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WEIGHTED FRACTIONAL AND HARDY TYPE OPERATORS IN
ORLICZ–MORREY SPACES

BY

EVGENIYA BURTSEVA (Luleå)

Abstract. We prove boundedness of the Riesz fractional integral operator between
distinct Orlicz–Morrey spaces, which is a generalization of the Adams type result. More-
over, we investigate boundedness of some weighted Hardy type operators and weighted
Riesz fractional integral operators between distinct Orlicz–Morrey spaces.

1. Introduction. Morrey spaces were introduced in 1938 by C. Mor-
rey [17] to study local behavior of solutions of second order elliptic partial
differential equations. Since then this space has been systematically investi-
gated by many authors. Morrey spaces are defined as

Mp,λ(Rn) =

{
f ∈ Lploc(R

n) : sup
x∈Rn, r>0

1

rλ

�

B(x,r)

|f(y)|p dy <∞
}
,

where 1 ≤ p <∞ and 0 ≤ λ ≤ n. They are Banach ideal spaces on Rn with
respect to the norm

‖f‖p,λ := sup
x∈Rn, r>0

(
1

rλ

�

B(x,r)

|f(y)|p dy
)1/p

.

Here and below, B(x, r) denotes the open ball with center at x ∈ Rn and
radius r > 0, that is, {y ∈ Rn : |y − x| < r}. Let |B(x, r)| be the Lebesgue
measure of the ball B(x, r), which is |B(x, r)| = vnr

n with vn = |B(0, 1)|.
Morrey spaces are generalizations of Lp-spaces sinceMp,0(Rn) = Lp(Rn).

Moreover, the spaceMp,λ(Rn) is trivial when λ > n, that is,Mp,λ(Rn) = {0}
(the set of all functions equivalent to 0 on Rn—see [4, Lemma 1]) and
Mp,n(Rn) = L∞(Rn) by the Lebesgue differentiation theorem (for the proof
we refer to [12, Theorem 4.3.6]).
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Let ϕ : [0,∞)→ [0,∞) be a measurable function satisfying the following
assumptions:

lim
r→0+

ϕ(r) = ϕ(0) = 0, ϕ(r) = 0⇔ r = 0,(1.1)

ϕ(r) ≥ Crn for some constant C > 0 and all 0 < r ≤ 1.(1.2)

Replacing rλ by such a function ϕ(r) in the definition of Morrey spaces
Mp,λ(Rn) we obtain generalized Morrey spaces

Mp,ϕ(Rn) =

{
f ∈ Lploc(R

n) : sup
x∈Rn, r>0

1

ϕ(r)

�

B(x,r)

|f(y)|p dy <∞
}
,

with the norm defined by

‖f‖p,ϕ := sup
x∈Rn, r>0

(
1

ϕ(r)

�

B(x,r)

|f(y)|p dy
)1/p

.

For properties of Morrey-type spaces we refer, for instance, to [2], [3], [12],
[23] and the references therein.

We will use Orlicz–Morrey spaces, therefore we need the definition of
Orlicz spaces on Rn. These spaces were introduced by Orlicz [21], [22] as a
generalization of Lp-spaces.

A function Φ : [0,+∞) → [0,+∞) is called an Orlicz function if it is an
increasing, continuous and convex function with Φ(0) = 0.

For any Orlicz function Φ the Orlicz space LΦ(Rn) is defined in the fol-
lowing way:

LΦ(Rn) =
{
f ∈ L0(Rn) :

�

Rn
Φ(k|f(y)|) dy <∞ for some k > 0

}
.

These spaces are Banach ideal spaces with the norm

‖f‖LΦ = inf
{
λ > 0:

�

Rn
Φ(|f(y)|/λ) dy ≤ 1

}
.

For further properties of Orlicz spaces we refer, for instance, to [11], [13]
and [24].

