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ADAPTIVE CONTROL OF DIFFUSION PROCESSES
WITH A DISCOUNTED REWARD CRITERION

Abstract. The optimal control problem we are dealing with in this paper
is to determine control policies that maximize a discounted reward crite-
rion when the dynamic system evolves as a stochastic differential equation
(SDE). Both the instantaneous reward function and the SDE’s drift coef-
ficient may depend on an unknown parameter. We give conditions ensur-
ing the existence of an asymptotically optimal policy using the so-called
Principle of Estimation and Control. We illustrate our results with several
examples.

1. Introduction. An adaptive control problem is an optimal control
problem (OCP) that is not completely specified in the sense that the system
dynamics or the optimality criterion depend on an unknown parameter θ.
In this paper the optimal control problem is to maximize a discounted re-
ward criterion when the system evolves as a diffusion process. To analyze our
adaptive control problem we follow the Principle of Estimation and Control
(PEC), which can be traced back to Kurano (1972) and Mandl (1974). The
idea is simply to estimate the parameter θ, and then solve the OCP when
(the unknown) θ is replaced by its estimated values. Here we present condi-
tions under which there exists a sequence of estimators θm that converge to θ,
and therefore the following happens: (a) For each m, there is an estimator
θm such that θm → θ as t → ∞; (b) the optimal control policy π∗m corre-
sponding to the θm-OCP converges (in some sense) to the optimal policy π∗
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for the θ-OCP; and also (c) the corresponding optimal reward function V ∗θm
converges to V ∗θ .

The PEC is another name for what Mandl called the Method of Substi-
tuting the Estimates into Optimal Stationary Controls, and which, except
for small variations, is also found in the stochastic control theory literature
under the name of Certainty Equivalence Controller.

In the remainder of this section we present summaries of parameter esti-
mation techniques (Section 1.1), adaptive control approaches (Section 1.2),
and our approach and main contributions in this paper (Section 1.3). We
conclude this introduction with some remarks on terminology and notation
we use (Section 1.4).

1.1. Parameter estimation techniques in diffusion processes. For
computational reasons, in this paper we only consider parameter estima-
tion techniques that estimate the unknown θ at a sequence of times 0 < t1
< t2 < · · · , with tm → ∞ (see [1, 2, 13, 14, 22, 31, 32, 34]). There are
online and offline estimation methods. In the former, the estimate θm is ob-
tained based on the information available up to time tm only. In contrast,
in an offline estimation method, first all the input/output data are collected
and then the parameter estimates are obtained. In this paper, we use offline
methods to generate consistent estimators.

If the transition density of the dynamic system is known, then it is com-
mon to choose the maximum likelihood estimator (MLE), which maximizes
the log-likelihood function. The MLE is both intuitive and flexible, and as
such the estimator has become a dominant means of statistical inference;
see [1, 2, 22] and the references therein. But, most often, the transition den-
sity is unknown and so the log-likelihood function of the dynamic system is
unknown as well. Hence, other methods of estimation have to be considered.

The paper [32] presents an overview focused on parameter estimation
methods for discretely observed stochastic differential equations (SDEs) over
the period 1981–1999. These methods are: Generalized Method of Moments
(GMM), Efficient Method of Moments, and three methods based on the
likelihood function: (a) discretization of the likelihood function that, under
some technical conditions, follows from an assumption of continuous obser-
vations being available, (b) the likelihood function is derived for a discretized
version of the SDE, where the discretization time step δ is equal to the sam-
pling interval ∆; this method is called an approximate maximum likelihood
method, and (c) the extension proposed in [34] of an approximate maximum
likelihood method which assumes that δ � ∆.

The paper [33] presents a partial survey on the statistical estimation of
diffusion processes. This survey was concentrated on contributions to the
literature based on three different approaches in which the likelihood func-
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tion of the observations is not directly computable: (1) the Euler–Maruyama
discretization scheme, (2) martingale estimating functions (martingale the-
ory), and (3) Generalized Method of Moments. The techniques (1)–(2) are
based on replacements of the true likelihood function (which is not known)
by some approximation, whereas the estimator mentioned in (3) is a vec-
tor that minimizes a distance function, properly defined, of the sample mo-
ments from zero. Under some assumptions, these estimators are consistent
and asymptotically normal.

For linear dynamic systems, the main techniques for the identification of
unknown parameters are the Least Squares Estimator (LSE), and the ap-
proximate maximum likelihood estimator (AMLE). As mentioned in [27],
the LSE is suitable when the disturbance is white noise. If the noise is col-
ored, more complex methods are needed to avoid bias and to identify the
disturbance process. The AMLE is based on Gaussian approximation of the
transition density and can be interpreted as based on maximization of a
discretized continuous-time log-likelihood function as well. These estimators
are consistent and asymptotically normally distributed [34, 35, 42].

1.2. Adaptive control approaches. The paper [8] studies the self-
tuning scheme for the adaptive control of a diffusion process with long-run
average cost criterion and maximum likelihood estimation of parameters.
Asymptotic optimality under a suitable identifiability condition is estab-
lished under two alternative sets of hypotheses: a Lyapunov-type stability
criterion, and a condition on the running cost that penalizes instability. The
self-tuning method of adaptive control of diffusions consists of estimating
the unknown parameter online by some standard scheme (e.g. maximum
likelihood); then, at each time, the current estimate is taken as the true
parameter for the selection of the control [6]. The estimation for diffusion
processes by discrete observation has been studied by several authors; see
[22, 42, 37] and their references. Other papers on estimation for diffusion
processes are [13, 14].

Adaptive control of continuous-time linear stochastic systems has been
studied since 1990 in [9, 12, 11]. These papers concern adaptive control
problems with average (or ergodic) quadratic cost criteria. The estimation
methods used are maximum likelihood, least squares based on continuous
observations and modified weighted least squares. The adaptive control of a
linear diffusion process with regard to the discounted cost criterion is stud-
ied in [5]. The author shows that the certainty-equivalence type of control,
analogous to the one considered by Duncan and Pasik-Duncan [12], is asymp-
totically discount optimal in the sense of Schäl [41]. Adaptive optimal control
for continuous-time linear systems based on policy iteration is studied in [43].
On the other hand, [10] considers a Bayesian adaptive control problem for
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ergodic diffusions. A nearly self-optimizing strategy is constructed on the
basis of discrete-time observations of the state process.

The concept of asymptotic discount optimality was introduced by Schäl
[41] in connection with adaptive control of discrete-time Markov control pro-
cesses. The problem of constructing asymptotically optimal adaptive policies
has been studied in several contexts; see [20, 21, 29, 30] and their references.
For instance, [29] and [30] introduced the Principle of Estimation and Con-
trol (PEC) for Markov decision models with finite state space and bounded
rewards. They establish the existence of an optimal policy based on a consis-
tent estimator for the unknown parameter which is optimal uniformly in the
parameter. The paper [21] considers discrete-time stochastic control systems.

1.3. Our approach and main contributions. Using the AMLE or the
LSE to estimate θ, we construct via the PEC a policy which is asymptotically
optimal [29, 30]. Our paper can be considered an extension of [8], which
studies policy convergence (πm → πθ∗) in the framework of relaxed controls
(see Section 4.1). Here, we also consider convergence in the sense of Schäl,
which is more convenient in some cases. Moreover, we illustrate our results
with applications that clearly show the importance of choosing the right
parameter estimation scheme.

1.4. Terminology and notation. For vectors x and matrices A we use
the usual Euclidean norm

|x|2 :=
∑
k

x2
k and |A|2 := Tr(AAT ) =

∑
k,p

A2
k,p,

where AT and Tr(·) denote the transpose and the trace of a square matrix,
respectively. Sometimes we use the notation ∂i := ∂

∂xi
and ∂2

ij := ∂2

∂xi∂xj
.

