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Isomorphic and isometric structure of the optimal domains
for Hardy-type operators

by

Tomasz Kiwerski (Poznań), Paweł Kolwicz (Poznań) and
Lech Maligranda (Luleå and Poznań)

Abstract. We investigate the structure of optimal domains for the Hardy-type op-
erators including, for example, the classical Cesàro, Copson and Volterra operators as
well as some of their generalizations. We prove that, in some sense, the abstract Cesàro
and Copson function spaces are closely related to the space L1, namely, they contain “in
the middle” a complemented copy of L1[0, 1] and an asymptotically isometric copy of `1,
and can also be renormed to contain an isometric copy of L1[0, 1]. Moreover, generalized
Tandori function spaces are quite similar to L∞ because they contain an isometric copy
of `∞ and can be renormed to contain an isometric copy of L∞[0, 1]. Several applications
to the metric fixed point theory will be given. Next, we prove that the Cesàro construction
X 7→ CX does not commute with the truncation operation of the measure space support.
We also study whether a given property transfers between a Banach function space X
and the space TX, where T is the Cesàro or the Copson operator. In particular, we find
a large class of properties which do not lift from TX into X and we prove that abstract
Cesàro and Copson function spaces are never reflexive, are not isomorphic to a dual space
and do not have the Radon–Nikodym property in general.

1. Introduction. In 1925 G. H. Hardy [35] proved the following inequal-
ity, which today is usually called the classical Hardy inequality:
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where 1 < p < ∞ and f is a nonnegative real-valued Lebesgue measurable
function (see [36, p. 240] and [53, Chapter 3] for more details). This inequality
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can be reformulated in the following way:

the Hardy operator f 7→ 1

x

x�

0

f(t) dt maps Lp continuously into itself.

Given an operator T ∈ L(Y,X), where X and Y are Banach function
spaces, it is natural to ask whether there is a Banach function space, say Z,
such that T : Z → X is also bounded and Z is the largest, in the sense of
inclusion, Banach function space with this property. This situation can be
summarized by the diagram

Y Z

X

T
T

Under some technical assumptions [21, p. 196], Z is the space of all
measurable functions f such that T |f | ∈ X, equipped with the norm ‖f‖Z =
‖T |f |‖X . In other words, the space Z is the maximal or optimal domain for
the operator T considered with values in the fixed space X and throughout
this paper we adopt the convention of denoting it by TX. This point of
view turned out to be helpful and fruitful in the study of such classes of
operators like kernel operators (special cases of operators in this class are,
for example, the Volterra, Cesàro, Copson, Poisson or Riemann–Liouville
operators), differential operators, convolutions, Fourier transform and the
Sobolev embedding (see [65] and references given there).

The classical Cesàro and Copson function spaces appeared in a natural
way as the optimal domains of the Hardy operator and its conjugate opera-
tor, respectively (see [22]–[25], [54], [64] and [68]). For this reason and also to
avoid the use of the term “Hardy space”, which is usually reserved for certain
spaces of holomorphic functions on the unit disc (interestingly, introduced
by F. Riesz in 1923 also to honour Hardy), we will call the above mentioned
operator the Cesàro operator C, i.e., (Cf)(x) := 1

x

	x
0 f(t) dt, remembering

Cesàro’s result on uniform convergence of averages of partial sums of Fourier
series. There is also a connection between the Cesàro function spaces CX
and the so-called down spaces X↓ introduced by Sinnamon. Namely, for
a symmetric space X on I = [0,∞) such that the Cesàro operator C is
bounded on X we can identify CX with X↓ (see [70]–[74]; see also [33] and
[54, Section 3] for some additional remarks).

From the isomorphic point of view, the abstract Cesàro function spaces
CX as well as the abstract Copson function spaces C∗X are a kind of a
nontrivial mixture of the Banach function space X and L1 in which the
properties of both spaces manifest themselves. Following this idea, we will
look for “the best possible” copies of `1 and L1[0, 1] in the Cesàro and Cop-



Optimal domains for Hardy-type operators 47

son function spaces, and also of the space `∞ in Ces∞ := CL∞. We apply
our results, e.g., to fixed point theory, a wide branch of functional analysis
that has been extensively developed for several decades (see [34] and [44]).
It has many applications, for example, in nonlinear analysis as well as in
integral and differential equations. In particular, the question whether a Ba-
nach space X has or fails the (weak) fixed point property for nonexpansive
mappings is fundamental in this area.

In [6, Theorems 1 and 2] Astashkin–Maligranda proved that the Cesàro
function spaces Cesp := CLp for 1 ≤ p ≤ ∞ if I = [0, 1] and 1 < p ≤ ∞ if
I = [0,∞) fail to have the fixed point property for nonexpansive mappings.
In contrast, it was proved by Cui–Hudzik [18], Cui–Hudzik–Li [19], and Cui–
Meng–Płuciennik [20] that their sequence counterparts, i.e., the Cesàro se-
quence spaces cesp := C`p, have this property whenever 1 < p <∞. We will
show that the abstract Cesàro and Copson function spaces on two separable
measure spaces [0, 1] and [0,∞) contain an order asymptotically isometric
copy of `1 (the notions of asymptotic isometries are intermediate between the
isomorphic and isometric theory) and thus, by the Dowling–Lennard result,
fail to have the fixed point property in general. In the case of Cesàro function
spaces this result can be seen as an essential generalization of the Astashkin–
Maligranda result from [6]. In fact, the main idea to find an asymptotically
isometric copy of `1 (which, by the way, were introduced precisely to show
that certain spaces fail to have the fixed point property) remains the same
but our argument is much more sophisticated and works in full generality.
An analogous result for the Copson function spaces is new even for X = Lp.
On the other hand, we also prove that nontrivial Tandori function spaces X̃
contain an order isomorphically isometric copy of `∞ and consequently fail
to have even the weak fixed point property.

The second important problem we consider is whether “some” prop-
erty can be transfered from a simpler structure to more complicated one
and vice versa. This type of problems has been successfully considered for
many constructions. For example, we can mention three of such questions:
1o (X,E) 7→ E(X), where X is a Banach space, E is a Banach function
space and E(X) is a Köthe–Bochner space, 2o (X,Y ) 7→ F(X,Y ), where X
and Y are symmetric spaces and F is an interpolation functor (see references
in [56]), and 3o X 7→ X(∗), where X is a Banach function space and X(∗) is
the symmetrization of X (see references in [49]).

We will also consider this problem but for the Cesàro and Copson con-
struction X 7→ TX presenting a large class of properties that never transfer
from TX to X. We also give some positive results in this area.

Finally, we will examine the Cesàro construction X 7→ CX itself. More
precisely, we show that this construction does not commute in general with
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the truncation operation X 7→ X|[0,1] highlighting in this way the difference
between the Cesàro function spaces defined on [0, 1] and [0,∞). The ques-
tion whether two operations commute has been often investigated. For exam-
ple, the symmetrization operation X 7→ X(∗) commutes with the Calderón–
Lozanovskĭı construction ρ(X,Y ) (in particular with the pointwise product
X � Y ) and with the pointwise multipliers M(X,Y ) (in particular with the
Köthe dual X ′)—see [49]. Furthermore, the Cesàro construction X 7→ CX
commutes with the interpolation functor F having the homogeneity property
(see [56, Theorem 6]).

It is worth mentioning that we are able to prove most of the results
without the assumption that the Cesàro operator or the Copson operator
is bounded on X, the assumption which is present in almost all previous
results of this type.

The paper is organized as follows. After an introduction we collect some
necessary definitions, basic facts and notations in Section 2. Here we also
recall the duality theorem of Leśnik–Maligranda [54], the Lindenstrauss–
Tzafriri [57] and Boyd [16] results on interpolation because we will use them
frequently.

In Section 3 we will provide some basic results regarding nontriviality
of abstract Copson function spaces (Lemma 3.1 and Corollary 3.2). We also
discuss the difference between the condition TX 6= {0} and the fact that the
operator T is bounded on X, where T is the Cesàro or the Copson operator
(Example 3.3).

Section 4 starts with two lemmas (4.1 and 4.2) which will play a crucial
role later on. In particular, they show that the nontrivial Cesàro and Cop-
son function spaces contain “in the middle” a complemented copy of L1[0, 1].
Next, we prove that a Banach space X which contains a complemented copy
of a space Y can always be renormed to contain an isometric copy of Y (The-
orem 4.4). As a corollary we deduce immediately that Cesàro and Copson
function spaces can be renormed to contain an isometric copy of L1[0, 1] and
that Tandori function spaces can be renormed to contain an isometric copy
of L∞[0, 1]. Finally, in Theorems 4.5 and 4.6 we present the main result of this
section: Cesàro and Copson function spaces always contain an order asymp-
totically isometric copy of `1. Since generalized Tandori function spaces X̃
and the space Ces∞ are never order continuous [54, Theorem 1(e)] it follows
that they contain an isomorphic copy of `∞. Nevertheless, we prove that X̃
and Ces∞ always contain an order isometric copy of `∞ (Propositions 4.8
and 4.9).

Next, in Section 5, we try to compare Cesàro function spaces defined on
[0, 1] and on [0,∞) and we show that the Cesàro construction X 7→ CX
and the truncation operation of the measure space support X 7→ X|[0,1] do
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not commute in general (Lemma 5.1). This fact explains, in a sense, quite
surprising differences between some results obtained for the Cesàro function
spaces on a finite and infinite interval (see also [7], [54] and [56]).

In Section 6, we analyze the problem of transferring properties betweenX
and TX, where T = C or T = C∗. We give examples of properties which lift
from a Banach function space X to TX and vice versa (Corollary 6.1 and
Lemma 6.3). Next, using the results of Bessaga–Pełczyński and Talagrand
we find that Cesàro and Copson function spaces are not isomorphic to a
dual space and do not have the Radon–Nikodym property (Corollary 6.4).
Moreover, we include an example of a certain class of Banach function spaces
which contain “in the middle” an isomorphic copy of a Banach function
space Y , but the construction X 7→ TX, in a sense, forgets about this copy
(Lemma 6.2). The presented comparison of this example with the result
from [48] can be instructive. Furthermore, we give a large class of properties
(including, for example, order continuity, p-concavity and the Dunford–Pettis
property) which do not transfer from TX to X (Theorem 6.6).

The main result in Section 7 is Theorem 7.1, which states that abstract
Cesàro and Copson function spaces fail to have the fixed point property in
general. We prove that, under additional assumptions, these spaces cannot
even be renormed to have the fixed point property (Corollary 7.4). We also
conclude that generalized Tandori function spaces X̃ and the space Ces∞
fail to have the weak fixed point property (Proposition 7.5).

Section 8 presents a certain way of generalizing the results from the pre-
vious sections. We show that the methods developed in Sections 4 and 7 also
work for a wider class of operators, e.g., for the weighted Cesàro operator Hw
and its conjugate H∗w (Theorems 8.2 and 8.3). In particular, we prove that
an abstract Volterra space V X fails to have the fixed point property as well
(Corollary 8.4).

Finally, the Appendix is devoted to the analysis of the functions FX
and GX that appeared in the proof of Theorems 4.5 and 4.6. We finish this
section with a few examples (Example 9.3). In the first one we give some
rather exotic examples of the functions FX and in the next one we justify that
the order continuity of a symmetric space X is not crucial for the continuity
of FX .

2. Notation and preliminaries

2.1. Banach function spaces and symmetric spaces. Denote by m
the Lebesgue measure on I, where I = [0, 1] or I = [0,∞), and by L0 =
L0(I) the set of all equivalence classes of real-valued Lebesgue measurable
functions defined on I. A Banach function space (or a Banach ideal space)
X = (X, ‖ · ‖X) on I is understood to be a Banach space X such that X is
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a linear subspace of L0(I) satisfying the ideal property : if f, g ∈ L0(I) with
|f(t)| ≤ |g(t)| for almost all t ∈ I, and g ∈ X, then f ∈ X and ‖f‖X ≤ ‖g‖X .
Unless otherwise stated we assume that a Banach function space X contains
a function f0 ∈ X which is positive almost everywhere on I (such a function
is called the weak unit in X), which means that supp(X) = I. Sometimes
we will write X[0, 1] or X[0,∞) to stress that the Banach function space X
is defined on I = [0, 1] or on I = [0,∞). We say that a Banach function
space X is nontrivial if X 6= {0}.