The study of boundedness of the Riesz fractional integral operator Iα, 0 <
α < n, defined for x ∈ Rn by

Iαf(x) =
�

Rn

f(y)

|x− y|n−α
dy,

between Lp-spaces was initiated by Sobolev [27] in 1938. He proved that
Iα is bounded from Lp(Rn) to Lq(Rn) for 1 < p < n/α if and only if
1/q = 1/p − α/n (cf. [28, Theorem 1, pp. 119–121]). The boundedness of
the Riesz fractional integral operator between Orlicz spaces was proved by
Simonenko [26] and later on by Cianchi [7]. The results on boundedness of
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the Riesz fractional integral operator from Mp,λ(Rn) to M q,µ(Rn) were first
obtained by S. Spanne with the Sobolev exponent 1/q = 1/p−α/n, and this
result was published by Peetre [23]. A stronger result with a better exponent
1/q = 1/p− α/(n− λ) was obtained by Adams [1] (see also [6]). Nakai [18]
extended Spanne’s result and proved the boundedness of Iα in generalized
Morrey spaces. Eridani and Gunawan [8] obtained an Adams-type result for
generalized Morrey spaces.

Then it was natural to consider the boundedness of Iα in Orlicz–Morrey
spaces. The Orlicz–Morrey spaces MΦ,ϕ(Rn), introduced in [19], unify Or-
licz and Morrey spaces. In [20] Nakai studied the MΦ,ϕ(Rn) → MΨ,ψ(Rn)
boundedness of the generalized fractional integral operator and obtained
an Adams-type result. Mizuta and Shimomura [16] extended Nakai’s re-
sult to generalized Morrey spaces of integral form. We also refer to [15],
where the boundedness of generalized Riesz potentials was considered on an
open bounded set G on Rn from a generalized Morrey space M1,ϕ(G) to an
Orlicz–Morrey space MΦ,ψ(G) and also between distinct Orlicz spaces.

The operator Iα plays an important role in real and harmonic analysis
with applications (see, e.g., [2, Chapter 15]). In particular, in [9] it was shown
that various operators can be estimated from above by Riesz potentials and
the boundedness of those operators in generalized Morrey spaces was proved.

In this paper we first prove MΦ,ϕ(Rn)→ MΨ,ψ(Rn) boundedness of the
operator Iα using Hedberg’s method [10] and we obtain an Adams-type re-
sult. In [20] Nakai described conditions for the boundedness of fractional in-
tegral operators between distinct Orlicz–Morrey spaces in integral terms. We
provide conditions on theMΦ,ϕ(Rn)→MΨ,ψ(Rn) boundedness of the opera-
tor Iα in a more suitable way for our further needs. We also prove the bound-
edness of some weighted Hardy operators between distinct Orlicz–Morrey
spaces and finally using pointwise estimates we investigate the boundedness
of a weighted Riesz fractional integral operator from the Orlicz–Morrey space
MΦ,ϕ(Rn) to the Orlicz–Morrey spaceMΨ,ψ(Rn) for some classes of weights.

Throughout this paper, we will let C denote a positive constant whose
value may change from line to line, but which is independent of essential
parameters.

2. Preliminaries

2.1. Orlicz–Morrey spaces. Let Φ be an Orlicz function and let ϕ sat-
isfy conditions (1.1)–(1.2). We define the generalized Orlicz–Morrey spaces
MΦ,ϕ(Rn) in the following way:

MΦ,ϕ(Rn) =
{
f ∈ L1

loc(Rn) : ‖f‖MΦ,ϕ = sup
B=B(x,r)

‖f‖Φ,ϕ,B <∞
}
,
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where r > 0, x ∈ Rn and

‖f‖Φ,ϕ,B = inf

{
λ > 0:

1

ϕ(r)

�

B(x,r)

Φ(|f(y)|/λ) dy ≤ 1

}
.

In the case Φ(u) = up, 1 ≤ p < ∞, the Orlicz–Morrey space MΦ,ϕ(Rn)
turns into the generalized Morrey space Mp,ϕ(Rn).

To each Orlicz function Φ one can associate a complementary function Φ∗,
defined for v ≥ 0 by

Φ∗(v) = sup
u>0

[uv − Φ(u)].

We say that an Orlicz function Φ satisfies the ∆2-condition, and we write
Φ ∈ ∆2, if there exists a constant C ≥ 1 such that Φ(2u) ≤ CΦ(u) for all
u > 0.

For any ball B = B(x, r) the generalized Hölder inequality holds:
�

B(x,r)

|f(y)| |g(y)| dy ≤ 2ϕ(r)‖f‖Φ,ϕ,B‖g‖Φ∗,ϕ,B.

In particular,

(2.1)
�

B(x,r)

|f(y)| dy ≤ 2rnΦ−1(ϕ(r)/rn)‖f‖MΦ,ϕ .

For further properties of the Orlicz–Morrey spaces we refer, for instance,
to [14] and [20].