Given a Borel set B, we denote its Borel σ-algebra as B(B). Furthermore,
P(B) stands for the family of probability measures on B(B). For any given
set O ⊂ Rn, W l,p(O) is the Sobolev space of real-valued measurable func-
tions on O whose generalized derivatives up to order l ≥ 0 are in Lp(O) for
p ≥ 1. Further, Cκ(O) represents the space of real-valued continuous func-
tions on O with continuous lth partial derivative in xi for i = 1, . . . , n, and
l = 0, 1, . . . , κ. In particular, when κ = 0, C0(O) stands for the space of
real-valued continuous functions on O. Moreover, Cκ,β(O) is the subspace of
Cκ(O) consisting of all functions whose partial derivatives up to order κ are
Hölder continuous with exponent β ∈ (0, 1]; B(O) stands for the space of
measurable bounded functions on O; and Cb(O) is the space of continuous
bounded functions on O.

2. Model and main assumptions. Consider a controlled n-dimensio-
nal diffusion process x(·) evolving according to the stochastic differential
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equation

(2.1) dx(t) = b(x(t), u(t), θ)dt+ σ(x(t))dW (t), x(0) = x0, t ≥ 0,

where b : Rn×U×Θ → Rn and σ : Rn → Rn×d are given functions, andW (·)
is a d-dimensional standard Brownian motion. The compact set U ⊂ Rn1

is called the control (or action) set. Moreover, u(·) in (2.1) is a U -valued
stochastic process representing the controller’s action at each time t ≥ 0.
Let Θ ⊂ Rm be a compact set called the parameter set, and θ ∈ Θ is the
unknown parameter.

All random processes in (2.1) live in a complete probability space
(Ω,F ,Puθ ), where Puθ denotes the law of the state process x(·) given the
parameter θ ∈ Θ and the control u(·). The σ-algebra F is Puθ -complete. We
impose the following standard assumptions on the drift b and the diffusion
matrix σ to guarantee existence and uniqueness of solutions to (2.1).

Assumption 2.1.

(a) The drift function b(·, ·, ·) in (2.1) is continuous and Lipschitz in the
first and third arguments uniformly in u, that is, there exist nonnegative
constants Kθ and D such that, for all u ∈ U , θ1, θ2 ∈ Θ and x, y ∈ Rn,

|b(x, u, θ)− b(y, u, θ)| ≤ Kθ|x− y|,
|b(x, u, θ1)− b(x, u, θ2)| ≤ D|θ1 − θ2|.

Moreover, u 7→ b(x, u, θ) is continuous on U .
(b) The diffusion coefficient σ(·) satisfies a Lipschitz condition: there exists

a positive constant K1 such that, for all x, y ∈ Rn,
|σ(x)− σ(y)| ≤ K1|x− y|.

(c) (Uniform ellipticity) The matrix a(x) := σ(x)σ(x)T has the property
that, for some constant K2 > 0,

xTa(y)x ≥ K2|x|2 for all x, y ∈ Rn.
Remark 2.1.The Lipschitz conditions on b and σ in Assumption 2.1(a, b),

along with the compactness of U , imply that there exists a constant K̃ ≥
K1 +K2 +Kθ such that

sup
(u,θ)∈U×Θ

|b(x, u, θ)|+ |σ(x)| ≤ K̃(1 + |x|) for all x ∈ Rn.

Control policies. Let P(U) be the space of probability measures on U
endowed with the topology of weak convergence, and let B(U) be the Borel
σ-algebra of U .

Let M be the family of measurable functions f : [0,∞) × Rn → U , and
F ⊂M the subfamily of functions f : Rn → U . A strategy u(t) := f(t, x(t)),
for some f ∈M, is called a Markov policy, whereas u(t) := f(x(t)) for some
f ∈ F is said to be a stationary Markov policy.
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Definition 2.2. A randomized policy is a family π := {πt, t ≥ 0} of
stochastic kernels on B(U)× Rn satisfying:

(a) for each t ≥ 0 and x ∈ Rn, πt(·|x) ∈ P(U), and for each t ≥ 0 and
D ∈ B(U), πt(D|·) is a Borel function on Rn; and

(b) for each D ∈ B(U) and x ∈ Rn, the function πt(D|x) is Borel measurable
in t ≥ 0.

A randomized policy is sometimes called a relaxed control.

Definition 2.3. A randomized policy is said to be stationary if there is
a stochastic kernel π ∈ B(U) × Rn such that πt(·|x) = π(·|x) for all t ≥ 0
and x ∈ Rn. The set of randomized stationary policies (also known as relaxed
controls) is denoted by Π.

For u ∈ U , θ ∈ Θ and νθ ∈W 2,p(Rn), let

(2.2) Lθ,uνθ(x) :=

m∑
i=1

bi(x, u, θ)∂iνθ(x) +
1

2

m∑
i,j=1

aij(x)∂2
ijνθ(x),

where bi is the ith component of b, and aij is the (i, j)-component of the
matrix a(·) defined in Assumption 2.1(c).

For each randomized stationary policy π ∈ Π we write both the drift
coefficient b and the operator Lθ,u defined in (2.1) and (2.2) respectively as

(2.3) b(x, π, θ) :=
�

U

b(x, u, θ)π(du|x), Lθ,πνθ(x) :=
�

U

Lθ,uνθ(x)π(du|x).

Remark 2.4. Observe that every f ∈ F can be identified with a strategy
in Π by means of the P(U)-valued trajectory δf , where δf(x) represents the
Dirac measure at f(x), i.e., π(·|x) = δf(x)(·).

Under Assumption 2.1, for each policy π ∈ Π and θ ∈ Θ there exists
an almost surely unique strong solution xθ,π(·) of (2.1) which is a Markov–
Feller process. Furthermore, for each policy π ∈ Π and θ ∈ Θ, the operator
Lθ,πν(x) in (2.3) becomes the infinitesimal generator of the process xθ,π(·).
(For more details, see the arguments in [3, Theorem 2.2.7] and [17, The-
orem 2.1] for instance.) Moreover, by the same reasoning as for [3, Theo-
rem 4.3], we find that for each π ∈ Π and θ ∈ Θ, the transition proba-
bility measure Pπθ (t, x, ·) of xθ,π(·) is absolutely continuous with respect to
Lebesgue’s measure for every t ≥ 0 and x ∈ Rn. Hence, there exists a tran-
sition density function pπθ (t, x, y) ≥ 0 such that

Pπθ (t, x,B) =
�

B

pπθ (t, x, y) dy

for every Borel set B ⊂ Rn.
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Stability assumptions. The following assumption is a standard Lya-
punov stability condition for continuous time (controlled and uncontrolled)
Markov processes; see, for instance, [3, 25]. It gives, in particular, inequality
(2.4) below.

Assumption 2.2. There exists a function w ≥ 1 in C2(Rn) and constants
d ≥ c > 0 such that

(a) lim|x|→∞w(x) =∞.
(b) Lθ,πw(x) ≤ −cw(x) + d for all π ∈ Π, θ ∈ Θ and x ∈ Rn.

For every π ∈ Π, θ ∈ Θ, x ∈ Rn and t ≥ 0, an application of Dynkin’s
formula to the function v(t, x) := ectw(x) and Assumption 2.2(b) yield

(2.4) Eπ,θx [w(x(t))] ≤ e−ctw(x) +
d

c
(1− e−ct).

We now introduce the concept of the w-weighted norm, where w is the
function in Assumption 2.2.

Definition 2.5. Let Bw(Rn) denote the Banach space of real-valued
measurable functions v on Rn with

‖v‖w := sup
x∈Rn

|v(x)|
w(x)

<∞.

The reward rate. Let r : Rn × U ×Θ → R be a measurable function,
which we call the reward rate, and which satisfies the following conditions:

Assumption 2.3.

