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Abstract. In the paper, we formulate equivalent conditions for an order in a number field to be
maximal.

1. Introduction. Let K be a number field and let RK be the ring of integers of K. An
order in K is a subring O of RK which contains an integral basis of length [K : Q]. The
ring RK is an order in K and it is called the maximal order (cf. [N, Chapter I, (12.1)
Definition]).

According to [N, Chapter I, (12.2) Proposition], every order in K is a one-dimensional
Noetherian domain with the field of fractions K.

The following ideal of RK is associated with an order O:

f = {a ∈ RK : aRK ⊆ O}.

This ideal is called the conductor of O. It is nonzero and it is the greatest ideal of RK

lying in O (cf. [N, p. 79]).

Example 1.1. Let K = Q(
√
d), where d is a square-free integer. Then

RK =

Z[
√
d] when d 6≡ 1 (mod 4),

Z
[

1+
√

d
2

]
when d ≡ 1 (mod 4).

Moreover,

O =

Z[f
√
d] when d 6≡ 1 (mod 4),

Z
[
f 1+

√
d

2

]
when d ≡ 1 (mod 4)
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for some f ∈ N (cf. [BS, p. 151]). The conductor of O is a principal ideal generated by f ;
f = fRK .

The question is as follows: when is O the maximal order? Obviously, if it is integrally
closed. Indeed, O ⊆ RK . Take a ∈ RK . Then a is integral over Z, so it is integral over O.
But O is integrally closed, so a ∈ O and RK ⊆ O.

In the paper, we consider the maximality of O in another context. We formulate
equivalent conditions for the maximality of O using some homomorphisms between ob-
jects related to orders. The paper contains natural conclusions from the results of [R2]
for orders in number fields.

Let K be a number field and let O be an order in K. We write Spec(O), Pic(O) and
cl I for the maximal spectrum of O, the Picard group of O and the class of an invertible
fractional ideal I of O in Pic(O), respectively.

The group Pic(O) is generated by all invertible ideals of O modulo the principal
ideals aO, 0 6= a ∈ K (cf. [N, Chapter I, (12.5) Definition]). From [N, Chapter I, (12.12)
Theorem and p. 75], it follows that it is finite and if O = RK is the maximal order, then
Pic(RK) is the ideal class group ClK of K. We write hK for the class number #ClK .

Throughout the paper, U(P ) and UK denote the group of invertible elements of a
commutative ring P and the group U(RK) of units of K, respectively.

2. Picard group and divisors of O. Consider the natural homomorphism Pic(O)→
ClK defined by

cl I 7→ cl(IRK) for all cl I ∈ Pic(O).
We call it the Picard group homomorphism and by [R2, Lemma 2.4] it is surjective.

Since the group Pic(RK) is finite, from [R2, Theorem 4.1], the following fact follows.
Theorem 2.1. Let K be a number field and let O be an order in K. The following
conditions are equivalent.
(1) O is the maximal order.
(2) The Picard group homomorphism is an isomorphism and UK ⊆ O.
(3) The Picard group homomorphism is injective and UK ⊆ O.
Corollary 2.2. Let K be a number field and let O be an order in K. Then O is the
maximal order if and only if
(1) #Pic(O) = hk.
(2) UK ⊆ O.
Example 2.3. Consider K = Q(

√
d), where d < 0 is a square-free integer and d ≡

5 (mod 8). Moreover, let O = Z
[
f 1+

√
d

2
]
for some f ∈ N.

Suppose f 6= 1. If d = −3, then UK = {±1,± 1±
√
−3

2 } * O. Therefore we assume
d 6= −3.

Now UK = {±1} ⊆ O. From [N, Chapter I, (12.12) Theorem], it follows that

#Pic(O) = hK
#U(RK/f)
#U(O/f) .

We show that #Pic(O) 6= hK .
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Indeed, assume f 6= 2. Then
√
d /∈ O. If gcd(d, f) = 1, then there exist x, y ∈ Z such

that dx+ fy = 1. Hence
(
√
d+ f)(

√
d x+ f) = 1 + f

and
√
d+ f ∈ U(RK/f) \ U(O/f).

Let p be a prime number such that p|d and p|f . It is easy to observe that 1+ f
p

√
d /∈ O

and gcd
(
1− f2

p2 d, f
)

= 1. Then
(
1− f2

p2 d
)
x+ fy = 1 for some x, y ∈ Z and[(

1 + f

p

√
d

)
+ f

][(
1− f

p

√
d

)
x+ f

]
= 1 + f.

Moreover,
(
1 + f

p

√
d
)

+ f ∈ U(RK/f) \ U(O/f).
Assume f = 2. Since d ≡ 5 (mod 8), the integer 1−d

4 is odd and gcd
( 1−d

4 , f
)

= 1.
Similarly as above, there exist x, y ∈ Z such that 1−d

4 x+ fy = 1. Hence(
1 +
√
d

2 + f

)(
1−
√
d

2 x+ f

)
= 1 + f

and 1+
√

d
2 + f ∈ U(RK/f) \ U(O/f).

Finally, #U(RK/f) 6= #U(O/f), i.e. #Pic(O) 6= hK .

Some homomorphism between the Picard group and the Chow group is associated
with the maximality of O.

First, consider the group C(O) of Cartier divisors and the group Div(O) of Weil
divisors of O. The first one is a multiplicative group generated by all invertible ideals
of O (cf. [E, Corollary 11.7]) and the second one is a free abelian group generated by all
maximal ideals of O (cf. [E, pp. 225, 259]).