For two Banach function spaces X and Y on I, the symbol X ↪
M−→ Y sig-

nifies that the inclusion X ⊂ Y is continuous with norm no greater than M ,
i.e., there exists a constant M > 0 (the embedding constant) such that
‖f‖Y ≤ M‖f‖X for all f ∈ X. If the embedding X ↪

M−→ Y holds with
some (maybe unknown) constant M > 0 we simply write X ↪→ Y and
‖f‖Y . ‖f‖X . Recall also that for two Banach function spaces X and Y
the inclusion X ⊂ Y is always continuous. Moreover, X = Y (resp. X ≡ Y )
means that the spaces X and Y have the same elements and their norms
are equivalent (resp. equal). If the spaces X and Y are isomorphic (resp. are
isometric under the isometry λ · id, where λ > 0), then we write X ' Y
(resp. X ∼= Y ).

Recall that the Köthe dual space (or associated space) X ′ = X ′(I) of a
Banach function space X on I is defined as

X ′ :=
{
f ∈ L0(I) : ‖f‖X′ = sup

g∈X, ‖g‖X≤1

�

I

|f(x)g(x)| dx <∞
}
.

The Köthe dual space is again a Banach function space. Moreover, X ↪
1−→ X ′′

:= (X ′)′, and X = X ′′ if and only if the norm in X has the Fatou property
(written X ∈ (FP)), i.e., for any sequence (fn) ⊂ X with 0 < fn ↑ f
almost everywhere on I such that supn∈N ‖fn‖X < ∞, we have f ∈ X and
‖fn‖X ↑ ‖f‖X .

A function f ∈ X, where X is a Banach function space space on I, is
said to have order continuous norm in X if for any decreasing sequence of
sets An ⊂ I with empty intersection, we have ‖fχAn‖X → 0 as n→∞ (see
[14, Proposition 3.5, p. 15]). We denote by Xa the subspace of all functions
with order continuous norm in X. A Banach function space X on I is order
continuous (we write X ∈ (OC)) if every element of X has order continuous
norm, that is, Xa = X. The subspace Xa is always closed in X [14, The-
orem 3.8, p. 16]. If X is an order continuous Banach function space then
X∗ = X ′ [14, Theorem 4.1, p. 20]. Moreover, a Banach function space on I
with the Fatou property is reflexive if and only if both X and X ′ are order
continuous (cf. [14, Corollary 4.4, p. 23]).

Throughout the paper, whenever we take a subset A ⊂ I, we mean
that A is Lebesgue measurable. For a function f ∈ L0(I) we define the
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support of f as
supp(f) := {x ∈ I : f(x) 6= 0}.

For a measurable function w : I → (0,∞) (a weight on I) and for a
Banach function space X on I, the weighted Banach function space X(w) =
X(w)(I) is defined as

X(w) := {f ∈ L0(I) : fw ∈ X},
with the norm ‖f‖X(w) = ‖fw‖X . It is clear that X(w) is a Banach function
space on I and X(w)′ ≡ X ′(1/w).

For a function f ∈ L0(I) we define the distribution function df (λ) :=

m({t ∈ I : |f(t)| > λ}) for λ > 0. We say that functions f, g ∈ L0(I) are
equimeasurable if they have the same distribution functions, i.e. df ≡ dg.
By a symmetric space (symmetric Banach function space or rearrangement
invariant Banach function space) on I we mean a Banach function space
E = (E, ‖·‖E) on I with the additional property that for any equimeasurable
functions f, g ∈ L0(I) if f ∈ E then g ∈ E and ‖f‖E = ‖g‖E . In particular,
‖f‖E = ‖f∗‖E , where f∗(t) := inf{λ > 0: df (λ) ≤ t} for t ≥ 0.

For general properties of Banach lattices, Banach function spaces and
symmetric spaces we refer to the books by Bennett–Sharpley [14], Kanto-
rovich–Akilov [43], Krein–Petunin–Semenov [51], Lindenstrauss–Tzafriri [57],
Maligranda [61], Meyer-Nieberg [63], and Wnuk [77].

2.2. Cesàro, Copson and Tandori function spaces. For a Banach
function space X on I the abstract Cesàro function space CX = CX(I) is
defined as
(2.1)
CX := {f ∈ L0(I) : C |f | ∈ X} with the norm ‖f‖CX :=

∥∥C |f |∥∥
X
,

where C denotes the Cesàro operator (sometimes also called the Hardy op-
erator)

C : f 7→ Cf(x) :=
1

x

x�

0

f(t) dt for 0 < x ∈ I.

Copson and Tandori spaces are directly related to Cesàro spaces. For a
Banach ideal space X on I we define the abstract Copson function space
C∗X = C∗X(I) as
(2.2)
C∗X := {f ∈ L0(I) : C∗|f | ∈ X} with the norm ‖f‖C∗X :=

∥∥C∗|f |∥∥
X
,

where C∗ denotes the conjugate operator (in the sense of Köthe) to the
Cesàro operator C, which will be called the Copson operator :

C∗ : f 7→ C∗f(x) :=
�

I∩[x,∞)

f(t)

t
dt for x ∈ I,
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and the abstract Tandori function space X̃ = X̃ (I) is

(2.3) X̃ := {f ∈ L0(I) : f̃ ∈ X} with the norm ‖f‖
X̃

:= ‖f̃‖X ,

where the nonincreasing majorant f̃ of a function f is defined by

f̃(x) := ess sup
t∈I, t≥x

|f(t)| for x ∈ I.

In the sequence case, the discrete Cesàro and Copson operators Cd and C∗d
are defined for n ∈ N by

(Cda)n :=
1

n

n∑
k=1

ak and (C∗da)n :=
∞∑
k=n

ak
k
,

respectively. Moreover, the nonincreasing majorant ã = (ãn) of a sequence
a = (an) is defined as ãn := supk∈N, k≥n |ak| for n ∈ N. Then the corre-
sponding abstract Cesàro sequence space CX, abstract Copson sequence
space C∗X and abstract Tandori sequence space X̃ are defined analogously
to (2.1)–(2.3).

Abstract Cesàro function spaces are a generalization of the well-known
classical Cesàro spaces Cesp[0, 1] and Cesp[0,∞). Indeed, if we take X = Lp,
where 1 ≤ p ≤ ∞, then Cesp = CLp (note that for p = 1 we have Ces1[0, 1] =
L1(ln(1/t)) and Ces1[0,∞) = {0}). The space Ces∞[0, 1] already appeared
in 1948 and it is known as the Korenblyum–Krĕın–Levin space K (see [50],
[77, p. 26 and p. 61] and [78, pp. 469–471]).

Various properties of these spaces have been studied byAstashkin [4], Asta-
shkin–Maligranda [6]–[12], Hassard–Hussein [37], Kamińska–Kubiak [41], Ku-
biak [52], Shiue [69] and Sy–Zhang–Lee [75]. Taking X = LΦ, X = Λϕ
or X = Mϕ we obtain Cesàro–Orlicz, Cesàro–Lorentz and Cesàro–
Marcinkiewicz spaces, respectively, which have been intensively studied by
Astashkin–Leśnik–Maligranda [5], Kiwerski–Kolwicz [45]–[47], and Kiwerski–
Tomaszewski [48]. A general discussion of this construction when X is a
Banach function space or a symmetric space was initiated in [54] and [55].
More recently, the structure of these spaces, especially in their general form, is
quite popular among researchers, includingAstashkin–Leśnik–Maligranda [5],
Curbera–Ricker [22], Delgado–Soria [25], and Kiwerski–Tomaszewski [48].

Note that Cesàro function spaces CX are never symmetric or reflexive.
Nevertheless, at least when X is a symmetric space, there are some con-
nections and similarities to the classical theory of normed ideal spaces and
symmetric spaces. For example, it has been shown in [48, Theorem 3] that
order continuity “transfers” quite well between X and CX. Moreover, Ces∞
and ces∞ are isomorphic [5, Theorem 13] (this is analogous to Pełczyński’s
well-known result [66] that L∞ and `∞ are isomorphic). Furthermore, ˜̀1 has
the Schur property but is not isomorphic to `1 [5, Theorem 3.1]. Of course,
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there are also major differences between the cases of a finite and infinite
interval, for example in results on the Köthe duality for abstract Cesàro
function spaces [54, Theorems 3–5] (cf. also Theorem A below) or in the
interpolation results proved in [56].

It is worth mentioning here that the study of the classical Cesàro sequence
spaces cesp = C`p for 1 < p ≤ ∞ began much earlier and many results have
been obtained: see [7], [12], [13] and [40] and the references therein.

The Copson function spaces Copp = C∗Lp and Copson sequence spaces
copp = C∗`p have already appeared in Bennett’s memoir [13, pp. 25–28
and p. 123]. Furthermore, Astashkin–Maligranda [9, Section 2] used Copp
in their interpolation results. Abstract Copson spaces have been studied by
Leśnik–Maligranda [56]. For some connections between Cesàro and Copson
function spaces and their iterations CCX and C∗C∗X we refer to [56, The-
orem 1(a, b)].

Leśnik and Maligranda [54] suggested calling X̃ a generalized Tandori
space since Tandori [76] proved in 1954 that (Ces∞[0, 1])′ = L̃1[0, 1]. More-
over, these spaces appeared earlier but without such name, e.g., in [7]
and [55]. Tandori spaces are related to the Köthe duality of Cesàro spaces.
Many special cases of this general construction have been studied by Alex-
iewicz [2], Astashkin–Maligranda [7], Bennett [13], Jagers [39], Kamińska–
Kubiak [40]–[41] and Luxemburg–Zaanen [59]. General Tandori spaces X̃
have been studied by Leśnik–Maligranda [54]–[56] and the following Köthe
duality result has been proved in [54, Theorems 3, 5 and 6].

Theorem A. If X is a Banach function space on I = [0,∞) such that
the Cesàro operator C and the dilation operator στ (for some 0 < τ < 1) are
bounded on X, then

(2.4) (CX)′ = X̃ ′.

Furthermore, if X is a symmetric space on I = [0, 1] with the Fatou property
such that both C and C∗ are bounded on X, then

(2.5) (CX)′ = X̃ ′(w) where w : [0, 1) 3 x 7→ 1

1− x
.

The dilation operator στ for τ > 0 is defined by στf(x) := f(x/τ) for
0 < x <∞ and

στf(x) :=

{
f(x/τ) if x < min{1, τ},
0 if τ ≤ x < 1,

for 0 < x ≤ 1. This operator is bounded in any symmetric space X on I
and ‖στ‖X→X ≤ max{1, τ} (see [14, p. 148] and [51, pp. 96–98]). The Boyd
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indices of a symmetric space X are defined by

p(X) := lim
τ→∞

ln τ

ln ‖στ‖X→X
and q(X) := lim

τ→0+

ln τ

ln ‖στ‖X→X
.

These numbers may be different for the same X on I = [0, 1] and on I =
[0,∞), but always 1 ≤ p(X) ≤ q(X) ≤ ∞ (see [51], [57] and [60]).

We will use the following result from Lindenstrauss–Tzafriri’s book [57,
Proposition 2.b.3, p. 132].

Theorem B. If X is a symmetric space on I, then there are constants
A,B > 0 such that

(2.6) Lp ∩ Lq ↪A−→ X ↪
B−→ Lp + Lq

for all p, q > 0 satisfying 1 ≤ p < p(X) and q(X) < q ≤ ∞, where p(X) and
q(X) are the Boyd indices of X, and

Lp ∩ Lq := {f ∈ L0(I) : ‖f‖Lp∩Lq = max{‖f‖Lp , ‖f‖Lq} <∞},

Lp + Lq :=
{
f ∈ L0(I) : ‖f‖Lp+Lq = inf

f=g+h
g∈Lp, h∈Lq

{‖g‖Lp + ‖h‖Lq} <∞
}
.

Moreover, if p(X) = 1 (resp. q(X) = ∞) then we can take p = 1 (resp.
q =∞) in (2.6).

Let us recall an important result about boundedness of the Cesàro oper-
ator (cf. [53, Theorem 17, p. 130]).

Theorem C. Let X be a symmetric space on I. Then

(i) the Cesàro operator C is bounded on X if and only if p(X) > 1,
(ii) the Copson operator C∗ is bounded on X if and only if q(X) <∞.

Throughout the article we will use the following notation: the norm of the
function fλ : I 3 x 7→ 1

xχ[λ,m(I))(x), where 0 < λ ∈ I, in a Banach function
space X on I will be denoted by

∥∥ 1
xχ[λ,m(I))(x)

∥∥
X(I)

, i.e.,

‖fλ‖X(I) :=

∥∥∥∥1xχ[λ,m(I))(x)

∥∥∥∥
X(I)

,

and the norm of the function (C|f |)χA : I 3 x 7→ 1
x

	x
0 |f(t)|dt χA(x), where

A ⊂ I, will be denoted by∥∥∥∥1x
x�

0

|f(t)| dt χA(x)
∥∥∥∥
X(I)

:= ‖(C|f |)χA‖X(I).