(a) The function r(x, u, θ) is continuous on Rn×U ×Θ and locally Lipschitz
in x uniformly with respect to u ∈ U and θ ∈ Θ, i.e., for each R > 0,
there exists a constant K(R) > 0 such that

sup
(u,θ)∈U×Θ

|r(x, u, θ)− r(y, u, θ)| ≤ K(R)|x− y| for |x|, |y| ≤ R.

(b) r(·, u, θ) is in Bw(Rn) uniformly in u ∈ U and θ ∈ Θ, that is, there exists
M > 0 such that for all x ∈ Rn,

sup
(u,θ)∈U×Θ

|r(x, u, θ)| ≤Mw(x).

Similar to (2.3), for each π ∈ Π we write the reward rate as

(2.5) r(x, π, θ) :=
�

U

r(x, u, θ)π(du|x).

3. Discounted optimality criterion. In this section we give condi-
tions for the existence of α-optimal policies and asymptotically optimal α-
policies for the discounted optimality criterion defined as follows.
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Definition 3.1 (α-discount criterion). The expected payoff under the
α-discount criterion when using the policy π ∈ Π, given the initial state
x(0) = x ∈ Rn and the parameter value θ ∈ Θ, is

(3.1) V (x, π, θ) := Eπ,θx
[∞�

0

e−αtr(x(t), π, θ) dt
]
.

As a consequence of Assumption 2.3(b) and (2.4), the discounted reward
is finite-valued. In fact,

(3.2) |V (x, π, θ)| ≤M
∞�

0

e−αtEπx[w(x)] dt ≤M(α)w(x)

with M(α) := M(α+ d)/(αc). Here, c and d are as in Assumption 2.2, and
M is the constant in Assumption 2.3(b). Hence, V (·, π, θ) is in Bw(Rn), and
moreover the optimal discounted reward

(3.3) V ∗θ (x) := sup
π∈Π

V (x, π, θ)

satisfies |V ∗θ (x)| ≤M(α)w(x). Thus V ∗θ (·) is also in Bw(Rn).

The discounted reward optimality equation. The following propo-
sition gives a characterization of the discounted reward. For a proof see [26,
Proposition 3.1.5]. The proof in [26] uses both Dynkin’s formula and the
inequality (2.4).

Proposition 3.2. Under Assumptions 2.1–2.3 the α-discount reward
V (·, π, θ) belongs to W2,p(Rn)∩Bw(Rn) and, for every given x ∈ Rn, π ∈ Π
and θ ∈ Θ,

αV (x, π, θ) = r(x, π, θ) + Lθ,πV (x, π, θ).(3.4)

Conversely, if a function ϕθ ∈ W 2,p(Rn) ∩ Bw(Rn) satisfies (3.4), then
ϕθ(x) = V (x, π, θ) for all x ∈ Rn. If the equality in (3.4) is replaced by
≥ or ≤, then ϕθ(x) ≥ V (x, π, θ) or ϕθ(x) ≤ V (x, π, θ), respectively.

Definition 3.3. A policy π∗ ∈ Π is said to be α-discount optimal, given
that θ ∈ Θ is the true parameter value, if

V (x, π∗, θ) = V ∗θ (x) for all x ∈ Rn,

where V ∗θ (x) := supπ∈Π V (x, π, θ) denotes the optimal α-discount reward.

The following proposition shows that the optimal discounted reward
V ∗θ (·) is a solution of a suitably defined optimality equation, and it also
proves the existence of optimal stationary policies f∗θ ∈ F.

Proposition 3.4 ([8, 25, 24]). Suppose that Assumptions 2.1–2.3 hold.
Then:
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(i) The optimal α-discount reward V ∗θ belongs to W2,p(Rn) ∩ Bw(Rn) and
it satisfies the discounted reward Hamilton–Jacobi–Bellman (HJB) equa-
tion: for all x ∈ Rn and θ ∈ Θ,

(3.5) αV ∗θ (x) = sup
u∈U
{r(x, u, θ) + Lθ,uV ∗θ (x)}.

Conversely, if a function ϕθ ∈ W 2,p(Rm) ∩ Bw(Rn) satisfies (3.5) then
ϕθ(x) = V ∗θ (x) for all x ∈ Rn.

(ii) There exists a stationary policy f∗θ ∈ F which, for each x ∈ Rn, maxi-
mizes the right-hand side of (3.5), that is,

(3.6) αV ∗θ (x) = r(x, f∗θ , θ) + Lθ,f∗θ V ∗θ (x) for all x ∈ Rn,
and f∗θ is α-discount optimal.

Remark 3.5. (a) In the expression (3.5) we can write supf∈F or supπ∈Π
instead of supu∈U . For instance, (3.5) can be written as

(3.7) αV ∗θ (x) = sup
π∈Π
{r(x, π, θ) + Lθ,πV ∗θ (x)}

(see [38]).
(b) Lemma 9.1 and Theorem 9.1 in [16] ensure that if V ∗θ ∈ W2,p(Rn) ∩

Bw(Rn) is a solution of the HJB equation (3.7), then V ∗θ (x)=supΠDV (x, π, θ),
where ΠD (or FD) is the class of stationary policies πθ ∈ Π (or fθ ∈ F) for
which

(3.8) lim
t→∞

Eθ,πθx [e−αtV ∗θ (x(t))] = 0 ∀x ∈ Rn.

4. Adaptive control. To construct adaptive policies we will use the
so-called principle of estimation and control [30] in which the unknown pa-
rameter θ in the control problem (2.1)–(3.1) is replaced by estimates θm,
m = 1, 2, . . . . Thus, for each θm, Proposition 3.4(ii) ensures the existence
of an α-discount optimal stationary policy fθm ∈ F. The policy fθm ∈ F is
called an adaptive policy. Moreover, if for each θm, there exists a function
Vθm ∈ W2,p(Rn) ∩ Bw(Rn) that satisfies the HJB equation (3.6) with fθm ,
then (fθm , Vθm(·)) is an optimal pair for the θm-control problem. In this sec-
tion we prove that the sequence {(fθm , Vθm(·))}m≥1 of optimal pairs conver-
ges in some sense to an optimal pair {(fθ, Vθ(·))} of the θ-control problem.

4.1. Convergence of stationary policies. As is well known [19, 21],
if for each θm there is a unique α-optimal stationary policy fθm as in Propo-
sition 3.4(ii), then one usually gets pointwise convergence fθm(x) → f(x)
for all x ∈ Rn. This is the case, for example, in LQ problems, that is, linear
systems with quadratic costs. In general, however, this uniqueness property
does not hold, and so the pointwise convergence of control policies may not
make sense. We consider convergence in the sense of Schäl [40] (see [19,
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Lemma 6.5]), as well as convergence of stationary randomized controls (or
relaxed controls) [3, 15, 44].

The topology on the space Π of relaxed controls, which is determined by
the convergence criterion in the following definition, renders Π a compact
metric space (see [44] for instance).

Definition 4.1. We say that a sequence {πm} in Π converges to π ∈ Π,
and we write πm

w→ π, if

(4.1)
�

Rn
g(x)h(x, πm) dx→

�

Rn
g(x)h(x, π) dx

for all g∈L1(Rn) and h∈Cb(Rn×U), where h(x, πm) :=
	
U h(x, u)πm(du|x)

and h(x, π) :=
	
U h(x, u)π(du|x).

In addition to (4.1), we will use another notion of convergence of πm to π.

Definition 4.2. A sequence {πm} ⊂ Π converges in the sense of Schäl
to π ∈ Π if, for each x ∈ Rn, there is a subsequence mk ≡ mk(x) of {m}
such that πmk(·|x)→ π(·|x) as k →∞ in the topology of weak convergence
in P(U), that is, for each h ∈ Cb(U),

	
U h(u)πmk(du|x)→

	
U h(u)π(du|x).

