the symmetric case (Theo-
rem 8) and the cyclic cubic case (Theorem 17):
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Theorem 8 (see [Lou16]). Let α be an algebraic integer of degree n. Then Ωα :=
{αe1

1 · · ·αenn : 0 ≤ ek ≤ n− k} is a Z-generating system (with n! elements) of Z[conj(α)].
In particular, if Gal(Q(conj(α))/Q) is isomorphic to the symmetric group Sn, then Ωα
is a Z-basis of the order Z[conj(α)] of Q(conj(α)) and the discriminant of Z[conj(α)] is
DZ[conj(α)] = D

n!/2
α .

Remarks 9. Assume that Q(α)/Q is Galois. Then Z[conj(α)] is a Galois invariant order
of Q(α) and the matrix Mα of the coordinates of the n! elements of Ωα in the canonical
Q-basis Bα = {1, α, . . . , αn−1} of Q(α) is in Mn,n!(Q). Consequently, it is not difficult to
develop an algorithm for constructing a Z-basis for the order Z[conj(α)] and for computing
its discriminant DZ[conj(α)]. These computations suggested us Theorem 13 below.

4. Existence of particular Z-basis. The following result applies to the orders
Z[conj(α)]:

Proposition 10 (see [Coh, Corollary 4.7.6]). Let M be an order in a number field Q(α),
where α is an algebraic integer of degree n. Assume that Z[α] ⊆ M. There exist poly-
nomials Pk(X) ∈ Z[X] with degPk(X) ≤ k − 1 and positive integers d1 | · · · | dn−1

such that
{

1, α+P1(α)
d1

, . . . , α
n−1+Pn−1(α)

dn−1

}
is a Z-basis of M. In that situation, we have

(M : Z[α]) = d1d2 · · · dn−1.

Proof. We give a short proof of this known result. Recall that a sub-module of a free
Z-module of rank r ≥ 1 is a free Z-module of rank less than or equal to r (e.g. see [ST,
Theorem 1.16]).

Fix d ≥ 1 such that Z[α] ⊆ M ⊆ 1
dZ[α]. For 1 ≤ k ≤ n, set Mk = (Q + Qα + . . . +

Qαk−1) ∩M =
( 1
dZ + 1

dZα + . . . + 1
dZα

k−1) ∩M. For 0 ≤ k ≤ n − 1, let λ∗k : Q(α) =
Q ⊕ Qα ⊕ . . . ⊕ Qαn−1 → Q be the Q-linear form defined by λ∗k(

∑n−1
i=0 xiα

i) = xk.
Hence, λ∗k(M) ⊆ 1

dZ and λ∗k(αi) ∈ Z for i ≥ 0.
Then Mn = M is a free Z-module of rank n. By induction on k decreasing from n to 1

we infer that Mk is a free Z-module of rank k. Indeed, assume that Mk is free of rank k.
Then Mk is not a sub-module of the free Z-module 1

dZ + 1
dZα + . . . + 1

dZα
k−2 of rank

k − 1. Hence, λ∗k−1 : Mk → 1
dZ is a non-trivial morphism of additive groups. Therefore,

there exist dk−1 ∈ Z≥1 dividing d and ωk−1 ∈ Mk such that λ∗k−1(Mk) = 1
dk−1

Z and
λ∗k−1(ωk−1) = 1/dk−1. Clearly, we have Mk = Mk−1 ⊕ Zωk−1 and Mk−1 is free of rank
k − 1. Notice that since Q ∩M = Z, we have ω0 = 1 and d0 = 1.

Now, since αωk−2 ∈ αMk−1 ⊆ Mk we have 1
dk−2

= λ∗k−2(ωk−2) = λ∗k−1(αωk−2)
∈ λ∗k−1(Mk) = 1

dk−1
Z and dk−2 | dk−1. Moreover, {ω0, . . . , ωn−1} is clearly a Z-basis of M

and ωk = (αk +Pk(α))/dk, where Pk(X) =
∑k−1
i=0 pk,iX

i ∈ Q[X] is of degree less than k.
Finally, by induction on k increasing from 0 to n − 1 we prove that Pk(X) ∈ Z[X].

First, 0 = P0(X) ∈ Z[X]. Now assume that Pi(X) ∈ Z[X] for 0 ≤ i ≤ k − 1. Then
dk
dk−1

ωk − αωk−1 = Pk(α)−αPk−1(α)
dk−1

∈ M ∩
(
Q + Qα+ . . .+ Qαk−1) = Mk = Zω0 + . . .+

Zωk−1. Since Pk−1(X) ∈ Z[X] and dk−1ωi = dk−1
di

diωi ∈ Z[α] for 0 ≤ i ≤ k − 1, we do
obtain Pk(α) ∈ Z[α].
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Corollary 11. Let ZK be the ring of algebraic integers of a number field K of degree
n ≥ 2. There exists β ∈ ZK such that K = Q(β) and such that ZK admits a Z-basis of
the form {1, β, ω3, . . . , ωn}.