Recall that if X is a Banach function space on I and X ∈ (FP), then the
Cesàro operator C is bounded on X if and only if the Copson operator C∗
is bounded on X ′, and ‖C‖X→X = ‖C∗‖X′→X′ [49, Remark 1(iv)]. Note
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also that if X is a Banach function space on I, then the assumption that C
maps X into X is in fact equivalent to C being bounded on X ([48]; alter-
natively, it is also due to the fact that every positive linear operator acting
between Banach lattices is continuous [63, Proposition 1.3.5]). Clearly, if C
is bounded on X, then X ↪→ CX. Therefore, the space CX is nontrivial
with supp(CX) = supp(X) = I.

We will now collect some other useful facts about an abstract Cesàro
function space CX, which are proved in [5, proof of Proposition 2.2], [54,
Theorem 1(a, b)] and [48, Lemma 2].

Theorem D. Let X be a Banach function space on I. Then

(i) CX[0, 1] is nontrivial if and only if χ[λ,1] ∈ X for some 0 < λ < 1,
(ii) CX[0,∞) is nontrivial if and only if 1

xχ[λ,∞)(x) ∈ X for some λ > 0.

In particular, [λ,m(I)) ⊂ supp(CX) for some 0 < λ < m(I).
If X is a Banach function space on I such that the Cesàro operator C

is bounded on X or X is a symmetric space on [0, 1] or X is a symmetric
space on [0,∞) with CX[0,∞) 6= {0}, then

(iii) χ[λ,1] ∈ X for all 0 < λ < 1 if I = [0, 1],
(iv) 1

xχ[λ,∞)(x) ∈ X for all λ > 0 if I = [0,∞).

In particular, supp(CX) = supp(X) = I. If X is a symmetric space on
[0, 1], then CX is always nontrivial.

3. Some auxiliary results. We give a few simple but useful facts about
Copson spaces.

Lemma 3.1. Let X be a Banach function space on I. Then the Copson
space C∗X is nontrivial if and only if χ[0,λ] ∈ X for some 0 < λ < m(I).

Proof. Assume that C∗X 6= {0}. Then there exists f ∈ C∗X with
|f(x)| > 0 for x ∈ A ⊂ I and m(A) > 0. Of course, we can also find
λ > 0 such that

m(I)�

λ

|f(t)|
t

dt =: η > 0.

Therefore,

ηχ[0,λ](x) =

m(I)�

λ

|f(t)|
t

dt χ[0,λ](x) ≤
m(I)�

x

|f(t)|
t

dt χ[0,λ](x)

≤ C∗|f |(x) ∈ X,

so χ[0,λ] ∈ X.
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If χ[0,λ] ∈ X for some 0 < λ < m(I), then for 0 < a < λ we have

‖χ[a,λ]‖C∗X ≤
∥∥∥∥( λ�

a

dt

t

)
χ[0,λ]

∥∥∥∥
X

= ln(λ/a)‖χ[0,λ]‖X <∞,

which means that C∗X 6= {0}.

Corollary 3.2.

(1) The Copson space C∗X is always nontrivial whenever X is a symmetric
space.

(2) If X is a Banach function space on I such that the operator C∗ is bounded
on X, then supp(C∗X) = I. In particular, C∗X is nontrivial. Moreover,

(i) L∞[0, 1]|[0,λ] ↪→X[0, 1] for all 0<λ< 1, and in addition L∞[0, 1] ↪→
X[0, 1] if X has the Fatou property,

(ii) L∞fin[0,∞) ⊂ X[0,∞), and in addition L∞b [0,∞) ↪→ X[0,∞) if X
has the Fatou property,

where L∞fin(I) := {f ∈ L∞(I) : m(supp(f)) < ∞} and (L∞(I))b =
L∞(I)b is the closure of L∞fin(I) in L

∞(I).

Proof. If X is a symmetric space on I, then χ[0,λ] ∈ X for all 0 < λ <
m(I), so C∗X 6= {0} (see Lemma 3.1).

It is also clear that if C∗ is bounded on X then X ↪→ C∗X and conse-
quently supp(C∗X) = I.

(i) Of course, L∞[0, 1]|[0,λ] ↪→ X is equivalent to χ[0,λ] ∈ X. Take 0 <

λ < 1 and let f0 be a weak unit in X. Then
	m(I)
λ |f0(t)|/tdt =: δ > 0 and

proceeding as in the proof of Lemma 3.1 we get χ[0,λ] ∈ X. If, additionally,
X ∈ (FP), then χ[0,1] ∈ X, i.e., L∞[0, 1] ↪→ X.

(ii) Similarly to case (i), we find that L∞fin[0,∞) ⊂ X[0,∞) (note only
that L∞fin is not complete, so the inclusion L∞fin ⊂ L∞b is not continuous).
Suppose now that X ∈ (FP) and take f ∈ L∞b [0,∞). To show that f ∈ X it
is enough to take a sequence (fn) ⊂ L∞fin[0,∞) with 0 ≤ fn ↑ f .

Many results in the theory of Cesàro and Copson function spaces are
proved under the assumption that C or C∗ is bounded onX. As mentioned in
the introduction, we are able to prove our results under the essentially weaker
assumption (actually the weakest possible one) that the Cesàro or Copson
function space is nontrivial. In this context, it seems resonable to give several
examples discussing the difference between these two assumptions, because
many naturally appearing spaces have the property that the operator T ,
where T = C or T = C∗, is not bounded on X but TX 6= {0} or even
supp(TX) = I.
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Example 3.3. (a) As in [54, Example 2], consider the space Lp(w1) on
[0,∞), where 1 < p <∞ and

w1(x) =
1

1− x
χ[0,1)(x) + χ[1,∞)(x).

Then supp(X) = [0,∞), supp(CX) = [1,∞) and supp(C∗X) = [0, 1]. Put
X = L1(w2), where

w2 : I 3 x 7→ 1/x.

Then χ[0,λ] /∈ X for every 0 < λ < m(I), so C∗X = {0}. Finally, take
X = L∞(w3), where

w3 = idI : I 3 x 7→ x.

Then CX ≡L1. On the other hand, if C : X→X is bounded, then X ↪→CX
but L∞(w3) ↪9 L1 (just take f(x) = 1/x), so C is not bounded on L∞(w3)
and suppCX = I.

(b) It is easy to see that Ces1[0, 1] is just L1(w)[0, 1], where w(t) = ln(1/t)
for 0 < t ≤ 1. Indeed,

(3.1)
1�

0

(
1

x

x�

0

|f(t)| dt
)
dx =

1�

0

(1�

t

dx

x

)
|f(t)| dt =

1�

0

|f(t)| ln
(
1

t

)
dt

(see [7, Theorem 1(a)]). Therefore, although C is not bounded on L1[0, 1]
(by Theorem C), we see again that supp(Ces1[0, 1]) = [0, 1]. Thus, if f ∈
Ces1[0, 1] and supp(f) ⊂ [a, b], where 0 < a < b < 1, then
(3.2) ln(1/b)‖f‖L1[0,1] ≤ ‖f‖Ces1[0,1] ≤ ln(1/a)‖f‖L1[0,1]

(see also [6, Lemma 1, inequality (4)]). The equality (3.1) shows by the way
that Ces1[0,∞) = {0} [7, Theorem 1(a)].

(c) Clearly, Cop1 ≡ L1 and Cop∞ ≡ L1(1/t) because

‖f‖Cop1
=

�

I

(m(I)�

x

|f(t)|
t

dt

)
dx =

�

I

(t�
0

dx
) |f(t)|

t
dt = ‖f‖L1 ,

and

‖f‖Cop∞ = sup
x∈I

m(I)�

x

|f(t)|
t

dt =

m(I)�

0

|f(t)|
t

dt = ‖f‖L1(1/t).

Again, supp(Cop∞) = I but C∗ is not bounded on L∞ by Theorem C.
(d) Let X be a symmetric space on [0, 1] with p(X) = 1. Then C is not

bounded on X but CX 6= {0}, by Theorems C and D. For example, if X is
the Zygmund space L logL[0, 1] [14, Definition 6.1, p. 243)], then p(X) = 1
[14, Theorem 6.5, p. 247)].

(e) Consider a symmetric spaceX on I such that C∗ is not bounded onX.
Then, by Lemma 3.1, C∗X 6= {0}, because χ[0,λ] ∈ X for each 0 < λ < m(I).
In particular, we can takeX = LΦ, where LΦ is the Orlicz space generated by
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the Orlicz function Φ which does not satisfy the ∆2-condition. Since Φ /∈ ∆2,
we have q(LΦ) = ∞ ([57, Proposition 2.5, p. 139] and [60, Theorem 3.2,
p. 22]) and consequently C∗ is not bounded on X by Theorem C.

(f) Suppose that X is the Orlicz space LΦ generated by

Φ(x) = x log(1 + x).

First, note that p(LΦ) = αΦ, where αΦ is the lower Orlicz–Matuszewska
index of Φ [57, Proposition 2.5, p. 139 and Remark 2, p. 140]. Moreover, it is
not difficult to calculate that αΦ = 1 [60, pp. 7–21]. Consequently, C is not
bounded on X by Theorem C. We claim that CX 6= {0}. This is clear when
I = [0, 1]. In fact, LΦ is a symmetric space, so χ[0,λ] ∈ X for each 0 < λ < 1
and we can apply Theorem D. If I = [0,∞), according to Theorem D we
need to show that

(
fλ : x 7→ 1

xχ[λ,∞)(x)
)
∈ LΦ for some λ > 0. Recall that

f ∈ LΦ, whenever
	∞
0 Φ(γ|f(x)|) dx <∞ for some γ > 0 (see [61]). We have

∞�

0

Φ(|fλ(x)|) dx =

∞�

λ

1

x
log

(
1 +

1

x

)
dx ≤

∞�

λ

1

x2
dx =

1

λ
<∞,

and the claim follows.

4. Copies of `1, `∞, L1[0, 1] and L∞[0, 1] in Cesàro, Copson and
Tandori function spaces. The norms of Cesàro and Copson function
spaces are generated by a positive sublinear operator T , where T stands
for the Cesàro or the Copson operator, and by the norm of a Banach func-
tion space X. Thus, in a sense, TX is a nontrivial mix of L1 and X, and
some similarities to both these spaces can be found in TX. We will make
these statements more precise by showing first that the Cesàro and Copson
function spaces contain “good” copies of L1[0, 1] and `1.

Lemma 4.1. Let X be a Banach function space on I such that CX 6= {0}.
Then there are 0 < a < b < m(I) such that

(4.1)
∥∥∥∥1xχ[b,m(I))(x)

∥∥∥∥
X

‖f‖L1(I) ≤ ‖f‖CX ≤
∥∥∥∥1xχ[a,m(I))(x)

∥∥∥∥
X

‖f‖L1(I)

for all f ∈ CX with supp(f) ⊂ [a, b]. In particular, CX contains a comple-
mented copy of L1[0, 1].

Proof. We only sketch the proof because this lemma is just a reformula-
tion of [5, Proposition 2.2] (cf. also [12, Theorem 5.1(b)]).

Let I = [0, 1]. First, χ[λ,1] ∈ X for some 0 < λ < 1 due to nontriviality of
CX (see Theorem D). Take a = λ and choose b ∈ (a, 1). Then 1

xχ[a,1](x) ∈ X
and, from the ideal property, also 1

xχ[b,1](x) ∈ X. Now, for f ∈ CX with
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supp(f) ⊂ [a, b] it is obvious that

1

x
‖f‖L1[0,1]χ[b,1](x) ≤

1

x

x�

0

|f(t)| dt ≤ 1

x
‖f‖L1[0,1]χ[a,1](x)

for any 0 < x ∈ I. Thus,
(4.2)∥∥∥∥1xχ[b,1](x)

∥∥∥∥
X

‖f‖L1[0,1] ≤
∥∥∥∥1x

x�

0

|f(t)| dt
∥∥∥∥
X

≤
∥∥∥∥1xχ[a,1](x)

∥∥∥∥
X

‖f‖L1[0,1],

and (i) follows.
At this point, it is clear that {f ∈ L1[0, 1] : supp(f) ⊂ [a, b]} ' L1[0, 1]

and this copy of L1[0, 1] is in fact complemented because the projection
P : f 7→ fχ[a,b] is bounded.

For I = [0,∞) the proof is completely analogous.