2.2. Almost increasing and almost decreasing functions. A non-
negative function g on (0,∞) is said to be almost increasing (resp. almost
decreasing) on (0,∞) if there exists a constant C ≥ 1 such that g(x) ≤ Cg(y)
for all 0 < x ≤ y (resp. all x ≥ y > 0). We will also need the following
technical lemma:

Lemma 1.

(i) Let g : (0,∞)→ (0,∞) be a measurable almost decreasing function. Then
there exists a constant C > 0 such that

∞∑
k=0

g(2k+1r) ≤ C
∞�

r

g(t)

t
dt for all r > 0.

(ii) Let g : (0,∞)→ (0,∞) be a measurable almost increasing function. Then
there exists a constant C > 0 such that

∞∑
k=0

g(2−k−1r) ≤ C
r�

0

g(t)

t
dt for all r > 0.
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Proof. (i) Since g is almost decreasing,
∞�

r

g(t)

t
dt =

∞∑
k=0

2k+1r�

2kr

g(t)

t
dt ≥ C

∞∑
k=0

g(2k+1r)

2k+1r�

2kr

dt

t

= C ln 2
∞∑
k=0

g(2k+1r).

(ii) Since g is almost increasing,
r�

0

g(t)

t
dt =

∞∑
k=0

2−kr�

2−k−1r

g(t)

t
dt ≥ C

∞∑
k=0

g(2−k−1r)

2−kr�

2−k−1r

dt

t

= C ln 2
∞∑
k=0

g(2−k−1r).

3. Boundedness of the Riesz fractional integral operator be-
tween distinct Orlicz–Morrey spaces. Throughout this paper we as-
sume that Φ is an Orlicz function, and that ϕ and ψ satisfy assumptions
(1.1)–(1.2) and the following conditions:

ϕ is increasing on (0,∞) and ϕ(r)/rn is decreasing on (0,∞),(3.1)
ψ is almost increasing on (0,∞),(3.2)
ϕ(r) ≤ Aψ(r) for some constant A > 0 and any r > 0.(3.3)

We will use the following notation:

(3.4) U(r) =
ϕ(r)

rn
, g(r) = rαΦ−1(U(r)), V (r) = Φ−1(r)[U−1(r)]α.

Also we always assume that the function V defined in (3.4) satisfies the
following conditions:

V is continuous, increasing, unbounded, concave on [0,∞) with V (0) = 0.

Then the function Ψ = V −1 is an Orlicz function which defines our target
space MΨ,ψ(Rn).

Note that

(3.5) V (U(r)) = Φ−1(U(r))[U−1 (U(r))]α = g(r).

The Hardy–Littlewood maximal operator M is defined by

Mf(x) = sup
r>0

1

|B(x, r)|

�

B(x,r)

|f(y)| dy.

This operator is bounded in MΦ,ϕ(Rn) provided Φ∗ ∈ ∆2, and

(3.6) ‖Mf‖MΦ,ϕ ≤ C0‖f‖MΦ,ϕ
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with some constant C0 > 0 independent of f (the proof is given for example
in [14] and [20]).

In our first theorem we prove boundedness of the Riesz fractional integral
operator Iα from MΦ,ϕ(Rn) to MΨ,ψ(Rn). In the proof we use a pointwise
estimate of Iαf by the maximal operator Mf and boundedness of the max-
imal operator Mf in MΦ,ϕ(Rn). This method of proof was introduced by
Hedberg [10].

Theorem 1. Let 0 < α < n and let Φ be an Orlicz function with Φ∗ ∈ ∆2.
If the function g defined in (3.4) is almost decreasing and there exists a
constant C > 0 such that

(3.7)
∞�

r

g(t)
dt

t
≤ Cg(r) for all r > 0,

then the Riesz fractional integral operator Iα is bounded from MΦ,ϕ(Rn) to
MΨ,ψ(Rn).

Proof. We follow Hedberg’s approach and split Iα into two integrals,

Iαf(x) =
�

|x−y|≤r

f(y)

|x− y|n−α
dy +

�

|x−y|>r

f(y)

|x− y|n−α
dy =: I1(x, r) + I2(x, r),

with r ∈ (0,∞) to be chosen later. As shown in [10],

|I1(x, r)| ≤ crαMf(x).