Proof. Notice that K = Q(β) where β = (α+ P1(α))/d1.

Lemma 12. Let {ω1, . . . , ωr} be a Z-basis of a free Z-module M ⊆ C of rank r ≥ 1.
There exists a Z-basis for M containing ω = a1ω1 + . . . + arωr ∈ M if and only if
gcd(a1, . . . , ar) = 1. Consequently, assume M ∩ Q = Z, e.g. assume that M is an order
of a number field. There exists a Z-basis for M of the form {ω1 = 1, ω2, . . . , ωr} and if
ω = a1 +

∑r
i=2 aiωi ∈ M, there exists a Z-basis for M containing 1 and ω if and only if

δ := gcd(a2, . . . , ar) = 1.

Proof. Clearly, the condition is necessary.
Conversely, assume that gcd(a1, . . . , ar) = 1. Let u1, . . . , ur ∈ Z be such that a1u1 +

. . .+ arur = 1 (Bézout). Define a Z-linear map φ : M −→ Z by

x = x1ω1 + . . .+ xrωr ∈M 7→ φ(x) = x1u1 + . . .+ xrur ∈ Z.

Then φ(ω) = 1 and x = φ(x)ω+(x−φ(x)ω) for x ∈M. Therefore, M = Zω⊕kerφ, where
kerφ is a free Z-module of rank r − 1 (e.g. see [ST, Theorem 1.16]). The first assertion
follows. Let us prove the second assertion. If B = {1, ω, ω′3, . . . , ω′r} is a completed Z-basis
of M, then (ω− a1)/δ =

∑r
i=2

ai
δ ωi being in M can be written as (ω− a1)/δ = b1 + bω+

(
∑r
i=3 biω

′
i), where b, bi ∈ Z. Multiplying by δ and using the Z-linear independence

of B we obtain 1 = bδ and δ = b = 1. Conversely, if δ = 1, there exists a Z-basis of
Zω2 + . . .+Zωr containing ω′ :=

∑r
i=2 aiωi (by the first assertion). Hence, the set {1, ω′}

can be completed into a Z-basis of M. Since ω′ := ω−a1, the set {1, ω} can be completed
into a Z-basis of M.

Theorem 13. Let α be an algebraic integer of degree n ≥ 2. There exists a Z-basis of
Z[conj(α)] containing 1 and α.

Proof. The order Z[conj(α)] admits a Z-basis of the form {1, ω2, . . . , ωr}, where r =
(Q(conj(α)) : Q) (Lemma 12). Write α = a +

∑r
i=2 aiωi, with a, ai ∈ Z. Let us prove

that δ := gcd(a2, . . . , ar) = 1 (Lemma 12). Set Z0[X1, . . . , Xn] = {P (X1, . . . , Xn) ∈
Z[X1, . . . , Xn] : P (0, . . . , 0) = 0}. Let βk = αk − a be the complex conjugates of β =
α− a =

∑r
i=2 aiωi ∈ δZ[conj(α)], 1 ≤ k ≤ n. Since Z[conj(α)] = Z[β1, . . . , βn], we have

β = δ(a0 + P (β1, . . . , βn)),

where a0 ∈ Z and P (X1, . . . , Xn) ∈ Z0[X1, . . . , Xn]. Now, Gal(Q(conj(α))/Q) acts tran-
sitively on the αk’s, hence acts transitively on the βk’s. Therefore, we obtain

βk = δ(a0 + Pk(β1, . . . , βn)) (1 ≤ k ≤ n),

where Pk(X1, . . . , Xn) ∈ Z0[X1, . . . , Xn]. By induction on l, it follows that

βk = δ(al + δlPk,l(β1, . . . , βn)) (1 ≤ k ≤ n and l ≥ 0),

where al ∈ Z, and Pk,l(X1, . . . , Xn) ∈ Z0[X1, . . . , Xn]. We obtain the contradiction 0 6=
α1 − α2 = β1 − β2 ∈ δl+1Z[conj(α)] for all l ≥ 0.
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Remarks 14. Take Πα(X) = X4 + 4(m2 + 1)X2 + 4(m2 + 1), m > 1, Q-irreducible. The
extension Q(α)/Q is Galois, α′ = α3+2α

2m +2mα is a conjugate of α and αα′ − 2m = α2+2
m ∈

Z[conj(α)], Hence, there do not exist Z-bases of Z[conj(α)] containing 1, α and α2. How-
ever, if α is an algebraic integer of degree n such that Q(α)/Q is Galois and if the index
(Z[conj(α)] : Z[α]) is prime, there exist Z-bases of Z[conj(α)] containing 1, α, . . . , αn−2,
by Proposition 10.