Lemma 4.2. Let X be a Banach function space on I such that C∗X 6= {0}.
Then there are numbers 0 < a < b < m(I) such that

(4.3) ‖χ[0,a]‖X‖f‖L1(1/t)(I) ≤ ‖f‖C∗X ≤ ‖χ[0,b]‖X‖f‖L1(1/t)(I)

for all f ∈ C∗X with supp(f) ⊂ [a, b]. In particular, C∗X contains a com-
plemented copy of L1[0, 1].

Proof. We give the proof for I = [0, 1]; the other case is analogous.
Suppose I = [0, 1]. Since C∗X is nontrivial we get χ[0,λ] ∈ X for some

0 < λ < 1 (see Lemma 3.1). Take b = λ and choose a ∈ (0, b). If f ∈ C∗X
and supp(f) ⊂ [a, b], then

C∗|f |(x) =
1�

x

|f(t)|
t

dt ≥
b�

a

|f(t)|
t

dt χ[0,a](x) = ‖f‖L1(1/t)[0,1]χ[0,a](x).

Moreover,

C∗|f |(x) =
1�

x

|f(t)|
t

dt ≤
b�

a

|f(t)|
t

dt χ[0,b](x) = ‖f‖L1(1/t)[0,1]χ[0,b](x).

Putting together the above inequalities we obtain (4.3).
The last part of this lemma is clear since

{f ∈ L1(1/t) : supp(f) ⊂ [a, b]} = {f ∈ L1 : supp(f) ⊂ [a, b]} ' L1[0, 1]

whenever 0 < a < b < 1 (because 1
b‖fχ[a,b]‖L1[0,1] ≤ ‖fχ[a,b]‖L1(1/t)[0,1] ≤

1
a‖fχ[a,b]‖L1[0,1] for f ∈ L1(1/t)[0, 1]) and it is enough to take the projection
P : f 7→ fχ[a,b].

If additionally the Cesàro or the Copson operator is bounded on X,
then we can deduce a little stronger versions of Lemma 4.1 and Lemma 4.2,
respectively. More precisely, if C is bounded on X, then Theorem D shows
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that supp(CX) = I and so the conclusion of Lemma 4.1 holds true for all
0 < a < b < m(I). Of course, due to Corollary 3.2, an analogous remark is
valid for every nontrivial C∗X.

It is clear that every nontrivial Cesàro or Copson function space con-
tains a complemented copy of `1 (simply because L1[0, 1] does). Moreover,
James’s distortion theorem for `1 states that a Banach space X contains
an isomorphic copy of `1 if and only if it contains an almost isometric copy
of `1, that is, for every 0 < ε < 1, there exists a sequence (xn) ⊂ X such
that (1−ε)

∑∞
n=1 |αn| ≤ ‖

∑∞
n=1 αnxn‖X ≤

∑∞
n=1 |αn| for all α = (αn) ∈ `1.

Therefore, as an immediate consequence of the complemented version of
James’s distortion theorem [32, Theorem 2] we obtain the following result.

Corollary 4.3. Let T = C or T = C∗. If X is a Banach function
space on I such that TX 6= {0}, then TX contains a complemented almost
isometric copy of `1. In particular, TX is not reflexive.

It turns out that we can even prove stronger versions of our Lemmas 4.1
and 4.2 and of [5, Proposition 2.2].

Theorem 4.4. Let X be a Banach space and assume that X contains
a complemented copy of a Banach space Z. Then there exists an equivalent
norm on X such that X contains an isometric copy of Z. In particular, if X
is a Banach function space and T = C or T = C∗, then:

(i) the space TX can be renormed to contain an isometric copy of L1[0, 1]
whenever TX 6= {0},

(ii) every nontrivial Tandori function space X̃ can be renormed to contain
an isometric copy of L∞[0, 1].

Proof. First, let P : X → X be a projection onto Y1 ⊂ X and T be an
isomorphism from Z onto Y1. Consequently, we have the diagrams

X Y1

Z

P

T−1 and
X Y2

Y2

idX−P

that is, X ' Y1 ⊕ Y2 ' Z ⊕ Y2. We define a new norm |||·|||X on X by

(4.4) |||x|||X := ‖T−1Px‖Z + ‖(idX − P )x‖X .

This norm is equivalent to the original one: in fact,

|||x|||X ≤ ‖T
−1‖Y→Z‖Px‖Y + (1 + ‖P‖)‖x‖X

≤ ‖T−1‖Y→Z‖P‖ ‖x‖X + (1 + ‖P‖)‖x‖X
≤ (1 + ‖P‖+ ‖T−1‖Y→Z‖P‖)‖x‖X ,
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and
‖x‖X = ‖Px+ (idX − P )x‖X

≤ ‖Px‖Y + ‖(idX − P )x‖X
. ‖T−1Px‖Z + ‖(idX − P )x‖X = |||x|||X .

Moreover, if y ∈ Y then
(4.5) |||y|||X = ‖T−1Py‖Z + ‖(idX − P )y‖X = ‖T−1Py‖Z = ‖T−1y‖Z ,
which means that T : Z → (Y, |||·|||X) is an isometry.

(i) is clear due to Lemmas 4.1 and 4.2 and the first part of the proof.
(ii) Let us start with a simple observation. If X is a Banach function

space on I, then nontriviality of X̃ is equivalent to χ[0,λ] ∈ X for some
0 < λ < m(I). Indeed, if X̃ 6= {0}, we can find f ∈ X̃ such that |f(x)| > 0
for x ∈ A ⊂ I and m(A) > 0. Setting Bn := {x ∈ A : |f(x)| > 1/n}, where
n ∈ N, we see that there exists n0 ∈ N with m(Bn0) > 0. Therefore,

1

n0
χ[0,m(Bn0 )] ≤ f̃χBn0 ≤ f̃ ∈ X,

that is, χ[0,λ] ∈ X for λ = m(Bn0). The converse implication is clear.
Now, since X̃ 6= {0}, it follows that (0, λ) ⊂ supp(X̃) for some 0 < λ

< m(I). Using the same argument as in [5, Proposition 2.2] but for 0 < a <

b < λ we can prove that X̃ contains a complemented copy of L∞[0, 1]. To
finish the proof it is enough to apply the first part once again.

Note that if X is a Banach function space on I with CX 6= {0}, then
exactly as in Theorem 4.4, we get the diagram

(4.6)
CX Y1

L1[0, 1] L1[a, b]

P

id

Q

where P : f 7→ f |[a,b] for 0 < a < b < m(I) is a bounded projection, Y1 =

L1[a, b] := {f ∈ L1(I) : supp(f) ⊂ [a, b]}, Q is a linear isometry between
L1[a, b] and L1[0, 1] and

|||f |||CX = ‖fχ[a,b]‖L1 + ‖fχ(0,a)∪(b,m(I))‖CX
for f ∈ CX. Now, if we take X = Lp for 1 ≤ p < ∞ if I = [0, 1] and
1 < p < ∞ if I = [0,∞), then we obtain Astashkin–Maligranda’s result
[10, Lemma 4] concerning analogous renormings of classical Cesàro function
spaces Cesp (but the proof of Theorem 4.4 works in general and is completely
different from that in [10, Lemma 4]).

Recall that a Banach function space X contains an order asymptotically
isometric copy of `1 whenever there is a sequence (fn) ⊂ X with pairwise
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disjoint supports and a sequence (εn) ⊂ (0, 1) such that εn → 0 and

(4.7)
∞∑
n=1

(1− εn)|αn| ≤
∥∥∥ ∞∑
n=1

αnfn

∥∥∥
X
≤
∞∑
n=1

|αn|

for each α = (αn) ∈ `1. This notion was introduced by Dowling–Lennard [29,
Definition 1.1] and used to show that every nonreflexive subspace of L1[0, 1]
fails the fixed point property.

The notion of asymptotically isometric copy of `1 is closely related to
that of almost isometric copy of `1 and consequently to James’s distortion
theorem (see [28, Question] and [44, p. 270]). However, Dowling–Johnson–
Lennard–Turett [28] gave an example of a renorming of `1 which contains
no asymptotically isometric copy of `1. We will further extend the class of
spaces which contain an asymptotically isometric copy of `1 by showing that
nontrivial Cesàro and Copson function spaces always contain such a copy.
Note that for Cesp this has been proved in [6, Theorems 1 and 2]. It would
seem natural to first look for a generalization of this result to symmetric
spaces (or even Orlicz spaces). Surprisingly, it turns out that symmetry of X
is not important in our proof.

Before giving the proof, for X being a Banach function space on I define
a function FX as follows:

(4.8) FX := FX[0,1] : I 3 λ 7→
∥∥∥∥1xχ(λ,1](x)

∥∥∥∥
X

∈ [0,∞]

if I = [0, 1], and

(4.9) FX := FX[0,∞) : I 3 λ 7→
∥∥∥∥1xχ(λ,∞)(x)

∥∥∥∥
X

∈ [0,∞]

if I = [0,∞).

Theorem 4.5. Let X be a Banach function space on I such that the
Cesàro function space CX is nontrivial. Then CX contains an order asymp-
totically isometric copy of `1.

Proof. 1o Suppose I = [0, 1]. Since CX 6= {0}, we have χ[λ0,1] ∈ X for
some 0 < λ0 < 1 by Theorem D. For each λ0 < a < 1 set

Ωa := {λ ∈ (λ0, 1) : FX(λ) = FX(a)}.
Of course, card(Ωa) ≥ 1. Let us now consider the following two cases.

(a) Assume that card(Ωa) = 1 for every a ∈ (λ0, 1). Obviously, FX is
nonincreasing in the interval [λ0, 1], so it has at most countably many points
of discontinuity there. Let λ0 < a0 < 1 be a point of continuity of FX . Take
a sequence (an) ⊂ (λ0, a0) such that an ↑ a0 as n→∞ and put

gn :=
χ(an,an+1)

‖χ(an,an+1)‖CX
.



Optimal domains for Hardy-type operators 63

Then supp(gn) = (an, an+1) ⊂ (an, a0) and supp(gn) ∩ supp(gm) = ∅ for
m,n ∈ N distinct. Using the right-hand estimate of (4.1) we have

‖χ(an,an+1)‖CX ≤
∥∥∥∥1xχ(an,1](x)

∥∥∥∥
X

‖χ(an,an+1)‖L1

=

∥∥∥∥1xχ(an,1](x)

∥∥∥∥
X

(an+1 − an) = FX(an)(an+1 − an).

Furthermore, using the left inequality of (4.1) and the above estimate, since
the functions gn have pairwise disjoint supports, we obtain∥∥∥ ∞∑

n=1

αngn

∥∥∥
CX
≥
∥∥∥∥1xχ[a0,1](x)

∥∥∥∥
X

∥∥∥ ∞∑
n=1

αngn

∥∥∥
L1

= FX(a0)
∥∥∥ ∞∑
n=1

αngn

∥∥∥
L1

= FX(a0)
∞∑
n=1

|αn| ‖χ(an,an+1)‖L1

‖χ(an,an+1)‖CX

≥ FX(a0)

∞∑
n=1

|αn|(an+1 − an)
FX(an)(an+1 − an)

=

∞∑
n=1

FX(a0)

FX(an)
|αn|

for each α = (αn) ∈ `1. Denote

θn :=
FX(a0)

FX(an)
.

Since card(Ωa0) = 1, it follows that

FX(an) =

∥∥∥∥1xχ(an,1](x)

∥∥∥∥
X

>

∥∥∥∥1xχ(a0,1](x)

∥∥∥∥
X

= FX(a0).

Consequently, (θn) ⊂ (0, 1) and, thanks to continuity of FX at a0, we have
θn → 1 as n→∞. Finally, put

εn := 1− θn.
Then (εn) ⊂ (0, 1), εn → 0 as n→∞ and

(4.10)
∥∥∥ ∞∑
n=1

αngn

∥∥∥
CX
≥
∞∑
n=1

(1− εn)|αn|.

Note also that ‖gn‖CX = 1, so

(4.11)
∥∥∥ ∞∑
n=1

αngn

∥∥∥
CX
≤
∞∑
n=1

|αn| ‖gn‖CX =

∞∑
n=1

|αn|.

Combining (4.10) and (4.11), we finish the proof in this case.
(b) Assume that there is a ∈ (λ0, 1) with card(Ωa) > 1. Then there are

a1, a2 ∈ (λ0, 1) such that a1 < a2 and FX(a1) = FX(a2). Thus, for each a3

with a1 < a3 < a2, by the monotonicity of the norm, we have

FX(a1) ≥ FX(a3) ≥ FX(a2),
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which means FX is constant on the interval (a1, a2), i.e. (a1, a2) ⊂ Ωa. In
the same way as in (a) we easily find that CX contains an order isometric
copy of `1.