Let I 6= 0 be an invertible ideal in O, p ∈ Spec(O) be a maximal ideal and Ip be the
localization of I at p. Moreover, let length(Op/Ip) denotes the length of the ring Op/Ip.

From [E, Theorem 11.10 and its proof], it follows that length(Op/Ip) <∞ and there
is a group homomorphism g : C(O)→ Div(O) defined by

g(I) =
∑

p∈Spec(O)

length(Op/Ip) · p

for all invertible ideals I in O. We call it the length homomorphism.
In the case when O = RK is the maximal order, the length homomorphism is injective

(cf. [E, Proposition 11.11]). Theorem 2.4 shows that the injectivity of g is an equivalent
condition for O to be maximal.

Theorem 2.4. Let K be a number field and let O be an order in K. The following
conditions are equivalent.

(1) O is the maximal order.
(2) The length homomorphism is an isomorphism.
(3) The length homomorphism is injective.

Proof. See [R2, proof of Theorem 3.1].
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Example 2.5. Consider K = Q(
√
−3) and O = Z

[
f 1+

√
−3

2
]
for some 1 6= f ∈ N.

Then ± 1±
√
−3

2 /∈ O, so 1±
√
−3

2 O 6= O. Since 1±
√
−3

2 RK = RK , by [R2, Lemma 3.1],
1±
√
−3

2 O ∈ ker g. The length homomorphism is not injective.

Let Chow(O) be the Chow group of O. It is the group of Weil divisors of O modulo
the principal divisors g(aO), 0 6= a ∈ K (cf. [E, p. 260]). The length homomorphism g

induces a homomorphism g : Pic(O)→ Chow(O).
Similarly as the length homomorphism, the homomorphism g : ClK → Chow(RK) is

injective (cf. [E, Proposition 11.11]).

Theorem 2.6. Let K be a number field and let O be an order in K. The following
conditions are equivalent.

(1) O is the maximal order.
(2) The homomorphism g : Pic(O)→ Chow(O) is an isomorphism and UK ⊆ O.
(3) The homomorphism g : Pic(O)→ Chow(O) is injective and UK ⊆ O.

Proof. See [R2, proof of Theorem 4.2].

It is easy to observe that the group of Cartier divisors of RK is the group of all
fractional ideals of K. We write CK for it.

There is a natural homomorphism C(O)→ CK defined by

I 7→ IRK for all I ∈ C(O).

We call it the Cartier group homomorphism.

Theorem 2.7. Let K be a number field and let O be an order in K. The following
conditions are equivalent.

(1) O is the maximal order.
(2) The Cartier group homomorphism is an isomorphism.
(3) The Cartier group homomorphism is injective.

Proof. See [R2, proof of Theorem 2.1].

Example 2.8. Consider K = Q(
√
−3) and O = Z

[
f 1+

√
−3

2
]
for some f ∈ N. If f 6= 1,

then 1±
√
−3

2 O ∈ ker(C(O)→ CK). The Cartier group homomorphism is not injective.

From Theorem 2.7, the corollary follows (see [R2, Corollary 2.1]).

Corollary 2.9. Let K be a number field and let O be an order in K. Then O is the
maximal order if and only if

(1) C(O) is a torsion-free group.
(2) UK ⊆ O.

3. Witt ring. There is a natural homomorphism WO → WK between the Witt rings
of O and K defined in the following way. IfM is a finitely generated projective O-module,
α : M×M → O is a nonsingular bilinear form onM and 〈(M,α)〉 ∈WO is the similarity
class of the inner product space (M,α), then

〈(M,α)〉 7→ 〈(N, β)〉,
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where N = K ⊗OM and β : N ×N → K is a nonsingular bilinear form on N defined by

β(a⊗m, b⊗ n) = abα(m,n) for all a, b ∈ K, m, n ∈M.

In the case when O = RK is the maximal order, the natural homomorphism WRK →
WK is injective (cf. [K, Satz 11.1.1]).

In [CS1, CS2], Ciemała and Szymiczek examined the kernel of WO → WK. They
proved that if O is not maximal, then the kernel of WO →WK is a nilideal. Moreover,
they showed that for every order O = Z[fi], f 6= 1, in the field K = Q(i) the natural
homomorphism is not injective. They formulated the conjecture that for a number field K
and an order O in K the homomorphism WO → WK is injective if and only if O is
maximal. We know that it is not true. If K = Q(

√
d), d 6≡ 1 (mod 4), O = Z[f

√
d] is

an order such that 2 - f and the radical of f divides d, then the natural homomorphism
WO → WK is injective (cf. [R1, Theorem 2.2]). Therefore the injectivity of the natural
homomorphism is not a sufficient condition for an order to be maximal. In [R2], we find
equivalent conditions for the maximality of O.

Theorem 3.1. Let K be a number field and let O be an order in K. Then O is the
maximal order if and only if

(1) The natural homomorphism WO →WK is injective.
(2) The group C(O) does not contain a nontrivial element of odd order.
(3) UK ⊆ O.

Proof. See [R2, proof of Theorem 5.1].

Consider the subgroup C2(O) of squares of the group C(O) and the
restriction g |C2(O) of the length homomorphism g : C(O)→ Div(O) to C2(O).

Corollary 3.2. Let K be a number field and let O be an order in K. Then O is the
maximal order if and only if

(1) The natural homomorphism WO →WK is injective.
(2) The homomorphism g |C2(O) is injective.
(3) UK ⊆ O.

Proof. See [R2, proof of Corollary 5.1].
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