Remark 4.3. (a) Suppose that Assumptions 2.1–2.3 hold. Then Propo-
sition 3.4 in [24] establishes that for fixed α > 0 and θ ∈ Θ, the mapping
π 7→ V (x, π, θ) is continuous with respect to the topology of relaxed controls.
The proof in [24] uses a theorem similar to our Theorem 9.1 below without
considering the θ parameter.

(b) Theorem 2.4.2 of [3] or Lemma 3.5 of [7] ensure that under the topol-
ogy of relaxed controls the solutions to (2.1) depend continuously on the
controls in the sense that if θm → θ, then

‖pπθmθm
(t, x, ·)− pπθθ (t, x, ·)‖L1(Rn) → 0 as m→∞,

where pπθmθm
(t, x, y) and pπθθ (t, x, y) denote the transition probability densities

for xθm,πθm (·) and xθ,πθ(·), respectively. So, xθm,πθm (·) → xθ,π(·) in law as
θm → θ; in addition, πθm

w−→ πθ. Moreover, xθ,πθ(·) is a diffusion satisfying
(2.1) with true parameter θ for some Markov control πθ.

Definition 4.4. A sequence {θm}m≥1 of measurable functions θm : Ω →
Θ is said to be a sequence of uniformly strongly consistent (USC) estimators
of θ ∈ Θ if as m→∞,

θm(ω)→ θ Pπθ -a.s. for all π ∈ Π.

For simplicity of notation, we write θm := θm(ω) ∈ Θ.

4.2. Optimal discounted rewards. We will show that, as θm → θ,
the optimal discounted rewards V ∗θm(·) for the θm-control problem converge
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almost surely to the optimal discounted reward V ∗θ (·) for the θ-control prob-
lem, and πθm → π ∈ Π in the relaxed controls topology, and also in Schäl’s
sense.

Theorem 4.5. Let {θm} ⊂ Θ be a sequence of USC estimators of θ.
For each m, let πθm be a maximizer of the right-hand side of (3.7) given
that θ = θm. Then there exists a subsequence {mk} of {m} and a policy π∗

such that πmk
w−→ π∗ in the relaxed controls topology. Moreover, under the

assumptions of Proposition 3.2, as m→∞,

(4.2) V ∗θm(x)→ V ∗θ (x) Pπθ -a.s. for each x ∈ Rn.

Proof. The proof is based on Theorem 9.1 (in the Appendix). Consider
a sequence of USC estimators θm ∈ Θ such that θm → θ as m → ∞. Let
R > 0, and take the open ball BR := {x ∈ Rn | |x| < R}. For x ∈ BR and
each m = 1, 2, . . . , let πθm ∈ Π be a maximizer of the right-hand side of
(3.7). Note that the equality r(x, πθm , θm) + Lθm,πθmV ∗θm(x) − αV ∗θm(x) = 0
can be expressed in terms of the operator (9.3) as

(4.3) Lθm,πθmV ∗θm(x) = r(x, πθm , θm) + Lθm,πθmV ∗θm(x)− αV ∗θm(x) = 0.

We will now proceed to verify the hypotheses (a)–(e) of Theorem 9.1,
with O = BR. By (4.3), both hypotheses (a) and (c) hold with ξm ≡ ξ = 0.
Moreover, the assumptions of our Theorem 4.5 ensure that hypotheses (d)
and (e) also hold. On the other hand, by [18, Theorem 9.11], there exists
a constant C0 depending on R such that, for a fixed p > n (n being the
dimension of (2.1)), we have

(4.4) ‖V ∗θm(·)‖W 2,p(BR) ≤ C0

(
‖V ∗θm(·)‖Lp(B2R) + ‖r(·, πθm , θm)‖Lp(B2R)

)
≤ C0

(
‖V ∗θm(·)‖Lp(B2R) +M‖w‖Lp(B2R)

)
≤ C0

(
‖V ∗θm(·)‖Lp(B2R) + |B̄2R|1/p max

x∈B̄2R

w(x)
)
<∞,

where |B̄2R| represents the volume of the closed ball with radius 2R and
M is the constant in Assumption 2.3(b). This implies the hypothesis (b) in
Theorem 9.1.

Now note that Theorem 9.1 ensures the existence of a function V ∈
W 2,p(BR) together with a subsequence {mk} such that V ∗θmk

→ V uniformly
in BR and pointwise on Rn as k → ∞ and πmk

W−→ π∗. Furthermore, V
satisfies

(4.5) αV (x) = r(x, π∗, θ) + Lθ,π∗
V (x)Pπ

∗
θ -a.s.

Since R was arbitrary, the convergence (4.5) holds for all x ∈ Rn. Thus,
Proposition 3.2 asserts that V (x) actually coincides with V (x, π∗, θ).
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To complete the proof of Theorem 4.5 we will next show that the function
V (·) in (4.5) coincides with V ∗θ (·). To this end, observe from (3.7) that

αV ∗θmk
(x) ≥ r(x, π, θ) + Lθ,πV ∗θmk (x) ∀π ∈ Π.

Taking the limit as m→∞ and using the same arguments as above, we
obtain

αV (x) ≥ r(x, π, θ) + Lθ,πV (x) ∀π ∈ Π.

From this inequality and (4.5) it follows that

αV (x) = sup
π∈Π
{r(x, π, θ) + Lθ,πV (x)} Pπ

∗
θ -a.s.

Therefore, by (3.7), V (·) = V ∗θ (·). In other words, as k →∞,

V ∗θmk
(x)→ V ∗θ (x) Pπθ -a.s.

Remark 4.6. Theorem 4.5 holds if convergence in the sense of Schäl is
used instead of convergence in the topology of relaxed controls.

4.3. Stationary policies. We will next consider again a sequence {θm}
of USC estimators of θ, and the corresponding sequence of stationary opti-
mal policies {πθm} for the θm-control problem. We will show that {πθm} (or
a subsequence thereof) converges in the topology of relaxed controls (Defini-
tion 4.1) and also in the sense of Schäl (Definition 4.8) to a stationary policy
πθ that is optimal for the θ-control problem.

Theorem 4.7. Suppose that Assumptions 2.1–2.3 are satisfied, and let
{θm} ⊂ Θ be a sequence of USC estimators of θ. For each m, let πθm be
a maximizer of the right-hand side of (3.7) given that θ = θm. Then there
exists a subsequence {mk} of {m} and a policy π∗ such that πmk

w−→ π∗,
and moreover π∗ is optimal for the θ-control problem Pπ∗θ -a.s.

Proof. As was already noted, when endowed with the topology of relaxed
controls, Π becomes a compact metric space. Therefore, the sequence {πθm}
has a subsequence {πθmk} that converges to some π∗ ∈ Π. Now, to prove
the optimality of the policy π∗ for the α-discount criterion observe that, for
each mk, the policy πθmk is a maximizer of (3.7), so

(4.6) αV ∗θmk
(x) = r(x, πθmk , θmk) + Lθmk ,πθmk V ∗θmk (x).

Now observe that, for x ∈ BR, we can express (4.6) in terms of the
operator Lθ,π in (9.3) (in the Appendix) as

(4.7) L
θmk ,πθmk V ∗θmk

(x) = 0,

with hmk ≡ V ∗θmk
, πm ≡ πθmk and ξm ≡ 0. Consequently, as in the proof

of Theorem 4.5, we can invoke Theorem 9.1 to see that, as k → ∞, (4.7)
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converges to

(4.8) αV ∗θ (x) = r(x, π∗, θ) + Lθ,π∗
V ∗θ (x) for x ∈ BR, Pπ

∗
θ -a.s.

Furthermore, since R was arbitrary, we conclude that (4.6) converges to (4.8)
for all x ∈ Rn.