2o The proof when I = [0,∞) is the same as in the previous case. The
only difference, of course, lies in the consideration of the function

(4.12) FX : [0,∞) 3 λ 7→
∥∥∥∥1xχ(λ,∞)(x)

∥∥∥∥
X

∈ (0,∞].

It is clear that due to the similarities in Lemmas 4.1 and 4.2, a result
analogous to Theorem 4.5 is expected also in the case of Copson function
spaces. It will be convenient to start with the following natural modification
of the function FX :

(4.13) GX := GX(I) : I 3 λ 7→ ‖χ[0,λ]‖X(I) ∈ (0,∞],

where X is a Banach function space on I.

Theorem 4.6. Let X be a Banach function space on I such that the Cop-
son function space C∗X is nontrivial. Then C∗X contains an order asymp-
totically isometric copy of `1.

Proof. With minor changes the proof is similar to that of Theorem 4.5.
Note, however, that the structure of the proof itself seems to be dual to the
previous one. The details are provided for the convenience of the reader.

1o Suppose I = [0, 1]. Since C∗X 6= {0}, there is 0 < λ0 < 1 with
χ[0,λ0] ∈ X, by Lemma 3.1. For each b ∈ (0, λ0) set

Ωb := {λ ∈ (0, λ0) : GX(λ) = GX(b)}.

Of course, card(Ωb) ≥ 1. Let us now consider the following two cases.
(a) Assume that card(Ωb) = 1 for every 0 < b < 1. Obviously, GX is

nondecreasing on [0, λ0], so it has at most countably many points of discon-
tinuity there. Let b0 ∈ (0, λ0) be a point of continuity of GX . Take a sequence
(bn) ⊂ (0, λ0) such that bn ↓ b0 as n→∞ and put

hn :=
χ(bn+1,bn)

‖χ(bn+1,bn)‖C∗X
.

Then supp(hn) = (bn+1, bn) ⊂ (b0, bn) and supp(hn) ∩ supp(hm) = ∅ for
m,n ∈ N distinct. Using the right-hand inequality of (4.3) we have

‖χ(bn+1,bn)‖C∗X ≤ ‖χ[0,bn]‖X‖χ(bn+1,bn)‖L1(1/t)(4.14)

= GX(bn)‖χ(bn+1,bn)‖L1(1/t).

Furthermore, using the left-hand inequality of (4.3) and the above estimate,
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since the functions hn have pairwise disjoint supports, we obtain∥∥∥ ∞∑
n=1

αnhn

∥∥∥
C∗X

≥ ‖χ[0,b0]‖X
∥∥∥ ∞∑
n=1

αnhn

∥∥∥
L1(1/t)

= GX(b0)
∥∥∥ ∞∑
n=1

αnhn

∥∥∥
L1(1/t)

= GX(b0)

∞∑
n=1

|αn| ‖χ(bn+1,bn)‖L1(1/t)

‖χ(bn+1,bn)‖C∗X

≥ GX(b0)
∞∑
n=1

|αn| ‖χ(bn+1,bn)‖L1(1/t)

GX(bn)‖χ(bn+1,bn)‖L1(1/t)
=
∞∑
n=1

GX(b0)

GX(bn)
|αn|

for each α = (αn) ∈ `1. Denote

θn :=
GX(b0)

GX(bn)
.

Since card(Ωb0) = 1, it follows that GX(bn) = ‖χ[0,bn]‖X > ‖χ[0,b0]‖X =
GX(b0). Consequently, (θn) ⊂ (0, 1) and, thanks to continuity of GX at b0,
we have θn → 1 as n → ∞. Finally, put εn := 1 − θn. Then (εn) ⊂ (0, 1),
εn → 0 as n→∞ and

(4.15)
∥∥∥ ∞∑
n=1

αnhn

∥∥∥
C∗X

≥
∞∑
n=1

(1− εn)|αn|.

Note also that ‖hn‖C∗X = 1, so

(4.16)
∥∥∥ ∞∑
n=1

αnhn

∥∥∥
C∗X

≤
∞∑
n=1

|αn| ‖hn‖C∗X =
∞∑
n=1

|αn|.

Combining (4.15) and (4.16), we finish the proof in that case.
(b) Assume that there is b ∈ (0, λ0) with card(Ωb) > 1. Then there are

b1, b2 ∈ (0, 1) such that b1 < b2 and GX(b1) = GX(b2). Thus, for each b3
with b1 < b3 < b2,

GX(b1) ≤ GX(b3) ≤ GX(b2),

which means GX is constant on (b1, b2), i.e., (b1, b2) ⊂ Ωb. As in case (a) we
easily find that C∗X contains an order isometric copy of `1.

2o If I = [0,∞), we argue in the same way as in 1o.

In the context of Theorems 4.4 and 4.5 a natural question arises: maybe
the Cesàro function space (CX, ‖ · ‖CX) always contains an isometric copy
of `1 or L1[0, 1]? In general, the answer is no. Indeed, if X is rotund, then
so is CX [46, Lemma 2]. Therefore, for example, if X = Lp for 1 < p <∞,
then Cesp is rotund, so it cannot contain an isometric copy of `1 or L1[0, 1],
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because they are not rotund. However, (CX, ‖·‖CX) can always be renormed
to contain an isometric copy of L1[0, 1], by Theorem 4.4(i).

Theorem 4.5 also gives some information about generalized Tandori func-
tion spaces X̃ : they are quite similar to L∞.

Corollary 4.7. Let X be a Banach function space on I = [0,∞) such
that the space X ′ is order continuous and X has the Fatou property (which
is true, for example, if X is reflexive). Assume also that the Copson operator
C∗ : X → X is bounded and the dilation operator στ : X → X is bounded
for some τ > 1. Then the Tandori function space X̃ contains an isomorphic
copy of L1[0, 1] and of C[0, 1]∗.

Proof. Because X ′ ∈ (OC) we have C(X ′) ∈ (OC). Note that since
X ∈ (FP), C∗ : X → X if and only if C : X ′ → X ′ and στ : X → X if
and only if σ1/τ : X

′ → X ′ (see for example [49, Remark 1]). Consequently,
applying (2.4) of Theorem A to X ′, we get

(4.17) (C(X ′))∗ = (C(X ′))′ = X̃ ′′ = X̃ ,

with equivalent norms. The space C(X ′) contains an order asymptotically
isometric copy of `1 via Theorem 4.5. By Dilworth–Girardi–Hagler’s result
[27, Theorem 2], the dual space (C(X ′))∗ contains an isometric copy of
L1[0, 1] and an isometric copy of C[0, 1]∗. Thus, by (4.17), X̃ contains an
isomorphic copy of L1[0, 1] and of C[0, 1]∗.

The similarity of X̃ and L∞ becomes even clearer in the context of the
following result.

Proposition 4.8. Let X be a Banach function space on I such that the
Tandori function space X̃ is nontrivial. Then X̃ contains an order isomor-
phically isometric copy of `∞.

Proof. Since X̃ 6= {0}, it follows that there exists 0 < a ∈ I such that
χ[0,a) ∈ X [54, Theorem 1(c)]. Put

f0 =
χ[0,a)

‖χ[0,a)‖X
.

Let an =
(
1− 1

2n+1

)
a and An = (an− δn, an+ δn), where δn = (an+1−an)/2

and n ∈ N. Denote

B1 = [0, a/2) ∪
∞⋃
n=1

An.

Then [0, a) \ B1 consists of infinitely many pairwise disjoint intervals, say
[0, a) \B1 =

⋃∞
n=1C

(1)
n . Let

B2 = C
(1)
1 ∪ C(1)

3 ∪ C(1)
5 ∪ · · · =

∞⋃
n=1

C
(1)
2n−1.
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Again, [0, a)\(B1∪B2) consists of infinitely many pairwise disjoint intervals,
say [0, a) \ (B1 ∪B2) =

⋃∞
n=1C

(2)
n . Next, let

B3 = C
(2)
1 ∪ C(2)

3 ∪ C(2)
5 ∪ · · · =

∞⋃
n=1

C
(2)
2n−1.

Proceeding analogously, we define a sequence (Bn)
∞
n=1 of sets. Put fn :=

f0χBn . Note that

0 ≤ fn ≤ f0 and supp(fn) ∩ supp(fm) = ∅ for n 6= m.

Moreover,
f̃n = f̃0 = f0,

whence

‖fn‖X̃ = ‖f̃n‖X = ‖f̃0‖X = ‖f0‖X = 1 and ‖f0‖X̃ = ‖f̃0‖X = ‖f0‖X = 1.

Applying [38, Theorem 1] we conclude that X̃ contains an order isomorphi-
cally isometric copy of `∞.

The problem of describing the Cesàro–Orlicz function spaces containing
an order isomorphically isometric copy of `∞ has been considered in [47].
Although formally the case of Ces∞ (which is not isomorphic to `∞—see [7,
Theorem 7]) has been excluded there, the argument used in [47, Theorems 3
and 4 case (B2)] can be applied to get the result below. We will give, however,
a direct and simple proof without referring to the Orlicz space structure.

Proposition 4.9. The space Ces∞ contains an order isomorphically iso-
metric copy of `∞.

Proof. For a start, let us recall that

(4.18) (Ces∞)a =

{
f ∈ Ces∞ : lim

x→0+,∞

1

x

x�

0

|f(t)|dt = 0

}
(see [48, Remark 19]). Put f0 := χ[0,1]. Then

‖f0‖Ces∞ = 1 and dist(f0, (Ces∞)a) = 1.

Indeed, it follows from (4.18) that

dist(f0, (Ces∞)a) := inf
h∈(Ces∞)a

‖f0 − h‖Ces∞ = inf
h∈(Ces∞)a

sup
0≤t∈I

C |f0 − h|(t)

≥ inf
h∈(Ces∞)a

sup
0≤t∈I

(C |f0|(t)− C |h|(t))

≥ inf
h∈(Ces∞)a

lim
t→0+

(C |f0|(t)− C |h|(t)) = lim
t→0+

C |f0|(t) = 1.

Now, we can use [38, Theorem 2] once again to finish the proof.
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5. Differences in the Cesàro construction on [0, 1] and [0,∞). We
begin with a short discussion. Recall that following the standard definitions
we should define a truncation of a Banach function space X on I to a set
A ⊂ I as X|A = {f ∈ X : supp(f) ⊂ A}, where supp(f) := {x ∈ I :
f(x) 6= 0}. However, when applying the Cesàro construction to the trun-
cated space the situation is more delicate. If we wished to follow the above
definition, we should define C(X[0,∞)|[0,1]) to be the space of all functions
f ∈ L0[0,∞) (because X[0,∞)|[0,1] contains functions from L0[0,∞)) such
that C |f | ∈ X[0,∞)|[0,1], i.e., f ∈ X[0,∞) and supp(C |f |) ⊂ [0, 1]. But the
last condition is never satisfied for 0 6= f ∈ L0[0,∞), so this is meaningless.

That is why we will proceed in the following way. For a Banach function
space X on [0,∞) and a subset A ⊂ [0,∞) we define the truncation of the
space X[0,∞) to a set A as

(5.1) X[0,∞)|A := {f ∈ L0[0, 1] : fχA ∈ X[0,∞)},
with the norm ‖f‖X[0,∞)|A = ‖fχA‖X[0,∞) (that is, we look at an element f
as a function defined on [0, 1], but compute its norm as if it was still defined
on [0,∞) and equal to zero on [0,∞) \A) if A ⊂ [0, 1], and

(5.2) X[0,∞)|A := {f ∈ X[0,∞) : supp(f) ⊂ A},
with the norm ‖f‖X[0,∞)|A = ‖f‖X[0,∞), if A 6⊂ [0, 1]. Moreover, if X is a
Banach function space on [0, 1] and A ⊂ [0, 1], then we can use the definition
given at the beginning, that is, the truncation of the space X[0, 1] to the set A
as

(5.3) X[0, 1]|A := {f ∈ X[0, 1] : supp(f) ⊂ A},
with the norm ‖f‖X[0,1]|A = ‖f‖X[0,1]. Note that if we set

(5.4) X[0, 1] := X[0,∞)|[0,1] = {f ∈ L0[0, 1] : fχ[0,1] ∈ X[0,∞)},
with the norm ‖f‖X = ‖fχ[0,1]‖X[0,∞), then the functor X 7→ X associates
to the space X defined on I = [0,∞) its “natural” counterpart defined on
I = [0, 1]. Observe also that if A ⊂ [0, 1], then the spaceX[0,∞)|A is actually
isometrically isomorphic to the space Y := {f ∈ X[0,∞) : supp(f) ⊂ A}
with the norm ‖f‖Y = ‖f‖X[0,∞) via the mapping J : f 7→ fχA. Moreover,
it is clear that X[0,∞)|[0,1] is a symmetric space whenever X[0,∞) is.