Question 15. In the cyclic cubic case, {1, α, α2} is a Z-basis of Z[conj(α)] if and only
if Z[α] is Galois-invariant, hence if and only if fα divides 3b − a2 and 3ac − b2, where
Dα = f2

α (Theorem 17). In the Galois quartic case, can anyone give a simple necessary
and sufficient condition for the existence of Z-basis of Z[conj(α)] of the form {1, α, α2, ω4}
that would readily apply to the simplest quartic fields (Proposition 4) where such Z-basis
do exist?

Corollary 16. Let α ba a cubic algebraic integer. Assume that Q(α)/Q is Galois, i.e.
assume that Dα = f2

α is a square. Then

DZ[conj(α)] = Dα/(Z[conj(α)] : Z[α])2 =
(
fα/(Z[conj(α)] : Z[α])

)2

and the index (Z[conj(α)] : Z[α]) is equal to min{d ≥ 1: dZ[conj(α)] ⊆ Z[α]}, i.e. is equal
to the least common multiple of the denominators of the entries of the matrix Mα of the
coordinates in the Q-basis Bα = {1, α, α2} of any Z-generating system of Z[conj(α)].

Proof. Let {1, α, ω3 = (A+Bα+ α2)/C} be a Z-basis of Z[conj(α)], where A,B,C ∈ Q
(Theorem 13). Then α2 = −A − Bα + Cω3 ∈ Z[conj(α)] = Z + Zα + Zω3. Hence,
A,B,C ∈ Z, by the Q-linear independence of {1, α, ω3}, and Z[α] = Z + Zα + Zα2 =
Z+Zα+ZCω3 yields (Z[conj(α)] : Z[α]) = C. Finally, min{d ≥ 1: dZ[conj(α)] ⊆ Z[α]} =
min{d ≥ 1: dω3 ∈ Z[α]} = C.

5. The cyclic cubic case. Our motivation for proving Theorem 13 is that we knew it
to hold in the symmetric case (Theorem 8) and in the cyclic cubic case (Theorem 17). Our
aim in the present section is to give a new proof of Theorem 17, based on Corollary 16 to
Theorem 13. We hope this new approach might be helpful to find an analog of Theorem 17
in the two possible Galois quartic cases: (i) in the bicyclic biquadratic case where we
have not yet managed to adopt the method used in [LL16] and (ii) in the cyclic quartic
case where the method used in [LL16] cannot work. In these two cases we presently
only know of an improvement on Theorem 8 which gives a Z-generating system with
24 elements. Indeed, by [LL16, Lemmas 7 and 8] we know beforehand Z-generating subsets
of Z[conj(α)] with 16 elements (cyclic quartic case) or 12 elements (biquadratic bicyclic
case).

Theorem 17 (see [LL16, Theorem 2]). Let Πα(X) = X3 − aX2 + bX − c ∈ Z[X] be the
minimal polynomial of a cubic algebraic integer α. Assume that the extension Q(α)/Q is
Galois, i.e. that Dα = f2

α is a square. Then DZ[conj(α)] = ∆2
α, where

∆α = gcd(fα, a2 − 3b, b2 − 3ac).

In particular, the cubic order Z[α] is Gal(Q(α)/Q)-invariant if and only if fα divides
a2 − 3b and b2 − 3ac. Moreover, let α′ be any one of the two other conjugates of α and
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let x, y, z ∈ Z be such that

xfα + y(a2 − 3b) + z(b2 − 3ac) = ∆α = gcd(fα, a2 − 3b, b2 − 3ac)

Then {1, α, η = xα2 + yα′ + zα′α2} is a Z-basis of Z[conj(α)].

Proof. We may assume that fα = (α − α′)(α − α′′)(α′ − α′′). By Theorem 8, Ωα =
{1, α, α2, α′, αα′, α2α′} is a Z-generating system of Z[conj(α)]. By [Lou12, Proposition 10],
the matrix Mα of the coordinates of the elements of Ωα in the Q-basis Bα = {1, α, α2} is

Mα =


1 0 0 a2b+3ac−4b2+afα

2fα
(2a2−6b)c

2fα
(ab−9c−fα)c

2fα

0 1 0 −2a3+7ab−9c−fα
2fα

−a2b+3ac+2b2+afα
2fα

2a2c−ab2+3bc+bfα
2fα

0 0 1 2a2−6b
2fα

ab−9c−fα
2fα

−6ac+2b2

2fα

 .

Indeed, it suffices to determine its fourth column, i.e. the coordinates of α′ =
((α′ + α′′) + (α′ − α′′))/2 in Bα, from which those of αα′ and α2α′ follow. We notice
that α′ + α′′ = a− α and that

α′ − α′′ = (α− α′)(α− α′′)(α′ − α′′)
(α− α′)(α− α′′) = fα

Π′α(α) = fα
3α2 − 2aα+ b

,

i.e. that
α′ − α′′ = (2a2 − 6b)α2 − (2a3 − 7ab+ 9c)α+ a2b+ 3ac− 4b3

fα
.