On the other hand, from (3.7), we obtain, for each k ≥ 1 and x ∈ Rn,
(4.9) αV ∗θmk

(x) ≥ r(x, π, θmk) + Lθmk ,πV ∗θmk (x) for all π ∈ Π.

Hence, taking k →∞ and using Theorem 9.1 again, we have

(4.10) αV ∗θ (x) ≥ r(x, π, θ) + Lθ,πV ∗θ (x) for all π ∈ Π.

Thus, by (4.8) and (4.10), we have

(4.11) αV ∗θ (x) = sup
π∈Π
{r(x, π, θ) + Lθ,πV ∗θ (x)},

implying that π∗ is optimal for the θ-control problem.

Proposition 4.8. Let {πθm} ⊂ Π be a sequence of maximizers of the
right-hand side of (3.7) given that θ = θm. If Assumptions 2.1–2.3 hold, then
there exists π∗ ∈ Π such that π∗ is the limit in the sense of Schäl of {πθm}.

Proof. Fix an arbitrary x ∈ Rn. Since P(U) is compact, {πθm(·|x)} has
a subsequence {πθmk(x)(·|x)} that converges to some π∗(·|x) ∈ P(U). Fur-
thermore, for all B ⊂ B(U), by [39, Lemma 4], π∗(B|x) is measurable on
x ∈ Rn. So, π∗(·|x) is in Π. This proves the result.

Remark 4.9. Recall that for x ∈ Rn, a stationary randomized policy
π(·|x) is a probability measure in P(U). Under the Assumptions 2.1(a) and
2.3(a, b) the functions r(x, ·, θ) and b(x, ·, θ) are continuous and attain its
supremum in U for each x ∈ Rn and θ ∈ Θ. Hence, by the definition of weak
convergence on P(U), the infinitesimal generator Lθ,π(·|x) and the reward
rate r(x, π(·|x), θ) are continuous on P(U).

Proposition 4.10. Let {πθm} ⊂ Π be a sequence of maximizers of (3.7)
such that πθm converges to π∗ ∈ Π in Schäl’s sense. If Assumptions 2.1–2.3
hold, then π∗ is an α-discount optimal policy for the θ-control problem Pπθ -a.s.

Proof. This follows by the same arguments used in the proof of Theo-
rem 4.6, but using convergence in the sense of Schäl rather than convergence
in the topology of relaxed controls.

5. Estimation methods. The solution xθ,u(·) of (2.1) induces for each
θ ∈ Θ a probability measure Puθ on the space C([0,∞),Rn) of continuous
trajectories from [0,∞) into Rn endowed with its Borel σ-algebra F . In
practice, xθ,u(t) can only be observed up to a finite time, say T . Therefore,
choose T as large as practically possible with respect to computation time,
computer power, measurement instruments, etc.
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In this work, we consider maximum likelihood estimation for stochastic
differential equations based on finitely many discrete observations XT :=
{xti | 0 ≤ i ≤ m} of a trajectory {xθ,u(t) | t ∈ [0, T ]} at times 0 = t0 < t1 <
tm := T when Puθ is not known. Namely, the parameters will be estimated
using the discrete approximate likelihood ratio function MLR(XT , θ) [34],
which is defined as

MLR(XT , θ) :=

m∑
i=1

b(xti−1 , uti−1 , θ)[σ(xti−1)σ(xti−1)T ]−1(xti − xti−1)(5.1)

− 1

2

m∑
i=1

{b(xti−1 , uti−1 , θ)
T [σ(xti−1)σ(xti−1)T ]−1

· b(xti−1 , uti−1 , θ)(ti − ti−1)},
with b and σ as in (2.1). The MLR function generates the discrete approxi-
mate likelihood ratio estimator, θLR,

(5.2) θLR ≡ θLR(XT ) := Argmaxθ∈Θ MLR(XT , θ).

Shoji [42] shows that when a one-dimensional stochastic differential equa-
tion with a constant diffusion coefficient is considered, optimization based
on the MLR function is equivalent to optimization based on the least square
function LSE(XT , θ),

(5.3) LSE(XT , θ) :=

m∑
i=1

(xti − xti−1 − b(xti−1 , uti−1 , θ)(ti − ti−1))2.

In this case, the least square estimator θLSE is given by

(5.4) θLSE ≡ θLSE(XT ) := Argminθ∈Θ LSE(XT , θ).

Consistency and asymptotic normality of θLSE and θLR are studied in
[34, 35, 36, 37, 42].

Remark 5.1. (a) The log-likelihood function for θ based on continuous
observations of xθ,u(t) in the time interval [0, T ] when the transition densities
of xθ,u(t) are unknown is

(5.5) MLR(XT , θ) :=

T�

0

b(x(t), u(t), θ)T [σ(x(t))σ(x(t))T ]−1 dx(t)

− 1

2

T�

0

b(x(t), u(t), θ)T [σ(x(t))σ(x(t))T ]−1b(x(t), u(t), θ) dt

(see [34]). The approximation of the integrals in (5.5) by finite Itô and Rie-
mann sums, respectively, leads to the approximate likelihood function (5.1).

(b) In [34, 35, 36, 42] the differential dx(t) in (5.5) is approximated by a
backward difference formula xti−xti−1 . However, in our work this differential
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will be replaced by the central difference dx(t) ≈ xti+1−xti−1

2(ti+1−ti−1) since it yields
a more accurate approximation.

(c) The discrete approximate likelihood ratio estimator will be used in
this work since we will assume that the diffusion matrix σ(x(t)) is either
constant or of the form σ(x(t)) = θσ̂(x(t)). In cases where the diffusion
matrix depends on θ in a more general way, we recommend the reader to
try several estimation methods and select the one that best suits his/her
application.

(d) In the applications presented below we consider linear dynamic sys-
tems and quadratic costs. Therefore, Assumptions 2.1 and 2.3(a) are ob-
viously satisfied. To prove Assumptions 2.2 and 2.3(b), use the function
w(x) := x2 + 1.

(e) The root mean square error (RMSE) will be used to measure the
differences between variables predicted by the estimators and the real values.

6. Simulation study. Consider the one-dimensional diffusion process
xθ,u(t) defined as the solution of the stochastic differential equation with
unknown parameter θ,

(6.1) dx(t) = −(u(t) + θx(t))dt+ σdW (t),

with σ > 0 and W (t) a standard Brownian motion. We assume that there
are no control constraints, so U = R, and θ ∈ [0,∞) =: Θ. Let

(6.2) V (x, u, θ) = Eθ,ux
[∞�

0

e−αt 1
2 [x2(t) + λ(θ)u2(t)] dt

]
be the α-discount reward, with λ : Θ → R, positive continuously differen-
tiable function.

The objective of the θ-control problem is to design an admissible con-
trol process so that the α-discounted cost (6.2) is minimized. When all the
parameters in (6.1)–(6.2) are known, Proposition 3.4(i) ensures that the op-
timal discounted cost V ∗θ (x) = infπ∈Π V (x, π, θ) is a solution of the HJB
equation (3.5), which in view of (6.1)–(6.2) becomes

(6.3) αV ∗θ (x) = min
u∈U

{
1
2x

2 + 1
2λ(θ)u2 + (−u− θx)∂xV

∗
θ (x) + 1

2σ
2∂2
xxV

∗
θ (x)

}
.

To solve (6.3), we propose a solution Vθ ∈ C2(R) ∩ Bw(R) of the form

(6.4) Vθ(x) = 1
2λ(θ)h(θ)x2 +K,

where h : Θ → R is a nonnegative continuous function on Θ and K is a
constant, both to be determined. Then the derivatives of Vθ are given by
∂xVθ(x) = λ(θ)h(θ)x and ∂2

xxVθ(x) = λ(θ)h(θ). Hence, since h ≥ 0, the
function x 7→ Vθ(x) is convex. So, substituting the derivatives of Vθ in (6.3),
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we see that the minimizer f∗θ of the HJB equation is

(6.5) f∗θ (x(t)) = h(θ)x(t).