The integral I2(x, r) is estimated in a similar way. Applying (2.1) we
obtain

|I2(x, r)| ≤
∞∑
k=0

�

2kr<|x−y|≤2k+1r

|f(y)|
|x− y|n−α

dy

≤ 2‖f‖MΦ,ϕ

∞∑
k=0

(2k+1r)n

(2kr)n−α
Φ−1

(
ϕ(2k+1r)

(2k+1r)n

)

= 2n−α+1‖f‖MΦ,ϕ

∞∑
k=0

(2k+1r)αΦ−1
(
ϕ(2k+1r)

(2k+1r)n

)

= C‖f‖MΦ,ϕ

∞∑
k=0

g(2k+1r),

where g is defined in (3.4) and the constant C > 0 depends only on n and α.
Since the function g(t) = tαΦ−1(ϕ(t)/tn) is almost decreasing on (0,∞) it
follows from the first inequality in Lemma 1 that

|I2(x, r)| ≤ C‖f‖MΦ,ϕ

∞�

r

g(t)
dt

t
,
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and by (3.7) we obtain

|I2(x, r)| ≤ C‖f‖MΦ,ϕg(r) = C‖f‖MΦ,ϕrαΦ−1(U(r)) for any r > 0.

Combining the estimates of I1(x, r) and I2(x, r) we get

|Iαf(x)| ≤ Crα[Mf(x) + ‖f‖MΦ,ϕΦ−1(U(r))] for any r > 0.

Since the function Φ−1(U(r)) is surjective, we can choose r > 0 such
that Mf(x) = C0‖f‖MΦ,ϕΦ−1(U(r)), which implies Φ

( Mf(x)
C0‖f‖MΦ,ϕ

)
= U(r),

where the constant C0 is defined in (3.6). Since the function ϕ(r)
rn = U(r) is

decreasing it follows that

r = U−1
(
Φ

(
Mf(x)

C0‖f‖MΦ,ϕ

))
.

Finally,

|Iαf(x)| ≤ 2C

[
U−1

(
Φ

(
Mf(x)

C0‖f‖MΦ,ϕ

))]α
Mf(x)

= C1‖f‖MΦ,ϕ

[
U−1

(
Φ

(
Mf(x)

C0‖f‖MΦ,ϕ

))]α
(Φ−1 ◦ Φ)

(
Mf(x)

C0‖f‖MΦ,ϕ

)
= C1‖f‖MΦ,ϕV

(
Φ

(
Mf(x)

C0‖f‖MΦ,ϕ

))
.

Since Ψ = V −1 and ϕ(r) ≤ Aψ(r) it follows that for any ball B(x, r),

1

ψ(r)

�

B(x,r)

Ψ

(
|Iαf(y)|

C1‖f‖MΦ,ϕ

)
dy ≤ 1

ψ(r)

�

B(x,r)

Φ

(
Mf(y)

C0‖f‖MΦ,ϕ

)
dy

≤ A

ϕ(r)

�

B(x,r)

Φ

(
Mf(y)

‖Mf‖MΦ,ϕ

)
dy ≤ A,

where the last inequality follows from the boundedness of the maximal op-
erator M from MΦ,ϕ(Rn) into itself provided Φ∗ ∈ ∆2. Hence for A ≥ 1, by
the convexity of Ψ , we obtain

1

ψ(r)

�

B(x,r)

Ψ

(
|Iαf(y)|

AC1‖f‖MΦ,ϕ

)
dy ≤ 1,

which proves boundedness of Iα fromMΦ,ϕ(Rn) toMΨ,ψ(Rn) and ‖Iαf‖MΨ,ψ

≤ AC1‖f‖MΦ,ϕ for any f ∈MΦ,ϕ(Rn).

We now show by examples that Theorem 1 generalizes Adams’s result.

Example 1. Let 0 < α < n, 1 < p < q <∞ and

Φ(u) = up, Ψ(u) = uq, ϕ(r) = ψ(r) = rλ.
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Then from Theorem 1 we get the result of Adams [1], that is, the operator
Iα is bounded from Mp,λ(Rn) to M q,λ(Rn) under the conditions

(3.8) 0 < λ < n− αp and
1

p
− 1

q
=

α

n− λ
.

Indeed, since the function g(r) = rα+(λ−n)/p is almost decreasing it fol-
lows that λ ≤ n− αp, and together with requirement (3.7) we arrive at the
first condition in (3.8). The second condition in (3.8) follows from the fact
that Ψ = V −1, where V is defined in (3.4) and in this case V (r) = r

1
p
+ α
λ−n .