For 1 ≤ i ≤ 3 and 4 ≤ j ≤ 6, let ni,j/(2fα) be the (i, j)-coefficient of Mα, with ni,j ∈ Z.
By Corollary 16, we have (Z[conj(α)] : Z[α]) = 2fα/ gcd(ni,j) and

DZ[conj(α)] =
(

fα
(Z[conj(α)] : Z[α])

)2
=
(

1
2 gcd

1≤i≤3
4≤j≤6

(ni,j)
)2

=
(

1
2 gcd(n3,4, n3,5, n3,6)

)2
,

where we have used

n1,4 = bn3,4 − an3,5 + n3,6, n1,5 = cn3,4, n1,6 = cn3,5,

n2,4 = −2an3,4 + n3,5, n2,5 = −an3,5 + n3,6 and n2,6 = cn3,4 − bn3,5.

Noticing that f2
α = Dα = −4a3c− 4b3 + a2b2 + 18abc− 27c2 we obtain

n2
3,5 + n3,5(2fα) + (2fα)2 = (ab− 9c)2 + 3f2

α = n3,4n3,6

and

gcd(n3,4, n3,5, n3,6) = gcd(n3,4, 2fα, n3,6) = gcd(2a2 − 6b, 2fα,−6ac+ 2b2),

by Lemma 18. The desired result on DZ[conj(α)] follows.
As for the last assertion, it follows from (1), (2) and

D(1, α, η) =
(
x∆(1, α, α2) + y∆(1, α, α′) + z∆(1, α, α′α2)

)2

=
(
−xfα + y(3b− a2) + z(3ac− b2)

)2 = ∆2
α = DZ[conj(α)],

where the σi’s in (2) are chosen such that σ1(α) = α, σ2(α) = α′ and σ3(α) = α′′.

Lemma 18. If A2 +AB +B2 = CD 6= 0, then

gcd(A,C,D) = gcd(B,C,D) = gcd(A,B,C,D).
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Proof. By symmetry, it suffices to prove that gcd(A,C,D) divides B, hence that if p is
prime and pk divides A and p2k divides (A + B)B = CD − A2 then pk divides B. This
assertion is clear because if pl is the highest power of p that divides B and l < k then
p2l is the highest power of p that divides (A + B)B. This proof is simpler than the one
of [LL16, Lemma 5]

Remarks 19. For the polynomials Pf,g(X) introduced in [Bal], we have ∆α =
gcd(fα, 3λ−a2,−3a−λ2) with fα = (f−g)(3a+λ2) and a2−3λ = (f2+g2−fg)(3a+λ2).
Hence, ∆α = 3a+ λ2 which is [Bal, Corollary 5.3]. In the same way, Theorem 17 proves
in one fell swoop the assertion on the Z-bases in [LL14, Theorem 1.2].

6. The behavior of the orders Z[αk] and Z[conj(αk)]. Let α be an algebraic integer
of degree n. Set

Eα = {k ≥ 1: Q(αk) = Q(α)} = {k ≥ 1: (Q(αk) : Q) = n},
Eα = {k ∈ Eα : Z[αk] = Z[α]} = {k ∈ Eα : Dαk = Dα}

and

Sα = {k ∈ Eα : Z[conj(αk)] = Z[conj(α)]} = {k ∈ Eα : DZ[conj(αk)] = DZ[conj(α)]}.

As k varies in Eα, we would like to understand the behaviors of the Z[αk]’s, orders of Q(α),
of the Z[conj(αk)]’s, orders of Q(conj(α)) = Q(α1, . . . , αn), and of their discriminants Dαk

and DZ[conj(αk)]. For simplicity, we usually assume that Q(α)/Q is Galois. In that case,
Z[α] and Z[conj(α)] are orders of the number field Q(α).

If ε is a root of unity of order n, then Eε = {k ≥ 1: gcd(k, n) = 1} and Z[εk] = Z[ε] =
Z[conj(ε)] = Z[conj(εk)] for k ∈ Eε.

If Q(α)/Q is a totally real cubic extension or more generally an extension with at
least three real embeddings and no proper subfield, then Eα = Z≥1 (if Q(αk) $ Q(α),
then αk = r ∈ Q and all the real conjugates of α are solutions of the equation xk = r

which has at most two real solutions).
In contrast, Eα = {k ≥ 1: 3 - k} for the non-totally real cubic algebraic integer

α = 3
√

2.
On the one hand, since Dαk goes to infinity as k goes to infinity, see Theorem 20, the

set Eα is always finite and it is reasonable to make guesses on the precise behavior of the
Z[αk]’s, see Conjecture 23.

