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Abstract. The main goal of this paper is to prove a correct version of one of the main results in
the paper Note on some ideals of associative rings by M. Filipowicz, M. Kępczyk [Acta Math.
Hungar. 142 (2014), 72–79]. Moreover, we give a new proof of Theorem 8 there.

1. Introduction and preliminaries. All rings in this paper are associative but not
necessarily with unity.

We write I Ct R (I Cl R, I Cr R), if I is a two-sided ideal (left ideal, right ideal) of a
ring R.

For a given ring R, we denote by R1 the ring obtained by adjoining a unity to R and
by Rop the ring with the opposite multiplication.

In [3] E. R. Puczyłowski introduced the notion of ∗-ideals, which is related to radical
theory of rings. He defined ∗-simple rings (i.e. rings without non-trivial ∗-ideals) which
are important examples of unequivocal rings. Later, in [2], the authors considered left
∗-ideals. Finally, in [1] a generalization of ∗-ideals and left ∗-ideals was introduced, i.e.
the notion of ∗(x, y, z)-ideals, where x, y, z ∈ {l, r, t}.

Definition 1.1 ([1, Definition 1]). Let x, y, z ∈ {l, r, t}. A subring I of a ring R such
that I Cx R is called a ∗(x, y, z)-ideal of R, if I Cz A for every ring A such that R Cy A.

In our notation, ∗-ideals and left ∗-ideals are ∗(t, t, t)-ideals and ∗(l, l, l)-ideals, respec-
tively.

A ring containing no non-trivial ∗(x, y, z)-ideals is called a ∗(x, y, z)-simple ring. The
class of ∗(x, y, z)-simple rings will be denoted by S(x, y, z).

2010 Mathematics Subject Classification: 16D25.
Key words and phrases: ∗(x, y, z)-ideal, ∗(x, y, z)-simple ring.
The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc121-13 [151] c© Instytut Matematyczny PAN, 2020



152 M. NOWAKOWSKA

In the paper we prove that there exist ∗(x, y, z)-simple rings with zero multiplication
which are not algebras over a field. This shows that Lemma 7 in [1], needed in the proof
of Theorem 8 in [1], is not true. Next, we present a new, correct proof of Theorem 8
without using Lemma 7.

2. Results. We begin this section with an easy to observe property of ∗(x, y, z)-simple
rings.

Lemma 2.1. Let x, y ∈ {l, r, t}. Then R ∈ S(x, y, r) if and only if Rop ∈ S(x′, y′, l),
where l′ = r, r′ = l, t′ = t.

Obviously, there are 27 classes S(x, y, z), where x, y, z ∈ {l, r, t}. The next three facts
show that there are 12 classes among them which consist of all associative rings.

Proposition 2.2. Let x ∈ {l, r, t}. Then the class S(x, r, l) is equal to the class of all
rings.

Proof. Assume R is an associative ring and I is a ∗(x, r, l)-ideal of R, where x ∈ {l, r, t}.

Note that R ∼=
(

R 0
0 0

)
<r

(
R1 0
R1 0

)
. Since I ∼=

(
I 0
0 0

)
is a ∗(x, r, l)-ideal of R,(

I 0
0 0

)
<l

(
R1 0
R1 0

)
. Then

(
R1 0
R1 0

) (
I 0
0 0

)
=

(
R1I 0
R1I 0

)
⊆

(
I 0
0 0

)
.

The last inclusion implies the equality R1I = 0. Therefore I = 0. This means that
R ∈ S(x, r, l).

Below we present an immediate consequence of the above proposition and Lemma
2.1.

Corollary 2.3. Let x ∈ {l, r, t}. Then the class S(x, l, r) is equal to the class of all
rings.