Example 2. Let p > 1, 0 < α < n, 0 < λ < n−αp and ϕ(r) = ψ(r) = rλ.
For β1, β2, γ1, γ2 ≥ 0 let

Φ(u) =

u
p
(
ln 1

u

)−β1(ln ln 1
u

)−β2 for small u > 0,

up(lnu)γ1(ln lnu)γ2 for large u > 0,

Ψ(u) ≈

u
pc
(
ln 1

u

)−β1c(ln ln 1
u

)−β2c for small u > 0,

upc(lnu)γ1c(ln lnu)γ2c for large u > 0,

where c = n−λ
n−λ−αp . Then the operator Iα is bounded from MΦ,ϕ(Rn) to

MΨ,ϕ(Rn).

Note that in Example 2 we can consider a more general function Φ(u),
defined for p > 1, βi, γi ≥ 0, i = 1, . . . , n, as

Φ(u) =

{
up
(
ln 1

u

)−β1(ln ln 1
u

)−β2 · · · (ln . . . ln 1
u

)−βn for small u > 0,

up(lnu)γ1(ln lnu)γ2 · · · (ln . . . lnu)γn for large u > 0.

Example 3. Let 0 < λ < n, α > 0 and ϕ(r) = ψ(r) = rλ. For a > 1
and b ≥ 0 such that a+ b < n−λ

α let

Φ(u) = ua(ln(1 + u))b ≈

{
ua+b for small u > 0,

ua(lnu)b for large u > 0,

Ψ(u) ≈

{
u(a+b)θ(a+b) for small u > 0,

uaθ(a)(lnu)bθ(a) for large u > 0,

where θ(r) = n−λ
n−λ−αr . Then Iα is bounded from MΦ,ϕ(Rn) to MΨ,ϕ(Rn).

4. Boundedness of weighted Hardy operators between distinct
Orlicz–Morrey spaces. Let w : (0,∞) → (0,∞) be a continuous mea-
surable function such that w(2r) ≤ Cw(r) for some constant C > 0, and
w(r)/ra is almost increasing on (0,∞) for some a ∈ R. We consider the
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following weighted Hardy operators:

Hα
wf(x) = |x|α−nw(|x|)

�

|y|≤|x|

f(y)

w(|y|)
dy,

Hαwf(x) = |x|αw(|x|)
�

|y|>|x|

f(y)

|y|nw(|y|)
dy.

Theorem 2. Let 0 < α < n. Suppose ψ(r)
rn is almost decreasing on (0,∞)

and
r�

0

ϕ(t)
dt

t
≤ Cϕ(r)

for some constant C > 0 and all r > 0.

(i) The Hardy operator Hα
w is bounded from MΦ,ϕ(Rn) to MΨ,ψ(Rn) pro-

vided

(4.1)

rn−α

w(r)
g(r) is almost increasing on (0,∞) and

r�

0

tn−α

w(t)

g(t)

t
dt ≤ C1

rn−α

w(r)
g(r)

for some constant C1 > 0 and all r > 0, where g is defined in (3.4).
(ii) The Hardy operator Hαw is bounded from MΦ,ϕ(Rn) to MΨ,ψ(Rn) pro-

vided

(4.2)

g(r)

rαw(r)
is almost decreasing on (0,∞) and

∞�

r

g(t)

tαw(t)

dt

t
≤ C2

g(r)

rαw(r)

for some constant C2 > 0 and all r > 0, where g is defined in (3.4).

In order to prove Theorem 2 we need the following lemma.

Lemma 2. Let Ψ be an Orlicz function. Suppose the function ψ defined by
(1.1)–(1.2) is almost increasing and such that ψ(r)/rn is almost decreasing
on (0,∞). Assume that f : Rn → R and g : R+ → R+ are given measurable
functions. If there exists a constant C > 0 such that |f(x)| ≤ Cg(|x|) for all
x ∈ Rn and

(i) Ψ ◦ g is almost decreasing on (0,∞),
(ii)

	r
0 t
n−1(Ψ ◦ g)(t) dt ≤ Cψ(r) for all r > 0,

(iii) rn(Ψ ◦ g)(r) ≤ Cψ(r) for all r > 0,

then f ∈MΨ,ψ(Rn).
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Proof. Let y ∈ B(x, r). We consider two cases separately: |x| ≤ 2r and
|x| > 2r.