Clearly, Lp[0,∞)|[0,1] ≡ Lp[0, 1]. In contrast, for Cesàro function spaces
the situation is quite different. In fact, if f ∈ Cesp[0,∞) and supp(f) ⊂ [0, 1],
then

(5.5) ‖f‖pCesp[0,∞) = ‖f‖
p
Cesp[0,1] +

1

p− 1
‖f‖p

L1[0,1]
,

i.e., Cesp[0,∞)|[0,1] = Cesp[0, 1] ∩ L1[0, 1] for 1 < p < ∞ [7, Remark 5]. In
the next lemma we will give an analogue of (5.5) for abstract Cesàro function
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spaces CX. However, notice that according to the definitions (5.1) and (5.2),
we have

CX[0,∞)|[0,1] = (CX[0,∞))|[0,1](5.6)

:= {f ∈ L0[0, 1] : C(|f |χ[0,1]) ∈ X[0,∞)},

with the norm ‖f‖CX[0,∞)|[0,1] = ‖C(|f |χ[0,1])‖X[0,∞), and

C(X[0,∞)|[0,1]) := C(X[0, 1])(5.7)

= {f ∈ L0[0, 1] : (C |f |)χ(0,1] ∈ X[0,∞)},

with the norm ‖f‖C(X[0,∞)|[0,1]) = ‖(C |f |)χ(0,1]‖X[0,∞) (cf. with the defini-
tion of the Cesàro operator C and the abstract Cesàro space CX). Roughly
speaking, if X is a Banach function space on [0,∞), then we always have two
ways (in general, inequivalent) to obtain the Cesàro function space on [0, 1]:
first applying the functor X 7→ X and then the Cesàro construction, or the
other way round. All this also means that the Cesàro construction X 7→ CX
is significantly different for I = [0, 1] and for I = [0,∞).

The equality (5.9) from Lemma 5.1 below is an abstract version of the
equality (5.5) from [7] and means that the functor X 7→ X does not commute
in general with the Cesàro construction X 7→ CX. This result also explains,
in some sense, a rather suprising difference in the description of the Köthe
duality of Cesàro function spaces CX on I = [0, 1] and on I = [0,∞): cf.
[54, Theorems 3, 5 and 6] or Theorem A.

Lemma 5.1. Let X be a Banach function space on I such that either the
Cesàro operator C is bounded on X or X is a symmetric space on [0, 1] or X
is a symmetric space on [0,∞) with CX[0,∞) 6= {0}. Then the embedding

(5.8) CX(I)|[0,λ] ↪→ L1(I)|[0,λ]

holds for 0 < λ < m(I), but in general not for λ = 1 if I = [0, 1], and not
for λ =∞ if I = [0,∞). Moreover,

CX[0,∞)|[0,1] = C(X[0,∞)|[0,1]) ∩ L1[0, 1],(5.9)

CX[0,∞)|[0,λ] = (C(X[0,∞)|[0,1]))|[0,λ] for 0 < λ < 1.(5.10)

Finally, if X is a symmetric space on [0,∞) with q(X) < ∞, then
C(X[0,∞)|[0,1]) 6= CX[0,∞)|[0,1] and C(X[0,∞)|[0,1]) is never a subspace
of CX[0,∞)|[0,1].

Proof of (5.8). Take f ∈ CX with supp(f) ⊂ [0, λ], where 0 < λ < m(I).
In this case we must ensure that

(
fλ : I 3 x 7→ 1

xχ(λ,m(I))(x)
)
∈ X. But this

immediately follows from Theorem D and our assumptions. Keeping this in
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mind we have

‖f‖CX :=

∥∥∥∥1x
x�

0

|f(t)|dt
∥∥∥∥
X

=

∥∥∥∥1x
x�

0

|f(t)|dt χ(0,λ](x) +
1

x

λ�

0

|f(t)| dt χ(λ,m(I))(x)

∥∥∥∥
X

≥
∥∥∥∥1x

λ�

0

|f(t)|dt χ(λ,m(I))(x)

∥∥∥∥
X

=

∥∥∥∥1xχ(λ,m(I))(x)

∥∥∥∥
X

‖f‖L1|[0,λ] .

Therefore, CX|[0,λ] ↪→ L1|[0,λ]. Counterexamples to embeddings CX ↪→ L1

when either λ = 1 or λ = ∞ can be found in [7, Theorem 1(d)]. Note,
however, that for example Ces∞[0, 1] ↪→ L1[0, 1] [7, Theorem 1(d)].

Proof of (5.9). Take f ∈ C(X[0,∞)|[0,1])∩L1[0, 1]. To prove the desired
equality we will need to know that

(
fλ=1 : [0,∞) 3 x 7→ 1

xχ(1,∞)(x)
)
∈

X[0,∞). Again, our assumptions together with Theorem D ensure that this
is indeed the case. Since

‖f‖CX[0,∞) ≤
∥∥∥∥1x

x�

0

|f(t)| dtχ(0,1](x)

∥∥∥∥
X[0,∞)

+

∥∥∥∥1x
1�

0

|f(t)|dtχ(1,∞)(x)

∥∥∥∥
X[0,∞)

= ‖f‖C(X[0,∞)|[0,1]) +

∥∥∥∥1xχ(1,∞)(x)

∥∥∥∥
X[0,∞)

‖f‖L1[0,1]

it follows that

C(X[0,∞)|[0,1]) ∩ L1[0, 1] ↪→ CX[0,∞)|[0,1].

Next, we will show the reverse embedding. Take f ∈ CX[0,∞) with
supp(f) ⊂ [0, 1]. Again, as above, we have 1

xχ(1,∞)(x) ∈ X, whence

‖f‖CX[0,∞) ≥ max

{
‖(C |f |)χ(0,1)‖X[0,∞),

∥∥∥∥1x
1�

0

|f(t)|dt χ(1,∞)(x)

∥∥∥∥
X[0,∞)

}
= max

{
‖f‖C(X[0,∞)|[0,1]),

∥∥∥∥1xχ(1,∞)(x)

∥∥∥∥
X[0,∞)

‖f‖L1[0,1]

}
.

In consequence,

CX[0,∞)|[0,1] ↪→ C(X[0,∞)|[0,1]) ∩ L1[0, 1],

which proves (5.9).



Optimal domains for Hardy-type operators 71

Proof of (5.10). Of course, if X and Y are Banach function spaces on I,
then

(5.11) (X ∩ Y )|A ≡ X|A ∩ Y |A for every A ⊂ I,

and because ‖f‖(X|A)|B = ‖fχB‖X|A = ‖fχBχA‖X = ‖fχA∩B‖X = ‖f‖X|A∩B ,
we have

(X|A)|B ≡ X|A∩B for all A,B ⊂ I.

Combining the above equalities with the embedding (5.8) we get

CX[0,∞)|[0,λ] ≡ (CX[0,∞)|[0,1])|[0,λ] = (C(X[0,∞)|[0,1]) ∩ L1[0, 1])|[0,λ]

= (C(X[0,∞)|[0,1]))|[0,λ].

This gives (5.10).
Finally, suppose that q(X) < ∞. Then as in [7, Theorem 1(d)] we can

show that the function

f(x) =
1

1− x
for 0 ≤ x < 1

belongs to the space C(X[0,∞)|[0,1]). In fact, by (2.6) Theorem B, we have

L1 ∩ Lq[0,∞) ↪
A−→ X[0,∞) for q(X) < q < ∞. Therefore, using (5.11) we

have

Lq[0, 1] = L1 ∩ Lq[0, 1] = (L1 ∩ Lq[0,∞))|[0,1] ↪
A−→ X[0,∞)|[0,1].

Moreover,
	1
0

(
1
x ln
(

1
1−x
))q

dx <∞ [7, Theorem 1(d), p. 334], whence

‖f‖qC(X[0,∞)|[0,1])
= ‖C|f | ‖qX[0,∞)|[0,1]

. ‖C|f | ‖qLq [0,1]

=

1�

0

(
1

x

x�

0

dt

1− t

)q
dx =

1�

0

(
1

x
ln

(
1

1− x

))q
dx <∞.

Of course, f /∈ L1[0, 1] and this ends the proof of the lemma.

Also note that if X = L∞[0,∞), then q(X) = ∞ and L∞[0,∞)|[0,1] ≡
L∞[0, 1]. Therefore, C(X[0,∞)|[0,1]) = Ces∞[0, 1] and, in view of (5.9) and
Ces∞[0, 1] ↪→ L1[0, 1] [7, Theorem 1(d)], we have

CX[0,∞)|[0,1] = Ces∞[0,∞)|[0,1] = Ces∞[0, 1] ∩ L1[0, 1] = Ces∞[0, 1].

This means that it can happen that C(X[0,∞)|[0,1]) = CX[0,∞)|[0,1] and
the assumption about the Boyd index in the last part of the above lemma
cannot be omitted.

6. Transfer of properties between X and TX. Inclusions and equal-
ities between Cesàro spaces CX and Copson spaces C∗X are collected, for
example, in [56, Theorem 1] (see also [7] and [13]). Recall that if X is a
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Banach function space on [0,∞) such that both operators C and C∗ are
bounded on X, then

(6.1) C∗X ↪
A−→ CX ↪

B−→ C∗X,

where A = ‖C‖X→X and B = ‖C∗‖X→X , that is, CX = C∗X [56, Theo-
rem 1(iii)]. However, if I = [0, 1], then the situation is a bit more complicated.
More precisely, if X is a Banach function space on [0, 1] such that the Cesàro
and Copson operators are bounded on X and L∞[0, 1] ↪→ X ↪→ L1[0, 1] (for
example, if X is a symmetric space), then

(6.2) CX[0, 1] ∩ L1[0, 1] = C∗X[0, 1]

(see [56, Theorem 1(vi, vii)]). Therefore, at least when we consider Banach
function spaces on [0,∞) such that both C and C∗ are bounded on X, all
results regarding the isomorphic structure of Cesàro function spaces “trans-
fer” almost trivially to Copson function spaces and vice versa. However, it
may not be the case if I = [0, 1]. Nonetheless, we will prove

Corollary 6.1. Let X be a symmetric space such that both operators C
and C∗ are bounded on X. Then the Copson space C∗X is order continuous
if and only if X is order continuous.

Proof. First of all, since X is a symmetric space and C is bounded on X,
the space X is order continuous if and only if CX is [48, Theorem 3]. Thus,
according to (6.1) and the discussion preceding it, there is nothing to prove
when I = [0,∞). Therefore, let I = [0, 1].

Suppose thatX∈(OC). It follows from [56, Lemma 1(a)] that CX∈(OC),
so CX ∩ L1 ∈ (OC). Using (6.2) we see immediately that C∗X ∈ (OC).

To prove the reverse implication, assume that X /∈ (OC). Because X is
a symmetric space, we can find f0 ∈ X such that f0 /∈ Xa but f0 ∈ L1[0, 1].
Without loss of generality, we can also assume that f0 = f∗0 [17, Lemma 2.6].
From the boundedness of C it follows that C(f0) ∈ X. Moreover, f0 is a
nonincreasing function and Xa is an order ideal of X [14, Theorem 3.8,
p. 16], so C(f0) ≥ f0 and also C(f0) /∈ Xa. Therefore, f0 /∈ C(Xa) = (CX)a
[48, Theorem 16]. In summary, f0 ∈ (CX \ (CX)a) ∩ L1[0, 1]. But, in view
of (6.2), this means that f0 ∈ C∗X \ (C∗X)a, i.e., C∗X /∈ (OC).

It may happen that applying the construction X 7→ TX, where T = C
or T = C∗, we lose some information about the original space X. We will
give a rather general example of this kind.

The idea behind the next lemma is simple. Every Cesàro and Copson
function space contain “in the middle” an isomorphic copy of L1[0, 1] (cf.
Lemmas 4.1 and 4.2). Therefore, up to equivalence of norms, we can change
the space X “in the middle” (cf. (6.3)) and still get the Cesàro or Copson
function space equal to the original one (cf. (6.4)).
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Lemma 6.2. Let T = C or T = C∗. Define the Banach function space
Z = Z[0, 1] as

(6.3) Z[0, 1] := X|[0,a] ⊕ Y |[a,b] ⊕X|[b,1] for 0 < a < b < 1,

where X and Y are Banach function spaces on [0, 1] such that L∞[0, 1] ↪→
Y ↪→ X. Then

(6.4) TZ[0, 1] = TX[0, 1].