On the other hand, it is natural to wonder whether for some α’s or most α’s we have
Z[conj(αk)] = Z[conj(α)] for infinitely many k’s in Eα, or even for a positive proportion

0 < ρα := lim
K→∞

#[1,K] ∩ Sα
#[1,K] ∩ Eα

of the k’s in Eα.
The behaviors of the DZ[conj(αk)]’s and Z[conj(αk)]’s seem hard to predict at the mo-

ment. To begin with, we know of only few cases for which a formula for the DZ[conj(αk)]’s
can help us study these behaviors, see Theorems 8 and 17. So we did extended compu-
tations in the Galois cubic and quartic cases. According to these computations, it seems
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that there are some cyclic cubic α’s for which k 7→ DZ[conj(αk)] is a strictly increasing se-
quence, see Question 25. However, for any cyclic cubic unit ε the sequence k 7→ DZ[conj(εk)]
seems to come back to its first term with a positive probability, see Conjecture 26. For
the Galois quartic cases the situation is less clear for it seems that for bicyclic biquadratic
quartic units the sequence k 7→ DZ[conj(εk)] may never come back to its first term, see
Conjecture 30.

In this final section, we start to investigate these questions. From a computational
point of view, for a given bound K we only have access to Eα(K) = [1,K] ∩ Eα and

Eα(K) = [1,K] ∩ Eα, Sα(K) = [1,K] ∩ Sα and ρα(K) = #Sα(K)
#Eα(K) . (4)

6.1. The behavior of the orders Z[αk]

Theorem 20 (see [Dub] and [Lou20]). Let α 6= 0 be an algebraic integer which is not a
root of unity. Then the discriminants Dαk go exponentially to infinity with k.

In the cubic and totally imaginary quartic cases we have results much better than
Theorem 20:

Theorem 21. Let ε be a cubic unit. Then, |Dεk | ≥ hkε/2 for some explicit hε > 1, i.e.
Dεk goes exponentially to infinity as k goes to infinity. Consequently, if Q(ε)/Q is not
Galois, i.e. if Dα is not a square in Z, then DZ[conj(εk)] = D3

εk also goes exponentially to
infinity as k goes to infinity.

Proof. Let η be a cubic unit.
1. (See [Lou10, Theorem 1] or [Lou15, Theorem 9].) If Dη < 0, letting η1 be the real

conjugate of η and η2 and η3 = η̄2 be the two complex conjugates of η, then |Dη| ≥ hη/2,
where

hη = max(|η1|, |η1|−1) = max(|η1|, |η1|−1, |η2|2, |η2|−2, |η3|2, |η3|−2)3/2 > 1.

2. (See [Lou12] or [Lou15, Theorem 33].) If Dη > 0, letting η1, η2, η3 be the three real
conjugates of η, then |Dη| ≥ hη/2, where

hη = max(|η1|, |η1|−1, |η2|, |η2|−1, |η3|, |η3|−1)3/2 > 1.

By applying these bounds to εk and noticing that hεk = hkε , the first assertion follows.
Now, if Q(εk)/Q = Q(ε)/Q is not Galois, then Gal(Q(conj(εk)/Q)) is isomorphic to the
symmetric group S3 and DZ[conj(εk)] = D3

εk (Theorem 8).

Theorem 22 (see [Lou10, Theorem 2]). Let ε1, ε̄1, ε2 and ε̄2 be the complex conju-
gates of a totally imaginary quartic unit ε which is not a complex root of unity. Set
hε = max(|ε1|, |ε1|−1, |ε2|, |ε2|−1) > 1. Then, |Dεk | ≥ 7hkε/10 for k ∈ Eε, i.e. Dεk goes
exponentially to infinity as k ∈ Eε goes to infinity.

6.2. The behavior of the cubic orders Z[αk]. Let α be a cubic algebraic integer
such that Q(α)/Q is Galois, i.e. whose discriminant Dα = f2

α is a square. Let Πα(X) =
X3 − aX2 + bX − c ∈ Z[X] be its minimal polynomial. Set H(α) = max(|a|, |b|, |c|). By
changing α into −α is necessary, when doing computations we may and we will assume
that a ≥ 0. If α is assumed to be a cubic unit, we will denote it by ε instead. We computed
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the sets Eα(100) for the α’s in the range H(α) ≤ 200 for which Q(α)/Q is cyclic. (The
computation took 17176 seconds with Maple on a MacBook Air laptop computer and
gave 7125 cyclic cubic extensions and 28 occurrences in Conjecture 23.) According to this
computation, it seems reasonable to conjecture:

Conjecture 23. Let α be a cyclic cubic algebraic integer. Then #Eα ≥ 2 if and only if
Πα(X) = X3 − aX2 + bX − c ∈ Z[X] with |ab− c| = 1, in which case Eα = {1, 2}.