Let first |x| ≤ 2r. Then |y| ≤ |y − x|+ |x| ≤ 3r and therefore B(x, r) ⊂
B(0, 3r). Since Ψ(u) is increasing and |f(y)| ≤ Cg(|y|) for all y ∈ Rn, it
follows that

�

B(x,r)

Ψ

(
|f(y)|
C

)
dy ≤

�

B(x,r)

Ψ (g(|y|)) dy ≤
�

B(0,3r)

Ψ (g(|y|)) dy

= vn

3r�

0

ρn−1Ψ (g(ρ)) dρ ≤ vnCψ(3r),

where in the last inequality we have applied condition (ii) of this lemma.
Since ψ(r)/rn is almost decreasing on (0,∞), we have ψ(3r)

ψ(r) ≤ 3nC and

1

ψ(r)

�

B(x,r)

Ψ(|f(y)|/C) dy ≤ Cn.

Therefore, for Cn > 1, by the convexity of Ψ ,
1

ψ(r)

�

B(x,r)

Ψ

(
|f(y)|
CCn

)
dy ≤ 1,

which gives f ∈MΨ,ψ(Rn).
Let now |x| > 2r. Then |y| ≥

∣∣|x|−|x−y|∣∣ > r and applying conditions (i)
and (iii) of the lemma, we get

�

B(x,r)

Ψ

(
|f(y)|
C

)
dy ≤

�

B(x,r)

Ψ (g(|y|)) dy ≤ Cvnrn (Ψ ◦ g) (r) ≤ Cvnψ(r).

Thus, for Cn > 1, again by the convexity of Ψ , we have
1

ψ(r)

�

B(x,r)

Ψ

(
|f(y)|
CCn

)
dy ≤ 1,

which shows that f ∈MΨ,ψ(Rn). The proof is complete.

Corollary 1. If ψ(r)/rn is almost decreasing on (0,∞) and there exists
a constant C > 0 such that

(4.3)
r�

0

ϕ(t)
dt

t
≤ Cϕ(r) for all r > 0,

then the function g(r) defined in (3.4) satisfies conditions (i)–(iii) of Lemma 2.

Proof. Note that from (3.5) and Ψ = V −1 we get

(Ψ ◦ g)(r) = Ψ(V (U(r))) = U(r) = ϕ(r)/rn,

which implies condition (i) of Lemma 2, since ϕ(r)/rn is decreasing on (0,∞).
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By (3.3) we have

rn(Ψ ◦ g)(r) =
rnϕ(r)

rn
≤ Aψ(r),

which gives condition (iii) of Lemma 2.
Applying (4.3), we obtain
r�

0

tn−1(Ψ ◦ g)(t) dt =

r�

0

tn−1
ϕ(t)

tn
dt =

r�

0

ϕ(t)

t
dt ≤ Cϕ(r) ≤ ACψ(r),

which shows that (ii) is also satisfied.

Proof of Theorem 2. (i) We have

|Hα
wf(x)| ≤ |x|α−nw(|x|)

�

|y|≤|x|

|f(y)|
w(|y|)

dy

= |x|α−nw(|x|)
∞∑
k=0

�

2−k−1|x|<|y|≤2−k|x|

|f(y)|
w(|y|)

dy.

Since w(t)/ta is almost increasing on (0,∞) for some a∈R, for |y|>2−k−1|x|
we have

w(|y|) ≥ C
(

|y|
2−k−1|x|

)a
w(2−k−1|x|)

> C

(
2−k−1|x|
2−k−1|x|

)a
w(2−k−1|x|) = Cw(2−k−1|x|).

Thus, applying (2.1), we get

|Hα
wf(x)| ≤ C|x|α−nw(|x|)

∞∑
k=0

1

w(2−k−1|x|)

�

|y|≤2−k|x|

|f(y)| dy

≤ 2C‖f‖MΦ,ϕ |x|α−nw(|x|)
∞∑
k=0

(2−k|x|)n

w(2−k−1|x|)
Φ−1

(
ϕ(2−k|x|)
(2−k|x|)n

)