Proof of CZ ↪→ CX and C∗Z ↪→ C∗X. In the proof we need only the
assumption that Y ↪→ X. Indeed, then

Z[0, 1] = X|[0,a] ⊕ Y |[a,b] ⊕X|[b,1] ↪→ X|[0,a] ⊕X|[a,b] ⊕X|[b,1] = X[0, 1].

Note that just by the definition, if E and F are Banach function spaces on I
and E ↪→ F , then TE ↪→ TF . Consequently, TZ ↪→ TX.

Proof of CX ↪→ CZ. First, observe that ifW is a Banach function space
on [0, 1] such that supp(CW ) = [0, 1], then

(6.5) (CW [0, 1])|[a,b] = L1[0, 1]|[a,b] = L1[a, b] for 0 < a < b < 1,

due to Lemma 4.1. Take f ∈CX and denote f1=fχ[0,a), f2=fχ[a,b) and
f3=fχ[b,1]. We need to show that f1, f2, f3∈CZ. Note that (C|f1|)χ[0,a)=
(C|f |)χ[0,a)∈X. Moreover, (C|f1|)χ[a,b)∈L∞[0, 1], so (C|f1|)χ[a,b)∈Y , be-
cause L∞[0, 1] ↪→Y . Next, observe that (C|f1|)χ[b,1)≤(C|f |)χ[b,1)∈X. Thus
C|f1|∈Z. Since L∞[0, 1] ↪→Y ↪→X, so L∞[0, 1] ↪→Z and supp(CX)=
supp(CZ)=[0, 1]. In consequence, by equality (6.5), we have f2 ∈ CX|[a,b] =
L1[0, 1]|[a,b] = CZ|[a,b]. Finally, C|f3| = C(|f |χ[b,1]) ≤ C(|f |)χ[b,1] ∈ X|[b,1]

= Z|[b,1]. Consequently, f ∈ CZ, but this means that CX ↪→ CZ.

Proof of C∗X ↪→ C∗Z. Let f ∈C∗X and set f1=fχ[0,a), f2=fχ[a,b)

and f3=fχ[b,1]. Since C∗|f1|≤C∗|f |∈X, it follows that (C∗|f1|)χ[0,a)∈Z.
Moreover, (C∗|f1|)χ[a,1]≡0, whence f1∈CZ. Just as above we conclude
that supp(C∗X)=supp(C∗Z)=[0, 1]. Thus, by Lemma 4.2, f2∈C∗X|[a,b]=
L1[a, b]=C∗Z|[a,b]. Moreover, C∗|f3|≤C∗|f |∈X, so (C∗|f3|)χ[0,a)∈Z and
(C∗|f3|)χ[b,1]∈Z. Finally, note that C∗|f |∈X and the function C∗|f | is non-
increasing, thus (C∗|f3|)χ[a,b)(x)=

	1
b
|f(t)|
t dt=C∗|f |(b)<∞ for each x∈[a, b).

Therefore, we find that (C∗|f3|)χ[a,b)∈L∞[0, 1]|[a,b] ↪→Y |[a,b] and this ends
the proof.

The above lemma can be viewed as a far-reaching generalization of [56,
Example 1]. In particular, ifX is a symmetric space on [0, 1], then L∞[0, 1] ↪→
X ↪→ L1[0, 1],

T (L1[0, a]⊕X|[a,b] ⊕ L1[b, 1]) ' L1[0, 1],

and
T (X|[0,a] ⊕ L∞[a, b]⊕X|[b,1]) = TX[0, 1].
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In connection with the above lemma, the following simple observation is
worth noting.

Lemma 6.3. Let T = C or T = C∗. Assume that X and Y are symmetric
spaces on I such that

(i) C is bounded on X and Y if T = C,
(ii) C and C∗ are bounded on X and Y , respectively, if T = C∗.

Then X = Y if and only if TX = TY .

Proof. If X=Y , then X ↪→Y and Y ↪→X, so TX ↪→TY and TY ↪→TX.
Thus, TX=TY .

Suppose that T = C. If CX ↪→ CY , then thanks to boundedness of the
Cesàro operator and the symmetry of X, we have

‖f‖Y = ‖f∗‖Y ≤ ‖C(f∗)‖Y . ‖C(f∗)‖X ≤ ‖C‖X→X‖f∗‖X . ‖f‖X ,
that is, X ↪→ Y . Interchanging the roles of X and Y we can show the reverse
embedding Y ↪→ X.

Let T =C∗ and assume that C∗X ↪→C∗Y . If I=[0,∞), then C∗X=CX
and there is nothing to prove (see (6.1)). On the other hand, if I = [0, 1],
then C∗X = CX ∩ L1 (see (6.2)). Since X ↪→ C∗X, it follows that

X ↪→ C∗X ↪→ C∗Y = CY ∩ L1 ↪→ CY.

Moreover, ‖f‖Y = ‖f∗‖Y ≤ ‖C(f∗)‖Y and consequently

‖f‖Y ≤ ‖C(f∗)‖Y = ‖f∗‖CY . ‖f∗‖X = ‖f‖X ,
that is, X ↪→ Y .

If we try to reformulate Lemma 6.3 using isomorphism instead of “equal-
ities”, then this result is not longer true. For example, if X = L∞ and
Y = L∞(t), then CY ≡ L1 and X ' Y but of course L1 is not isomorphic
to Ces∞ (because L1 is separable and Ces∞ is not). On the other hand, if
X = L1[0, 1] and Y = L∞(t)[0, 1], then CX ' L1[0, 1], CY ≡ L1[0, 1] and
CX ' CY but X is not isomorphic to Y .

Generally, some isomorphic as well as isometric properties pass from X
to CX (for example, order continuity [56], Fatou property [54, Theorem 1(d)]
and rotundity [46]). However, there are properties, like reflexivity, which
Cesàro function spaces never have (cf. Corollary 4.3). In other words, certain
properties never transfer from X to CX. Below we present another two
properties of this kind.

Corollary 6.4. Let T = C or T = C∗. Suppose that X is an order
continuous Banach function space on I with TX 6= {0}. Then
(i) TX is not isomorphic to a dual space,
(ii) TX does not have the Radon–Nikodym property.



Optimal domains for Hardy-type operators 75

Proof. The proof of (i) is the same as in [10, Theorem 3]. We give the
details for completeness.

(i) Suppose for contradiction that TX is isomorphic to a dual space, i.e.
there exists a Banach space Y with (TX, ‖ · ‖TX) ' Y ∗. By Theorem 4.4
we can find an equivalent norm, say ‖ · ‖′, on TX such that (TX, ‖ · ‖′)
contains a closed subspace isometric to L1[0, 1]. Of course, (TX, ‖ · ‖′) ' Y ∗.
It follows from the definition that if X ∈ (OC) then TX ∈ (OC) (cf. also [56,
Lemma 1(a)]). Thus, our assumptions show that (TX, ‖·‖′) ∈ (OC). Now, we
can apply the well-known fact that a Banach function space X relative to a
measure µ is separable if and only if it is order continuous and the measure µ
is separable [14, Theorem 5.5] to conclude that (TX, ‖ · ‖′) is also separable.
Applying Bessaga–Pełczyński’s result [15], it follows that (TX, ‖ ·‖′) has the
Krein–Milman property. Therefore, every closed bounded set in (TX, ‖ · ‖′)
is the closed convex hull of its extreme points. On the other hand, the closed
unit ball in L1[0, 1] has no extreme points. This contradiction ends the proof.

(ii) This case follows from the Talagrand theorem [63, Corollary 5.4.21],
which states that a separable Banach lattice is isomorphic to a dual Banach
lattice if and only if it has the Radon–Nikodym property.

The above corollary has been proved for Cesp in [10, Theorem 3] and in
[41, Corollaries 5.1 and 5.5] (using duality arguments). Moreover, part (i)
for CX, where X is an order continuous symmetric space such that C is
bounded on X, is included in [5, Proposition 5.3]. Interestingly, it may hap-
pen that CX, for a nonseparable X, is isomorphic to a dual space. It was
proved in [5, (2.9) and Theorem 5.1] that

( ˜̀1 )∗ = ( ˜̀1 )′ = ces∞ ' Ces∞,

which means that Ces∞ is isomorphic to a dual space.
The question arises when a given property “transfers” also in the opposite

direction, i.e. from CX to X. However, as the next theorem will show, in
the class of Banach function spaces the answer is basically always negative.
Before we formulate this result we need the following definition.

Let P be a property defined for Banach function spaces. We will say that
the property P is good for the Cesàro construction if

1o P is invariant under order isomorphisms (that is, if (X, ‖·‖X)∈(P ) and T :
(X, ‖·‖X)→(Y, ‖·‖Y ) is an order isomorphism, then also (Y, ‖·‖Y )∈(P )),

2o for any Banach function space Z on [0, 1], if Z ∈ (P ) then Z|[a,b] ∈ (P )
for every 0 < a < b < 1,

3o there exist nontrivial Banach function spaces X and Y on [0, 1] such that

(G1) CX 6= {0} and CX ∈ (P ),
(G2) Y is symmetric and Y /∈ (P ).
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Similarly, we will say that the property P is good for the Copson con-
struction if 1o and 2o above hold with C in (G1) replaced with C∗. Moreover,
the property P is good if it is good for both the Cesàro and Copson con-
structions. The definitions given do not look particularly restrictive, but we
will give some examples.

Example 6.5. (a) Let us start by showing that order continuity is a
good property. Take P = OC. Obviously, order continuity is invariant under
order isomorphism. Furthermore, if X ∈ (OC), then X|A ∈ (OC) for every
∅ 6= A ⊂ [0, 1]. It remains to find two nontrivial symmetric spaces on [0, 1]
with properties (G1) and (G2). Note that if X ∈ (OC), then TX ∈ (OC)
(see [56, Lemma 1(a)] and Corollary 6.1). Then, for example, we may take
X = L1[0, 1] and Y any symmetric space on [0, 1] with Y 6= Ya, or Y =
L∞[0, 1] and X any order continuous symmetric space on [0, 1].

(b) We will show that the Dunford–Pettis property (DPP) is a good prop-
erty (see [1, p. 115] for the definition and [26] for related results). Clearly, the
Dunford–Pettis property is invariant under order isomorphism. Next, com-
plemented subspaces of spaces with the Dunford–Pettis property also have
it, so condition 2◦ is obviously satisfied. Moreover, Kamińska–Mastyło [42]
proved that there are exactly two nonisomorphic symmetric spaces on [0, 1]
with the Dunford–Pettis property, namely L1[0, 1] and L∞[0, 1]. Therefore,
if X = L1[0, 1] and Y is a reflexive symmetric space on [0, 1], then

CL1[0, 1] = Ces1[0, 1] ' L1[0, 1] ∈ (DPP) and Y /∈ (DPP).

Moreover,

C∗L1[0, 1] = Cop1[0, 1] ' L1[0, 1] ∈ (DPP).

(c) Let p ≥ 1 and suppose that X is a Banach function space on I which
is p-concave with constant L ≥ 1 (see [57, pp. 45–46] for the definition)
and such that the Cesàro operator C is bounded on X. First, we will show
that then also CX is p-concave with constant L. Recall that L1(I)|[0,x] for
0 < x ∈ I is 1-convex with constant 1 and p-concave with constant 1, that
is,( n∑

k=1

‖fk‖pL1(I)|[0,x]

)1/p
=
( n∑
k=1

(x�
0

|fk(t)|dt
)p)1/p

≤
x�

0

( n∑
k=1

|fk(t)|p
)1/p

dt =
∥∥∥( n∑

k=1

|fk|p
)1/p∥∥∥

L1(I)|[0,x]

for every 0 < x ∈ I (see [57, Proposition 1.d.5], [62, Theorem 4.3] and [12,
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second part of the proof of Theorem 4]). Therefore, we see immediately that( n∑
k=1

(C |fk|)p
)1/p

=

( n∑
k=1

(
1

x

x�

0

|fk(t)| dt
)1/p)1/p

≤ 1

x

x�

0

( n∑
k=1

|fk(t)|p
)1/p

dt = C
( n∑
k=1

|fk|p
)1/p

.