At least, according to [Lou12, Theorem 1 and Lemma 5], this conjecture is true when
restricted to algebraic units:

Theorem 24. Let ε be a cyclic cubic unit. Then #Eε ≥ 2 if and only if Πε(X) =
X3 − aX2 + bX − c ∈ Z[X] with |ab − c| = 1, in which case Eε = {1, 2}. Moreover, it
happens only in the following 8 cases:

Πε(X) Dε

X3 −X2 − 2X − 1 49
X3 +X2 − 2X − 1 49
X3 − 2X2 −X + 1 49
X3 + 2X2 −X − 1 49

Πε(X) Dε

X3 − 3X − 1 81
X3 − 3X + 1 81
X3 − 3X2 + 1 81
X3 + 3X2 − 1 81

The proof of Theorem 24 stems from the lowers bounds for discriminants of totally
real cubic units used in the proof of Theorem 21. For algebraic integers we only have
the weaker estimates obtained in the proof of Theorem 20. They are not good enough to
prove Conjecture 23.

Πα(X) K ρα(K)
X3 − 3X2 − 4X − 1 102 0.49
fα = 7 103 0.479

104 0.4645
105 0.45166

X3 − 9X2 + 6X + 1 102 0.34
fα = 32 · 7 103 0.308

104 0.3068
105 0.30272

X3 − 43X2 + 40X + 1 102 0.55
fα = 7 · 13 · 19 103 0.492

104 0.4817
105 0.47455

X3 − 31X2 − 25X − 1 102 0.30
fα = 23 · 7 · 13 103 0.305

104 0.2968
105 0.28942

Πα(X) K ρα(K)
X3 − 54X2 + 69X − 1 102 0.18
fα = 32 · 5 · 7 · 11 103 0.161

104 0.1547
105 0.15172

X3 − 24X2 + 23X − 5 102 0.65
fα = 132 103 0.621

104 0.5938
105 0.58007

X3 − 33X2 + 32X − 7 102 0.72
fα = 331 103 0.624

104 0.5974
105 0.57832

X3 − 9X + 9 102 0.01
fα = 27 103 0.001

104 0.0001
105 0.00001

Table 2

6.3. The behavior of the cubic orders Z[conj(αk)]. We come back to a problem
considered in [Lou16]. We stick to the notation introduced in (4). For various cyclic cubic
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algebraic integers α, we computed the approximations ρα(K) to the putative probability
ρα that Z[conj(αk)] = Z[conj(α)], see Table 2. (If Πα(X) = X3 − aX2 + bX − c, then
Πα2(X) = X3−(a2−2b)X2 +(b2−2ac)X−c2 and Παk(X) = X3−akX2 +bkX−ck with
ak+3 = aak+2 − bak+1 + cak and bk+3 = bbk+2 − acbk+1 + c2bk. We then use Theorem 17
to compute the DZ[conj(αk)] = ∆αk ’s.) It would be nice to experimentally guess and
understand the dependence of ρα on Πα(X).

The case fα = 27 of Table 2 can be generalized to show that there are probably
infinitely many cases where Eα = {1}:
Question 25. Consider the polynomials Πα(X) = X3 − CX + C ∈ Z[X], Q-irreducible
for C 6= 0. According to our computation we conjecture that gcd(Dαk , (3bk − a2

k)2,

(3akck − b2
k)) = C2(k−bk/4c), both in Z and Z[C]. If one could prove this, one would

get an infinite family of cyclic cubic fields Q(α) for which k 7→ DZ[conj(αk)] would be
strictly increasing, hence for which Z[conj(αk)] = Z[conj(α)] if and only if k = 1. Indeed,
Dα = C2(4C − 27) is a square if and only if C = C ′2 + C ′ + 7 for some C ′ ∈ Z.

Let now restrict ourselves to algebraic units ε. Setting
ρmin(B,K) := min{ρε(K) : Q(ε) cubic cyclic and H(ε) ≤ B},