Note that ∗(x, r, t)-ideals are ∗(x, r, l)-ideals and ∗(x, l, t)-ideals are ∗(x, l, r)-ideals, for
every x ∈ {l, r, t}. Therefore the inclusions S(x, r, l) ⊆ S(x, r, t) and S(x, l, r) ⊆ S(x, l, t)
hold. Thus by Proposition 2.2 and Corollary 2.3 we obtain the following result.

Corollary 2.4. Let x ∈ {l, r, t}. Then:

(i) The class S(x, r, t) is equal to the class of all rings.
(ii) The class S(x, l, t) is equal to the class of all rings.

Remark 2.5. Proposition 2.2 and Corollaries 2.3 and 2.4 show that Lemma 7 in [1]
saying that a ∗(x, y, z)-simple ring with zero multiplication is an algebra over a field, for
every x, y, z ∈ {l, r, t}, is not true.

Now we are ready to present a corrected version of Lemma 7. The proof remains the
same as that in [1]. We will denote by A any class of rings appearing in Proposition 2.2
and Corollary 2.3.

Corollary 2.6. Let x, y, z ∈ {l, r, t}, R ∈ S(x, y, z) and R /∈ A. If R is a ring with zero
multiplication, then R is an algebra over a field.

The next two results allow us to prove Theorem 8 in [1] without using Lemma 7.
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Lemma 2.7. The following equalities hold:

(i) S(l, t, t) = S(t, t, t).
(ii) S(r, t, l) = S(t, t, l).
(iii) S(r, t, t) = S(t, t, t).
(iv) S(l, t, r) = S(t, t, r).

Proof. (i): Two-sided ideals are left ideals, hence ∗(t, t, t)-ideals are ∗(l, t, t)-ideals. This
proves the inclusion S(l, t, t) ⊆ S(t, t, t).

To show the reverse inclusion, let R ∈ S(t, t, t) and J be a ∗(l, t, t)-ideal of R. Obvi-
ously J <l R C R, hence J / R. This means that J is a ∗(t, t, t)-ideal of R ∈ S(t, t, t).
Consequently, either J = 0 or J = R, so R ∈ S(l, t, t).

(ii): Note that ∗(t, t; l)-ideals are ∗(r, t; l)-ideals. Therefore the inclusion S(r, t; l) ⊆
S(t, t; l) is clear.

Assume R ∈ S(t, t, l) and J is a ∗(r, t, l)-ideal of R. Then J <r R / R and by the
assumption we obtain J <l R. Thus J is a ∗(t, t, l)-ideal of R ∈ S(t, t, l). Hence, either
J = 0 or J = R. Finally, S(t, t, l) ⊆ S(r, t, l).

Statements (iii) and (iv) directly follow from Lemma 2.1 and the above statements
(i) and (ii), respectively.

Lemma 2.8. The following equalities hold:

(i) S(t, t; l) = S(t, t; t).
(ii) S(t, t, r) = S(t, t, t).

Proof. (i): ∗(t, t, t)-ideals are ∗(t, t, l)-ideals, hence S(t, t, l) ⊆ S(t, t, t).
To prove the opposite implication let R ∈ S(t, t, t). Then by Theorem 1 in [3] we know

that R is either a simple ring or an algebra with zero multiplication over a field. If R is a
simple ring, then obviously R ∈ S(t, t, l). If R is an algebra with zero multiplication over
a field, then applying Lemma 6 in [1], we get again that R ∈ S(t, t, l).

Applying Lemma 2.1 and the above statement (i) we obtain (ii).

Using the above results we are able to give a new proof of the following characterization
from [1].

Theorem 2.9 ([1, Theorem 8]). Let x, y ∈ {l, r, t}. Then R ∈ S(x, t, y), where x = y = t

or x 6= y if and only if R is either a simple ring or an algebra with zero multiplication
over a field.

Proof. Assume x, y ∈ {l, r, t} and x = y = t or x 6= y. Lemmas 2.7 and 2.8 imply the
equality S(x, t, y) = S(t, t, t). Now, the required equivalence follows from Theorem 1
in [3].
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