Inserting the derivatives of Vθ and the minimizer f∗θ in (6.3), we find
that h is the nonnegative solution of the second order equation −h2(θ) −
(2θ + α)h(θ) + 1

λ(θ) = 0 and K = λ(θ)h(θ)/α, that is,

h(θ) =
(2θ + α)−

√
(2θ + α)2 − 4(−1)/λ(θ)

−2
.

Remark 6.1. (a) Take u(t) = f∗θ (x(t)) in (6.1), to obtain dx(t) =
−p(θ)x(t)dt+σdW (t), with p(θ) = h(θ) +θ, which is the so-called Langevin
equation. As is well known (see, for instance, [4, Section 8.3]), the solution
of the Langevin equation is

x(t) = xe−p(θ)t + σ

t�

0

e−p(θ)(t−s) dW (s).

Therefore, by the properties of stochastic integrals,

Eθ,f
∗
θ

x [e−αtx2(t)] =

[
x2 − σ2

2p(θ)

]
e−(α+2p(θ))t +

σ2

2p(θ)
e−αt.

Finally, from the definitions of p(θ) and h(θ), we have α + 2p(θ) = α +
2h(θ) + 2θ > 0. Hence

lim
t→∞

Eθ,f
∗
θ

x [e−αtx2(t)] = 0, so lim
t→∞

Eθ,f
∗
θ

x [e−αtVθ(x(t))] = 0 ∀x ∈ Rn.

This last result implies that f∗θ satisfies (3.8). Therefore, we conclude that
f∗θ minimizes (6.3) within the class FD of admissible stationary policies.

(b) The above results are easily extended to n-dimensional linear systems
with quadratic cost xT (t)· Qx(t)+uT (t)Ru(t) with Q and R being symmetric
matrices, Q nonnegative definite, and R positive definite. This is the case of
the applications presented in Sections 7 and 8.

6.1. Numerical results. In order to implement the optimal control law
(6.5) we estimate the unknown parameter with the least likelihood function
LSE in (5.3)–(5.4). Replacing the discrete version of b(x, u, θ) = −u− θx in
(5.3) a straightforward calculation gives the following estimator:

θLSEm :=

∑m
i=1 xti

( xti+1−xti−1

2(ti+1−ti−1)

)
−
∑m

i=1 utixti∑m
i=1 x

2
ti

.

To illustrate our results, let us assume that in the θ-optimal control prob-
lem (6.1)–(6.2) the true parameter value is θ = 2, u(t) = 8, α = 0.1, and λ
is a linear function, say, λ(θ) = θ+ 1 for θ ∈ [0,∞). We next obtain discrete
observations of the stochastic differential equation (6.1) simulating the equa-
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tion by the Euler–Maruyama method in the interval [0, 1.5]. Based on this
information, we obtainedm = 4097 observations varying σ = 0.1, 0.01, 0.001.

Table 1 shows the information on the different values of θLSEm for m =
820, 1025, 1366, 2049 and 4097. As can be seen, as m increases the estimator
approaches the true parameter value θ = 2. In Table 1 we can also see
that the RMSE between the predicted process x(t)

θLSEm ,fθLSEm and the real
process x(t)θ,fθ decreases as the number of data increases, implying a good
fit. See Figure 1. The diffusion process (6.1) with σ = 0.001 showed a best
fit because with 4097 data θLSEm = 1.9996 and its RMSE is 0.0003, which
suggests that the lower the noise in the measured data, the more accurate is
the least square estimator.

Table 1. RMSE between x(t)θLSEm ,fθLSEm (·) and xθ,fθ (·)

σ = 0.1 σ = 0.01 σ = 0.001

m θLSEm RMSE θLSEm RMSE θLSEm RMSE
4097 1.9794 0.02045 1.9982 0.0018 1.9996 0.0003
2049 2.2639 0.2399 2.2808 0.2543 2.2821 0.2554
1366 2.3588 0.3180 2.3750 0.3307 2.3763 0.3318
1025 2.4062 0.3546 2.4221 0.3675 2.4234 0.3685
820 2.4347 0.3757 2.4504 0.3889 2.4516 0.3899

Table 2 shows the information on the RMSE between the predicted op-
timal control fθLSEm

(xθLSEm (t)) and the real optimal control fθ((xθ(t))) de-

Table 2. RMSE between the estimated processes and the real processes (θ = 2)

σ = 0.1 σ = 0.01

m θLSEm RMSEf RMSEV θLSEm RMSEf RMSEV

4097 1.9794 0.0438 2.2246 1.9982 0.0039 0.1951
2049 2.2639 0.6352 40.9422 2.2808 0.5067 31.6512
1366 2.3588 0.4766 29.6627 2.3750 0.6603 42.8962
1025 2.4062 0.7096 46.6922 2.4221 0.7358 48.6476
820 2.4347 0.7499 50.1668 2.4504 0.7806 52.1409

σ = 0.001

m θLSEm RMSEf RMSEV

4097 1.9996 0.0006 0.0382
2049 2.2821 0.5083 31.8036
1366 2.3763 0.6624 43.0529
1025 2.4234 0.7374 48.8016
820 2.4516 0.7824 52.2962
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noted by RMSEf . Table 2 also shows the RMSE between the predicted
optimal discount cost VθLSEm

(x) and the real optimal discount cost V ∗θ (x)
(RMSEV ). As can be seen in Figure 2, as m increases, both errors decrease
and the estimator approaches the true parameter value θ = 2.
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Fig. 1. Asymptotic behavior of xθLSEm ,fθLSEm (t) with σ = 0.01 (left) and σ = 0.001
(right)
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Fig. 2. Asymptotic behavior of the predicted optimal control and optimal discount cost
for σ = 0.1 and α = 0.1

7. Angular position and angular velocity from a DC motor.
The angular acceleration in a DC motor evolves according to the third-order
differential equation

(7.1) Vin =
JL

KT

d3w

dt
+
RJ

KT

d2w

dt2
+Kb

dw

dt
,

where Vin is the supply voltage of the rotor, R is the winding resistance of
the rotor, L is the inductance of the winding of the rotor, dw/dt the angular



Adaptive control of diffusion processes 243

velocity of rotation of the rotor, J the moment of inertia of the rotor shaft,
w the angular position, and KT , Kb proportionality constants. For many
motors, the inductance can be neglected (L ≈ 0). This implies that (7.1)
can be rewritten in matrix form as

(7.2)
d2w

dt2
= −KbKT

RJ

dw

dt
+
KTVin

RJ
, so

dx(t)

dt
= Ax(t) + b,

where

A =

[
0 1

0 −KTKb
RJ

]
, b =

[
0

KTVin
RJ

]
, x(t) :=

[
w(t)
dw(t)
dt

]
.

Experimental procedure to obtain discrete observations of the
x(t) process. A motor with Encoder CN5003-6006 was used to carry out
the experiment. The data description for this motor are: 32 lines of code,
2 output channels: A and B, approximate weight: 25 grm, voltage: 6V/12V
(4000/8000 RPM), current: 30mA, arrow diameter: 2mm, measure: 15mm
thick × 21mm wide × 64mm total length including auger and card. The
electrical variables values of the motor are R = 0.07 Ω, J = 2.05932971e
−06 kg · m2, KT = 0.002559499 N · mA−1, Kb = KTV (Rad · s−1)−1, Vin =
8.5V. The experiment consists in connecting the direct current (DC) source
to the DC motor, measuring the angular position w(t), and calculating the
angular velocity dw(t)/dt. This process was repeated 20 times with a dura-
tion of T = 0.25 seconds. To obtain the measurements a Compact Rio 9068,
a digital inputs module 9375, an encoder connected to the motor shaft and
the Labview software were used.