according to these computations, we have ρmin(50, 103) = ρε(103) = 0.249, where
Πε(X) = X3 − 10X2 + 17X − 1, and there are 159 polynomials Πα(X) in this range
with a ≥ 0. (The computation took 2000 seconds with Maple on a MacBook Air laptop
computer.) We also have ρmin(103, 102) = ρε(102) = 0.17, where Πε(X) = X3− 489X2 +
534X−1, and there are 1310 polynomials Πα(X) in this range with a ≥ 0. (The computa-
tion took 900 seconds with Maple on a MacBook Air laptop computer.) Hence, contrary
to the non-Galois cubic case (see Theorem 21), it seems reasonable to conjecture:
Conjecture 26. If ε is a cyclic cubic unit, then Z[conj(εk)] = Z[conj(ε)] for a positive
proportion ρε > 0 of the k ∈ Eε = {k ≥ 1}.
6.4. The abelian quartic case. Let α be a quartic algebraic integer. Assume that
Q(α)/Q is Galois. Restrict k to range in Eα, in which case Z[αk] and Z[conj(α)] are
orders of Q(α). We did similar computations as those in Section 6.3. However, here we
do not have anything analogous to Theorem 17 to compute the discriminants of the
Z[conj(α)]’s. Instead, we used Theorem 8 and wrote a program in Maple which from
the matrix Mα ∈ M4,24(Q) of the coordinates of the 24 elements of Ωα in the canonical
Q-basis Bα = {1, α, α2, α3} of Q(α) computes a matrix Pα ∈ GL4(Q) of the coordinates
in Bα of a Z-basis of Z[conj(α)]. Thus P−1 ∈M4,4(Z) and (Z[conj(α)] : Z[α]) = detP−1,
which gives DZ[conj(α)] = Dα/(Z[conj(α)] : Z[α])2. For a given K, we can thus determine
Eα(K), Sα(K) and ρα(K), with the notation of (4).
6.5. Totally imaginary Galois quartic units. When dealing with totally imaginary
quartic units ε for which K/Q = Q(ε)/Q is Galois, we have some information. Indeed, let
L be the real quadratic subfield (fixed by the complex conjugation) of a totally imaginary
quartic Galois field K. Let WK be the multiplicative group of the complex roots of unity
in K and UK and UL be the unit groups of the rings of algebraic integers of K and L.
The Hasse unit index QK = (UK : WKUL) is equal to 1 or 2 (see [Hasse, Satz 14] or [Lem,
Proposition 1]).
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First, assume that K/Q = Q(ε)/Q is cyclic quartic. Then QK = 1, by [Hasse, Satz 24] or
[Lem, Point 5, page 352]. Therefore, to get a totally imaginary cyclic quartic unit we must
have WK 6= {±1}. Hence, K = Q(ζ5) and ε ∈ Z[ζ5]× =

{
±ζk5

(
(1 −

√
5)/2

)l : k, l ∈ Z
}

.
According to our computation it is reasonable to conjecture the following:

Conjecture 27. Let ε be a totally imaginary cyclic quartic unit. Thus ε ∈
{
±ζk5

( 1−
√

5
2
)l:

1 ≤ k ≤ 4, l ∈ Z
}

and Eε = {k ≥ 1: 5 - k}. Then Z[conj(εk)] = Z[conj(ε)] for all k ∈ Eε.
Second, assume that K/Q = Q(ε)/Q is bicyclic biquadratic. Since for an algebraic unit ε
we have Z[conj(ε)] = Z[conj(η)] for η ∈ {±ε,±1/ε}, we may suppose the minimal poly-
nomial Πε(X) = X4 − aX3 + bX2 − cX + 1 ∈ Z[X] of a quartic unit ε is reduced, i.e.
such that |c| ≤ a. The minimal polynomials Πε(X) = X4 − aX3 + bX2 − cX + 1 ∈ Z[X]
of totally imaginary quartic units satisfy b ≥ −1 and 0 ≤ |c| ≤ a ≤

√
4b+ 5 (e.g. see

[Lou15, Lemma 15]). In the range −1 ≤ b ≤ 103 and 0 ≤ |c| ≤ a ≤
√

4b+ 5 we found 1141
minimal polynomials of totally imaginary bicyclic biquadratic units. For each of them,
with K = 100, we computed Eε(K), Sε(K) and ρε(K). (The computation took 28423
seconds with Maple on a MacBook Air laptop computer for −1 ≤ b ≤ 103.) There are
only 6 out of these 1141 reduced units for which #Sε(100) > 1: Πζ12(X) = X4−X2 + 1,
Πζ8(X) = X4 + 1 and the 4 non-trivial ones in Table 3 for which we did more extended
computation up to K = 800 to check that the conjecture on Sε and hence the conjecture
on ρε given in this Table 3.

Πε(X) = X4 −X3 + 2X2 +X + 1 Eε = {k ≥ 1: 3 - k}
Dε = 22 · 32 · 52, K = Q(

√
−3,
√
−15) Sε = {1, 2}

ε = ζ6
1+
√

5
2 = 1+

√
−3+

√
−15+

√
5

4 ρε = 0
Πε(X) = X4 − 4X3 + 5X2 − 2X + 1 Eε = {k ≥ 1: 12 - k}
Dε = 24 · 32, K = Q(

√
−1,
√
−3) Sε = {k ≥ 1: k ≡ ±1 (mod 6)}

ε = ζ24
√

2 +
√

3 = 2+
√
−1+

√
3

2 ρε = 4/11
Πε(X) = X4 − 14X3 + 53X2 − 4X + 1 Eε = {k ≥ 1: 12 - k}
Dε = 24 · 32 · 132 · 172, K = Q(