≤ 2n+1C‖f‖MΦ,ϕ |x|α−nw(|x|)
∞∑
k=0

(2−k−1|x|)n

w(2−k−1|x|)
Φ−1

(
ϕ(2−k−1|x|)
(2−k−1|x|)n

)
,

where in the last inequality we have used the fact that ϕ(r)
rn is decreasing on

(0,∞) and Φ−1(u) is increasing on (0,∞). Since the function rn−α

w(r) g(r) =

rn

w(r)Φ
−1(ϕ(r)

rn

)
is almost increasing on (0,∞) we can apply the second in-

equality from Lemma 1:

|Hα
wf(x)| ≤ 2n+1C‖f‖MΦ,ϕ |x|α−nw(|x|)

|x|�

0

tn−αg(t)

w(t)

dt

t
.
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By (4.1), we obtain
|Hα

wf(x)| ≤ Cg(|x|),
where g is defined in (3.4). Consequently, by Lemma 2 and Corollary 1 we
get Hα

wf ∈MΨ,ψ(Rn).
(ii) We have

|Hαwf(x)| ≤ |x|αw(|x|)
�

|y|>|x|

|f(y)|
|y|nw(|y|)

dy

= |x|αw(|x|)
∞∑
k=0

�

2k|x|<|y|≤2k+1|x|

|f(y)|
|y|nw(|y|)

dy.

Since w(t)/ta is almost increasing on (0,∞) for some a ∈ R, and since
w(2t) ≤ Cw(t), for |y| > 2k|x| we have

w(|y|) ≥ C
(
|y|

2k|x|

)a
w(2k|x|) ≥ C

(
2k|x|
2k|x|

)a
w(2k|x|) ≥ Cw(2k+1|x|).

Thus, applying (2.1), we get

|Hαwf(x)| ≤ C|x|αw(|x|)
∞∑
k=0

1

(2k|x|)nw(2k+1|x|)

�

|y|≤2k+1|x|

|f(y)| dy

≤ 2C‖f‖MΦ,ϕ |x|αw(|x|)
∞∑
k=0

(2k+1|x|)n

(2k|x|)nw(2k+1|x|)
Φ−1

(
ϕ(2k+1|x|)
(2k+1|x|)n

)

= 2n+1C‖f‖MΦ,ϕ |x|αw(|x|)
∞∑
k=0

1

w(2k+1|x|)
Φ−1

(
ϕ(2k+1|x|)
(2k+1|x|)n

)
.

The function g(r)
rαw(r) = 1

w(r)Φ
−1(ϕ(r)

rn

)
is almost decreasing on (0,∞) and

therefore we can apply the first inequality of Lemma 1:

|Hαwf(x)| ≤ 2n+1C‖f‖MΦ,ϕ |x|αw(|x|)
∞�

|x|

1

w(t)
Φ−1

(
ϕ(t)

tn

)
dt

t

= 2n+1C‖f‖MΦ,ϕ |x|αw(|x|)
∞�

|x|

g(t)

tαw(t)

dt

t
.

Applying (4.2), we obtain

|Hαwf(x)| ≤ Cg(|x|),
where g is defined in (3.4). Thus, by Lemma 2 and Corollary 1 we conclude
that Hαwf ∈MΨ,ψ(Rn).

When w(t) ≡ 1 we do not need to require the condition (4.1) for the
MΦ,ϕ(Rn)→MΨ,ψ(Rn) boundedness of Hα = Hα

w|w≡1.
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Remark 1. Let 0 < α < n. Suppose ψ(r)
rn is almost decreasing on

(0,∞) and ϕ satisfies (4.3). Then the Hardy operator Hα is bounded from
MΦ,ϕ(Rn) to MΨ,ψ(Rn).

Proof. From (2.1) we get

|Hαf(x)| ≤ |x|α−n
�

|y|≤|x|

|f(y)| dy ≤ 2‖f‖MΦ,ϕ |x|αΦ−1
(
ϕ(|x|)
|x|n

)
= 2‖f‖MΦ,ϕg(|x|),

where g is defined in (3.4). Thus, Hαf ∈MΨ,ψ(Rn) by Lemma 2 and Corol-
lary 1.

Boundedness of the Hardy operator Hα in Morrey-type spaces was also
proved in [5]. In particular, in the case of classical Morrey spaces we have
(see also [5, Theorem 7]):

Example 4. Let 1 < p < q <∞, 0 < α, λ < n and

ϕ(r) = ψ(r) = rλ, Φ(u) = up, Ψ(u) = uq.

If 1
p −

1
q = α

n−λ , then H
α is bounded from Mp,λ(Rn) to M q,λ(Rn).