The most currently used DC motors are connected switched sources.
These sources are more efficient than regulated sources, but generate high
frequency noise. Trying to capture the noise affecting the system of the DC
motor, we add a “white noise” in the differential equation (7.2) to obtain the
SDE

(7.3) dx(t) = (Ax(t) + b)dt+ σξ(t)dt,

where ξ(t) is the white noise of mean zero and variance one, and σ is a
positive constant known as the noise intensity. Its magnitude determines the
deviation of the stochastic case from the deterministic one. Formally, the
white noise ξ(t) is the time derivative in a distributional sense of Brownian
motion W (t), that is, dW (t) = ξ(t)dt. Therefore, strictly speaking, equation
(7.3) can be rewritten as a controlled stochastic differential equation in terms
of the two-dimensional standard Brownian motion, i.e.,

(7.4) dx(t) = (Ax(t) +Bu(t))dt+ σdW (t),
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where

B =

[
0
KT
RJ

]
, σ =

[
σ1 0

0 σ1

]
,

σ1 is a positive constant and u(t) := Vin is the control.

Table 3. RMSE between the experimental data and the analytical solutions of (7.2)
and (7.4)

Analytical solutions vs
RMSE w (Rev) RMSE dw/dt (Rev/min)experimental measurements

ODE solution vs Experimental 1.8754 1.3257
SDE solution vs Experimental 1.8765 1.3258

Taking σ1 = 1, Table 3 shows the RMSE between the experimental data
(measurements) and the analytical solutions of the ODE (7.2) and the SDE
(7.4). These RMSE show that the SDE (7.4) proposed in this work presents
a good fit to the experimental data (real system). See Figure 3.
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Fig. 3. Asymptotic behavior of w (right) and dw/dt (left) in (7.4) and experimental data

(θ1, θ2)-control problem (real model). In this application we assume
that θ1 := −kTKb

RJ and θ2 := KT
RJ are the unknown parameters. This implies

that the pair of matrices (A,B) := (A(θ1), B(θ2)) in the stochastic differ-
ential equation (7.4) are unknown. Once the stochastic differential equation
for the system under study is proposed, the objective of the adaptive con-
trol problem is to design an admissible control process so that the following
α-discounted cost for system (7.4) is minimized:

(7.5) V (x, u, θ1, θ2) = Eθ1,θ2,ux

[∞�
0

e−αt[x(t)TQx(t) + u(t)TRu(t)] dt
]

with Q a positive definite 2 × 2 matrix, and R > 0 a constant. The HJB
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equation associated to the optimal control problem (7.4)–(7.5) is

(7.6) αVθ1,θ2(x)

= min
u∈U

{
x(t)TQx(t) + u(t)TRu(t) + (A(θ1)x(t) +B(θ2)u(t))∂xVθ1,θ2(x)

+ 1
2 Tr[σσT∂2

xxVθ1,θ2(x)]
}
.

Here, we take U = R2 and Θ := (−∞, 0] × [0,∞). To solve (7.6), we
propose a solution Vθ1,θ2 ∈ C2(R2) ∩ Bw(R2) of the form

(7.7) Vθ1,θ2(x) = xTK(θ1, θ2)x+ g

with K(θ1, θ2) a positive symmetric 2×2 matrix, and g is a constant, both to
be determined. So, substituting the derivatives of Vθ1,θ2 in (7.6), and letting
K ≡ K(θ1, θ2), we obtain the optimal control

(7.8) f∗θ1,θ2(x(t)) = −R−1B(θ2)TKTx(t),

where K satisfies the algebraic Riccati equation

(7.9) Q−KB(θ2)(R−1)TBTK +KA(θ1) +A(θ1)TK − αK = 0,

and g = Tr(σσTK/α).

7.1. Numerical results. In this application the discrete approximate
likelihood function (5.1) depends on three variables, i.e., MLR(XT , θ1, θ2).
By matching to zero the partial derivatives of MLR(XT , θ1, θ2) with respect
to θ1 and θ2, a straightforward calculation gives the estimator

(7.10) θLRm :=

[
θ1m

θ2m

]
:= [Aux]−1 · baux

where

Aux :=

[ ∑m
i=1 x

2
2ti

Vin
∑m

i=1 x2ti

Vin
∑m

i=1 x2ti V 2
in

]
,

baux :=

[ ∑m
i=1 x2ti [x2ti+1 − x2ti−1]

Vin
∑m

i=1[x2ti+1 − x2ti−1]

]
1

ti+1 − ti−1
,

and

x(t) :=

[
w(t),

dw

dt

]T
= [x1, x2]T .

Now, taking into account that the true values of the parameters are
θ1 := −kTKb

RJ = −45.4450 and θ2 := KT
RJ = 17755.4, we compare the optimal

control problem with known parameters and the adaptive control problem
in which the estimator (7.10) is used as the correct value of the unknown
parameters.
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Table 4 displays the RMSE for the state variables w(t), dw(t)/dt and
their optimal controls (uw ≡ 0, udw ≡ fθ1,θ2), respectively. Moreover, Table 4
also shows the RMSE between the θLRm-optimal cost and the true (θ1, θ2)-
optimal cost taking as discount factor α = 0.02. Note that the best approx-
imation is with m = 594 data. We note that the principle of estimation
and control (PEC) gives good results for this application because the RMSE
values decrease as the number of observations increases. See Table 4 and
Figure 4.

Table 4. RMSE between the estimated and the real values of w(t), dw(t)/dt, u(t),
and V ∗

θ1,θ2

m θ1m θ2m RMSEw RMSEuw m RMSEdw RMSEudw RMSEV ∗

594 −45.4450 17755.4 0.0527 0 594 0.0261 0.0417316 0.0198
297 −45.5676 17806.6 0.2675 0 297 12.1074 11.8778 2.8167
198 −45.9121 17951 0.8383 0 198 27.2737 27.0925 7.09924
149 −46.3383 18094.2 1.0446 0 149 40.6889 40.1953 13.2269
119 −46.6966 18254.3 1.8782 0 119 56.9997 56.5847 17.6605
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Fig. 4. Asymptotic behavior of estimates of w (right) and dw/dt (left) in (7.4)

8. Series RLC circuit, [28]. The charge in a series RLC circuit evolves
according to the second-order differential equation

(8.1)
d2q(t)

dt2
= − 1

LC
q(t)− R

L

dq(t)

dt
+
V

L
,

with initial conditions q(0) = 0 and q′(0) = 0. Here, R is the resistance,
L the inductance, C the capacitance, and V the source voltage. Considering
a stochastic effect in the source voltage, it is possible to get the following
matrix stochastic differential equation for the charge in a series RLC circuit:
(8.2) dQ(t) = (AQ(t) +Bu(t))dt+ adW (t),
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Fig. 5. Asymptotic behaviour of the estimated optimal control fθ1m,θ2m(xθ1m,θ2m) for
dw/dt (left) and the θm-optimal discount costs in (7.7) (right)

with

Q(t) :=

(
q(t)

dq(t)/dt

)
, A :=

[
0 1

−1/LC −R/L

]
, B :=

[
0

1/L

]
, a =

(
0

σ/L

)
and u(t) = V (t). See [28, 23] for details.