√
−1,
√
−3) Sε = {k ≥ 1: k ≡ ±1 (mod 6)}

ε = ζ24

√
(2 +

√
3)3 = 7+2

√
−1+

√
−3+4

√
3

2 ρε = 4/11
Πε(X) = X4 − 52X3 + 725X2 − 14X + 1 Eε = {k ≥ 1: 12 - k}
Dε = 24 · 32 · 1812 · 2412, K = Q(

√
−1,
√
−3) Sε = {k ≥ 1: k ≡ ±1 (mod 6)}

ε = ζ24

√
(2 +

√
3)5 = 26+7

√
−1+4

√
−3+15

√
3

2 ρε = 4/11
Table 3. (Gal(Q(ε)/Q) = C2 × C2)

Conjecture 28. Let ε be a totally imaginary bicyclic biquadratic unit which is not a
complex root of unity. Then #Sε > 1 if and only if either (i) ε ∈ {±ζk6 (2 +

√
3)l :

k, l ∈ {±1}}, Eε = {k ≥ 1: 3 - k}, Sε = {1, 2} and ρε = 0, or (ii) ε ∈
{
±
√
ζk12(2 +

√
3)l :

k ∈ {1, 5, 7, 11}, l odd
}

, Eε = {k ≥ 1: 12 - k}, Sε = {k ≥ 1: k ≡ ±1 (mod 6)} and
ρε = 4/11.

Notice that the complex conjugates of
√
ζ12(2 +

√
3)l are

√
ζ12(2 +

√
3)l,√

ζ5
12(2 +

√
3)−l,

√
ζ7

12(2 +
√

3)−l and
√
ζ11

12 (2 +
√

3)l.
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6.6. Totally real Galois quartic units

First, assume that K/Q = Q(ε)/Q is cyclic quartic. There are 138 reduced polynomi-
als Πε(X) = X4 − aX3 + bX2 − cX + d ∈ Z[X], d ∈ {±1}, in the range H(α) =
max(|a|, |b|, |c|) ≤ 50 for which Q(ε)/Q is a totally real Galois cyclic extension. For these
138 reduced polynomials we found that 0.17 ≤ ρε(100) ≤ 0.52, see the excerpt of our
computation given in Table 4. (The computation took 5427 seconds with Maple on a
MacBook Air laptop computer.)

Πε(X) K #Eε(K) #Sε(K) ρε(K)
X4 − 24X3 + 26X2 − 9X + 1 100 100 17 0.17
Dε = 1125 200 200 38 0.19
Gal(Q(ε)/Q) = C4 400 400 74 0.185
Q(ε) totally real 800 800 143 0.17875
X4 − 39X3 + 16X2 + 16X + 1 100 100 52 0.52
Dε = 674541125 200 200 102 0.51
Gal(Q(ε)/Q) = C4 400 400 202 0.505
Q(ε) totally real 800 800 395 0.49375

Table 4

Therefore, as in Conjecture 26, it seems reasonable to conjecture:

Conjecture 29. If ε is a totally real cyclic quartic unit, then Eε = {k ≥ 1} and
Z[conj(εk)] = Z[conj(ε)] for a positive proportion ρε > 0 of the k ∈ Eε.

Second, assume that K/Q = Q(ε)/Q is bicyclic biquadratic. There are 121 reduced
polynomials Πε(X) = X4 − aX3 + bX2 − cX + d ∈ Z[X], d ∈ {±1}, in the range
H(α) = max(|a|, |b|, |c|) ≤ 30 for which Q(ε)/Q is a totally real Galois bicyclic bi-
quadratic extension. For 95 out of these units ε we found that Eε(100) = {1} and for the
26 remaining ones we found that Eε(100) = {1, . . . , 100} and 0.17 ≤ ρε(100) ≤ 0.29, see
the excerpt of our computation given in Table 5. (The computation took 2817 seconds
with Maple on a MacBook Air laptop computer.)

Πε(X) K #Eε(K) #Sε(K) ρε(K)
X4 − 46X3 − 19X2 + 4X + 1 100 100 14 0.14
Dε = 110250000 200 200 30 0.15
Gal(Q(ε)/Q) = C2 × C2 400 400 52 0.13
Q(ε) totally real 800 800 105 0.13125
X4 − 13X3 − 18X2 + 11X − 1 100 100 29 0.29
Dε = 8410000 200 200 61 0.305
Gal(Q(ε)/Q) = C2 × C2 400 400 115 0.2875
Q(ε) totally real 800 800 220 0.275

Table 5
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Therefore, it seems reasonable to conjecture:
Conjecture 30. If ε is a totally real bicyclic biquadratic unit, then either (i) Eε = {1}
or (ii) Eε = {k ≥ 1}and Z[conj(εk)] = Z[conj(ε)] for a positive proportion ρε > 0 of the
k ∈ Eε.

Moreover, both cases have positive probability.
At least, it would be worth finding a necessary and sufficient condition on Πε(X) for

having Eε = {1}.
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