5. Boundedness of weighted Riesz fractional integral operators
between distinct Orlicz–Morrey spaces. We deal with the following
classes of weights:

Definition 1. Let 0 < µ ≤ 1. We denote by V µ
± the class of weight

functions w : (0,∞)→ (0,∞) which are continuous and satisfy the following
conditions:

V µ
+ :

|w(x)− w(y)|
|x− y|µ

≤ Cw(max{x, y})
(max{x, y})µ

,

V µ
− :

|w(x)− w(y)|
|x− y|µ

≤ Cw(min{x, y})
(max{x, y})µ

,

where x, y > 0 and x 6= y.

Observe that if w(t) ∈ V µ
+ , then 1/w(t) ∈ V µ

− . Typical examples of such
weights are

(i) w(t) = tβ ∈ V µ
+ and w(t) = t−β ∈ V µ

− , where β ≥ 0.
(ii) w(t) = tβ (ln(e+ t))γ ∈ V µ

+ and w(t) = t−β (ln(e+ t))−γ ∈ V µ
− , where

β > 1 and γ ≥ 0.

The weighted Riesz fractional integral operator w(|x|)(Iα 1
wf)(x) can be

estimated by the non-weighted Riesz fractional integral operator andweighted
Hardy type operators. We will use the following pointwise estimate, obtained
in [25]:
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Lemma 3. Let 0 < α < n, w ∈ V µ
− ∪ V

µ
+ with µ = min{1, n − α}

be a weight and f : Rn → [0,∞) be a given measurable function. Then the
following pointwise estimate holds:

w(|x|)
(
Iα

1

w
f

)
(x) ≤ Iαf(x) + c

{
Hα
wf(x) +Hα−αf(x) if w ∈ V µ

+ ,

Hαf(x) +Hαwαf(x) if w ∈ V µ
− ,

where Hα−α = Hαw|w=|x|−α and wα(|x|) = |x|−αw(|x|).
In the next theorem we will additionally require that w satisfies w(2r) ≤

Cw(r) for some constant C > 0 and all r > 0, and w(r)/ra is almost
increasing for some a ∈ R. Note, that if w ∈ V µ

+ , then w is almost increasing
on (0,∞). Therefore we do not need to require that w(r)/ra be almost
increasing since it is obviously satisfied with a = 0.

Theorem 3. Let 0 < α < n and let Φ be an Orlicz function with Φ∗ ∈ ∆2.
Assume that µ = min{1, n−α} and w ∈ V µ

− ∪V
µ
+ . Assume also that ψ(r)/rn

is almost decreasing on (0,∞), ϕ satisfies condition (4.3), and the function
g defined in (3.4) is almost decreasing on (0,∞) and satisfies (3.7).

(i) If w∈V µ
+ , then the operator w(|x|)

(
Iα

1
wf
)
(x) is bounded fromMΦ,ϕ(Rn)

to MΨ,ψ(Rn) provided conditions (4.1) hold.
(ii) If w∈V µ

− , then the operator w(|x|)
(
Iα

1
wf
)
(x) is bounded fromMΦ,ϕ(Rn)

to MΨ,ψ(Rn) provided

(5.1)
g(r)

w(r)
is almost decreasing on (0,∞) and

∞�

r

g(t)

w(t)

dt

t
≤ C g(r)

w(r)

for some constant C > 0 and all r > 0.

Proof. First of all note that Iα is bounded from MΦ,ϕ(Rn) to MΨ,ψ(Rn)
since all conditions of Theorem 1 are satisfied.

(i) Let w ∈ V µ
+ . It was shown in Theorem 2 that the Hardy operator Hα

w

is bounded fromMΦ,ϕ(Rn) toMΨ,ψ(Rn) provided that conditions (4.1) hold.
By (4.2) the Hardy operator Hα−α is bounded from MΦ,ϕ(Rn) to MΨ,ψ(Rn)
if

g(r) = rαΦ−1
(
ϕ(r)

rn

)
is almost decreasing on (0,∞) and (3.7) holds,

which is satisfied by assumption.
(ii) Let w ∈ V µ

− . As shown in Remark 1, Hα is bounded from MΦ,ϕ(Rn)
to MΨ,ψ(Rn) under the present assumptions. Applying the condition (4.2)
for the weight wα(|x|) = |x|−αw(|x|), we see that Hαwα is bounded from
MΦ,ϕ(Rn) to MΨ,ψ(Rn) provided (5.1) holds. This completes the proof.
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