Experimental procedure. A DC voltage source connected to a circuit
was used to carry out the experiment of a series RLC electric circuit, with
V = 5V, R = 160 kΩ, L = 2.85mH, and C = 100e−6µF. A National In-
strument (NI) data acquisition card USB 6003 was used with a resolution of
16 bits connected to Labview software to measure the voltage across the ca-
pacitor and store data. The experiment consists of connecting the DC source
to the RLC circuit and measuring the voltage in the capacitor, the source is
disconnected and the capacitor is discharged; this process was repeated 50
times. Using the relation V (t) = Cq(t) we can obtain the charge data. Fig-
ure 6 shows the graph of the analytical solutions of the ODE (σ = 0), SDE
with σ = 0.0277, and experimental data. The RMSE between the analytical
solutions of ODE, SDE, and the experimental data is displayed in Table 5.
The RMSE values present higher variation with respect to the applications
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(right) and q(t) (left)
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Table 5. RMSE between the experimental data and analytical solutions of (8.1) and (8.2)

Analytical solutions vs
experimental measurements

RMSE q(t) RMSE dq(t)/dt

ODE solution vs Experimental 6.2922 9.1703e−04
SDE solution vs Experimental 6.4040 9.3316e−04
ODE vs SDE 2.4456e−07 1.4084e−04

presented in previous sections. This is because the series RLC circuit, in
addition to white noise, has thermal noise, which is not considered in this
work. Even so, the proposed SDE (8.2) serves our purposes.

In this application we study (8.1)–(8.2) assuming that the pair of matrices
(A,B) in the stochastic differential equation (8.2) are unknown. That is,
(A,B) = (A(θ1, θ2), B(θ3)), where θ1 := − 1

LC , θ2 := −R
L , and θ3 := 1

L are
unknown parameters. Moreover, we assume that U = R2 and Θ = (−∞, 0]×
(−∞, 0]× [0,∞).

8.1. Numerical results. The discrete approximate likelihood estimator
θLR in (5.2) is used to estimate the unknown parameters. Observe that in
this application the discrete approximate likelihood function depends on four
variables, i.e., MLR(XT , θ1, θ2, θ3). Table 6 displays the RMSE for the state
variables q(t), dq(t)/dt and their optimal controls (uq ≡ 0, udq ≡ fθ1,θ2,θ3),
respectively, whereas Table 7 shows the RMSE between the θLRm-optimal
cost and the true (θ1, θ2, θ3)-optimal cost for discount factor α = 0.02. Note
that in both tables the best approximation is with m = 1998. We note that
the principle of estimation and control gives good results for this application.
See Table 6 and Figure 7.

Table 6. RMSE between the estimated and the real values of q(t), dq(t)/dt, and u(t)

m θ1 θ2 θ3 RMSEq

True value −3508.77 −56.1404 0.3508 0
1998 −3378.66 −50.0797 0.3346 7.9430e−06
1332 −3118.99 −45.8068 0.3075 1.3207e−05
998 −3247.59 −48.0138 0.3210 1.0850e−05
798 −3128.17 −46.0119 0.3085 1.4178e−05

m RMSEuq RMSEdq RMSEudq

1998 0 0.00042 1.17307e−05
1332 0 0.00078 1.62389e−05
998 0 0.00064 1.43059e−05
798 0 0.00077 1.61938e−05
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Table 7. RMSE between V ∗
θLRm

(xθLRm (t)) and V ∗
θ (x

θ(t))

m θ1 θ2 θ3 RMSEV ∗

1998 −3378.66 −50.0797 0.334635 0.00269323
1332 −3118.99 −45.8068 0.307551 0.0240681
998 −3247.59 −48.0138 0.321076 0.0138565
798 −3128.17 −46.0119 0.308563 0.0234434
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Fig. 7. Asymptotic behavior of the estimated charges (left) and the corresponding optimal
control (right)

9. Appendix: Interchange of limits. Throughout this section we as-
sume that O ⊂ Rn is an open, bounded, connected set. We denote its closure
by Ō. For every x ∈ Rn, u ∈ U , α > 0, and h in W 2,p(Ō), let

(9.1) Ψ̂(x, u, θ;h) := r(x, u, θ) +
n∑
i=1

bi(x, u, θ)∂ih(x)− αh(x),

where r is the reward rate given in Assumption 2.3 and bi is the ith compo-
nent of the drift function b in (2.1). We also define

(9.2) Lθ,uh(x) := Ψ̂(x, u, θ;h) +
1

2

n∑
i,j=1

aij(x)∂2
ijh(x),

with a as in Assumption 2.1(c). For each π ∈ Π, let

Ψ̂(x, π, θ;h) :=
�

U

Ψ̂(x, u, θ;h)π(du|x),

Lθ,πh(x) := Ψ̂(x, π, θ;h) +
1

2

n∑
i,j=1

aij(x)∂2
ijh(x).(9.3)

Our approach in this paper requires the following result on the inter-
change of limits, which is an extension to the adaptive case of [24, Theo-
rem 6.1]. We omit the proof because, except for obvious notational changes,
it is the same as [24, Theorem 6.1].
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Theorem 9.1. Let O be a bounded C2 domain, and suppose that Assump-
tions 2.1–2.3 hold. In addition, assume that there exist sequences {hm} ⊂
W 2,p(O), {ξm}⊂Lp(O), with p>n (n is the dimension of (2.1)), {πm}⊂Π,
and θm ∈ Θ, satisfying the following:

(a) Lθm,πmhm = ξm in O for m = 1, 2, . . . .
(b) There exists a constant M̃1 such that ‖hm‖W 2,p(O)≤M̃1 for m=1, 2, . . . .
(c) ξm converges in Lp(O) to some function ξ.
(d) θm converges to some θ Pθ,π-a.s.
(e) πm

w→ π in the topology of relaxed controls (Definition 4.1).

Then there exist a function h∈W 2,p(O) and a subsequence {mk}⊂{1, 2, . . .}
such that hmk → h in the norm of C1,η(O) for η < 1 − n/p as k → ∞.
Moreover,

Lθ,πh = ξ in O Pθ,π-a.s.

10. Concluding remarks. This paper concerns controlled stochastic
differential equations (2.1) in which the drift coefficient depends on an un-
known parameter θ ∈ Θ. The optimal control problem (OCP) is to maxi-
mize, for every initial state x ∈ Rn, the expected total discounted reward
V (x, π, θ) over all control policies π ∈ Π, given that the true parameter
value is θ. Then, defining V ∗θ (x) := supπ V (x, π, θ) the optimal discounted
reward, our main results can be summarized as follows: If θm is a sequence
of uniformly strongly consistent (USC) estimators of θ, then, under suitable
conditions:

(1) For each m there is an optimal control policy πθm for the θm-OCP.
(2) For each initial state x, the optimal reward V ∗θm(x) converges to V ∗θ (x)

almost surely as m→∞.
(3) There is a subsequence {mk} of {m} and a policy π∗θ ∈ Π such that πθmk

converges to π∗θ in two different ways (see (4) below), and moreover π∗θ
is optimal for the θ-OCP.

(4) The convergence π∗θmk → π∗θ in (3) is both in the topology of relaxed
controls (Definition 4.1), and in the sense of Schäl (Definition 4.2). The
main difference between these forms of convergence is that the former
has “better” properties (see Remark 4.3 for instance).

In view of these remarks, it is evident that a crucial step in our approach
is to obtain a sequence of USC estimators of the unknown parameter θ. There
are, in principle, many ways to do this; see [1, 2, 6, 14, 22, 31, 32, 33, 34, 35,
36, 37, 23, 42]. Our experience is, however, that in some applications, to use
the MLR and the LSQ functions one needs to check the type of the required
numerical approximation of the derivative dx(t). Indeed, in our case, we
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replaced dx(t) by its central difference, instead of the backward difference,
because for our applications it yields more accurate approximations.

Finally, it is important to note that our assumptions in Section 2 are
sufficient for the results in Sections 3 and 4, but in many cases they are
not necessary. For instance, for LQ problems (linear systems with quadratic
costs), the compactness of U and Θ is not necessary. Similarly, some of our
results using the PEC hold for deterministic systems (with σ(·) ≡ 0 in (2.1)),
even though the uniform ellipticity condition in Assumption 2.1(c) does not
hold.
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