Using the above inequality and the p-concavity of X, we obtain( n∑
k=1

‖fk‖pCX
)1/p

=
( n∑
k=1

∥∥C |fk|∥∥pX)1/p

≤ L
∥∥∥( n∑

k=1

(C |fk|)p
)1/p∥∥∥

X

≤ L
∥∥∥C( n∑

k=1

|fk|p
)1/p∥∥∥

X
= L

∥∥∥( n∑
k=1

|fk|p
)1/p∥∥∥

CX
,

for all f1, . . . , fn ∈ CX. Consequently, also CX is p-concave with the same
constant as for X.

Now we claim that p-concavity is a good property. It is well known that
this property is invariant under order isomorphism; this follows, for example,
from the fact that if X is p-concave and S : Y → X is a positive operator,
and Y is a Banach lattice, then S is p-concave as well [57, 1.d.9, p. 55]. It
is also clear that condition 2o is satisfied. Taking, for example, X = Lp[0, 1]
for 1 < p < ∞ and Y = L∞[0, 1] we conclude that p-concavity is a good
property for the Cesàro construction.

To show that it is also good for the Copson construction we will prove
first that if X and Y are p-concave Banach function spaces on I, then X ∩Y
is p-concave as well. Let Z = X ∩ Y and ‖f‖Z = max{‖f‖X , ‖f‖Y }. Take
f1, . . . , fn ∈ Z and denote by LX , LY > 0 the constants of p-concavity of X
and Y , respectively (cf. [57]). We have∥∥∥( n∑

k=1

|fk|p
)1/p∥∥∥

Z
≥
∥∥∥( n∑

k=1

|fk|p
)1/p∥∥∥

X
≥ 1

LX

( n∑
k=1

‖fk‖pX
)1/p

,

and

(6.6)
∥∥∥( n∑

k=1

|fk|p
)1/p∥∥∥

Z
≥
∥∥∥( n∑

k=1

|fk|p
)1/p∥∥∥

Y
≥ 1

LY

( n∑
k=1

‖fk‖pY
)1/p

.

Therefore, setting L = max{LX , LY }, we have∥∥∥( n∑
k=1

|fk|p
)1/p∥∥∥

Z
≥ 1

2L

(( n∑
k=1

‖fk‖pX
)1/p

+
( n∑
k=1

‖fk‖pY
)1/p)

.
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From the triangle inequality for `p, we immediately obtain∥∥∥( n∑
k=1

|fk|p
)1/p∥∥∥

Z
≥ 1

2L

( n∑
k=1

(‖fk‖X + ‖f‖Y )p
)1/p

≥ 1

2L

( n∑
k=1

(max{‖f‖X , ‖f‖Y })p
)1/p

=
1

2L

( n∑
k=1

‖fk‖pZ
)1/p

.

But this means that Z is p-concave and the claim follows.
Now, it is clear that ifX is a p-concave symmetric space such that both C

and C∗ are bounded on X, then C∗X is also p-concave. Indeed, suppose
that I = [0, 1], because if I = [0,∞) there is nothing to prove (see (6.1)).
Since L1[0, 1] is p-concave with constant 1, it follows from the first part that
CX[0, 1] is also p-concave. Therefore, CX[0, 1]∩L1[0, 1] is p-concave as well.
But in view of (6.2) this means that also C∗X[0, 1] is p-concave. Finally, we
may take the same spaces X,Y as above for the Cesàro construction.

Theorem 6.6. Let T = C or T = C∗. If P is a good property, then

(i) L1[0, 1] has the property P ,
(ii) P does not transfer from TX into X, that is, there is a Banach function

space Z such that TZ is nontrivial, TZ ∈ (P ) and Z /∈ (P ).

Proof. (i) Take the Banach function space X from the definition of good
property. Applying Lemma 4.1 we conclude that there are 0 < a < b < 1
such that CX|[a,b] is order isomorphic to L1|[a,b] = L1[a, b] which is order iso-
morphic to L1[0, 1], since it is enough to take H : L1[0, 1]→ L1[a, b] defined
by

H : f(x) 7→ Hf(x) :=

{
f
(

1
b−ax−

a
b−a
)

if x ∈ (a, b),

0 if x ∈ [0, 1] \ (a, b).

By the definition of good property we conclude that CX|[a,b] ∈ (P ) and
consequently L1[0, 1] ∈ (P ).

(ii) In virtue of the definition of good property, take a symmetric Banach
function space Y on [0, 1] such that Y /∈ (P ). Define Z[0, 1] := L1[0, a] ⊕
Y [a, b]⊕ L1[b, 1]. We claim that Z /∈ (P ). Indeed, since Y /∈ (P ), a dilation
operator στ is bounded in any symmetric space [14, p. 148] and a translation
operator T : f(x) 7→ Tf(x) = f(x − a) is also bounded in any symmetric
space, so Y [a, b] /∈ (P ) (by property 1o of the definition of good property),
whence Z|[a,b] /∈ (P ). Thus, by property 2o, Z /∈ (P ). Finally, we show that
TZ ∈ (P ). Since L∞[0, 1] ↪→ Y ↪→ L1[0, 1], by Lemma 6.2 we conclude that
TZ = T (L1[0, 1]). If T = C, then C(L1[0, 1]) is even isometric to L1[0, 1]
(see Example 3.3(b)). Thus by part (i), applying property 1o, CZ ∈ (P ).
If T = C∗, it is enough to recall that Cop1 ≡ L1 (see Example 3.3(c)).



Optimal domains for Hardy-type operators 79

Obviously, TZ is nontrivial, because L∞[0, 1] ↪→ Z, whence T (L∞[0, 1])
↪→ TZ.

It seems interesting that when we restrict the class of spaces under con-
sideration to symmetric spaces, it may happen that the above theorem is
not true. For example, it was proved by Kiwerski–Tomaszewski [48, The-
orem 3] that if X is a symmetric space such that the Cesàro operator is
bounded on X, then X is order continuous if and only if CX is (see also
Corollary 6.1). Moreover, if I = [0,∞) and we allow CX = {0}, then it is
easy to see that C(L1 ∩ L∞) = {0} ∈ (OC) but L1 ∩ L∞ /∈ (OC).

The results in the next section show that also fixed point properties do
not transfer from X to the Cesàro or Copson function spaces.

7. Applications to metric fixed point theory. A Banach space X =
(X, ‖ · ‖X) has the fixed point property (X ∈ (FPP)) if every nonexpansive
mapping T : K → K, that is, the mapping satisfying

‖T (x)− T (y)‖ ≤ ‖x− y‖ for all x, y ∈ K
on every nonempty, closed, bounded and convex subset K of X, has a fixed
point, i.e., there exists x0 ∈ K such that T (x0) = x0. If the same holds for
every nonempty, weakly compact and convex subset K of X, we say that
the space has the weak fixed point property (we write X ∈ (wFPP)). Of
course, if X has the fixed point property, then it has the weak fixed point
property, and both properties are equivalent in the class of reflexive spaces.
The spaces c0, `1, L1[0, 1], L∞[0, 1], Lp,1[0,∞) and C[0, 1] fail the fixed point
property and the spaces `∞, c0(Γ ) and `1(Γ ), for Γ uncountable, cannot even
be renormed to have the fixed point property [31, Theorem 2, Corollary 3
and remark after Proposition 7]. However, c0 and `1 have the weak fixed
point property but L1[0, 1] /∈ (wFPP), as proved by Alspach [3].

We are now ready to prove the main result of this section.

Theorem 7.1. Let T = C or T = C∗. If X is a Banach function space
on I such that TX 6= {0}, then TX fails to have the fixed point property.
Moreover,

(i) (TX)∗ cannot be renormed to have the fixed point property,
(ii) (TX)∗ fails to have the weak fixed point property.

Proof. That CX /∈ (FPP) follows immediately from Theorem 4.5 and
Dowling–Lennard’s result [29] that a Banach space which contains an asymp-
totically isometric copy of `1 fails to have the fixed point property (see also
[30, Theorem 2.3 and Corollary 2.11]). For C∗X we apply Theorem 4.6.

(i) It is known that if a Banach space X contains a complemented copy
of `1, then X∗ cannot be renormed to have the fixed point property [31,
Corollary 4]. Thus it suffices to apply Corollary 4.3.
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(ii) Recall Dilworth–Girardi–Hagler’s result [27, Theorem 2] that a Ba-
nach space X contains an asymptotically isometric copy of `1 if and only
if X∗ contains an isometric copy of L1[0, 1]. Combining Theorem 4.5 with
the Dilworth–Girardi–Hagler theorem we find that (CX)∗ contains an iso-
metric copy of L1[0, 1]. In view of Alspach’s result [3] this means that
(CX)∗ /∈ (wFPP). Again, in the case of C∗X we simply use Theorem 4.6.

From Alspach’s result [3] and our Theorem 4.4 we easily obtain

Corollary 7.2. Let T = C or T = C∗. Assume that X is a Banach
function space on I with TX 6= {0}. Then there is an equivalent norm on TX
for which TX fails to have the weak fixed point property.

In the next remark we collect some known results concerning the (weak)
fixed point property and copies of `∞.

Remark 7.3. Let X be a Banach space.

(i) If X contains an isomorphic copy of `∞, then X cannot be renormed to
have the fixed point property.

(ii) If X contains an isometric copy of `∞, then X fails to have the weak
fixed point property.

Proof. (i) It follows from Pełczyński’s result of [67] that a separable Ba-
nach space X contains an isomorphic copy of `1 if and only if X∗ con-
tains an isomorphic copy of `1(Γ ) for some uncountable set Γ . In particu-
lar, (`1)∗ = `∞ and consequently `∞ contains an isomorphic copy of `1(Γ ).
Moreover, by Dowling–Lennard–Turett’s result [31, Theorem 1] any renorm-
ing of `1(Γ ) contains an asymptotically isometric copy of `1. But a Banach
space which contains an asymptotically isometric copy of `1 fails to have the
fixed point property [30]. Therefore, so does X.

(ii) A classical result is that `∞ is the universal space for all separable
Banach spaces, i.e., every separable Banach space X can be isometrically
embedded into `∞ (just take a dense subset {xn : n ∈ N} ⊂ S(X) with
x∗nxn = 1 for all n ∈ N, where {x∗n : n ∈ N} ⊂ S(X∗), and put T : X 3 x 7→
(x∗nx)

∞
n=1 ∈ `∞). Therefore, in particular, `∞ contains an isometric copy of

L1[0, 1]. Again, by Alspach’s result [3], X /∈ (wFPP).

Lozanovskĭı [58] proved that a Banach function space X is order contin-
uous if and only if it contains no isomorphic copy of `∞. Moreover, if X is
a symmetric space and C is bounded on X, then CX is order continuous if
and only if X is (see [48]). Consequently, by Remark 7.3 and Corollary 6.1,
we have

Corollary 7.4. Let T = C or T = C∗. If X is a symmetric space
on I such that C and C∗ are bounded on X and X is not order continuous,
then TX cannot be renormed to have the fixed point property.
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Proposition 7.5. Ces1[0, 1], Ces∞, Cop1, Cop∞ and nontrivial Tandori
function spaces X̃ fail to have the weak fixed point property.

Proof. Since Ces1[0, 1] ≡ L1(ln(1/t))[0, 1] (see Example 3.3(b)), and
since L1(ln(1/t))[0, 1] is isometric to L1[0, 1] and L1[0, 1] /∈ (wFPP) by
Alspach’s result [3], it follows that Ces1[0, 1] /∈ (wFPP).

Arguing in the same way, we infer that Cop1 ≡ L1 and Cop∞ ≡ L1(1/t)
(see Example 3.3(c)) also fail to have the weak fixed point property.

If X̃ 6= {0}, then the claim follows from Proposition 4.8 and Remark 7.3.
For Ces∞ we apply Proposition 4.9 and Remark 7.3, respectively.

8. Generalizations and applications. Until now, most of the results
we have obtained for the Cesàro and Copson function spaces have been
proven in the class of Banach function spaces and under the nontriviality
assumption. It turns out that we can transfer (without much effort) the
most important results from Sections 4 and 7 to even more general optimal
domains. We start with some definitions.

Denote by Hw the weighted Cesàro operator, defined as

Hw : f 7→ Hwf(x) := w(x)

x�

0

f(t) dt for t ∈ I,

where w is a positive weight on I. For a Banach function space X on I the
weighted Cesàro function space CwX(I) = CwX is

CwX := {f ∈ L0 : Hw|f | ∈ X} with the norm ‖f‖CwX = ‖Hw|f |‖X .
For X = Lp, where 1 ≤ p < ∞, these spaces were studied by Kamińska–
Kubiak [41] and Kubiak [52]. Observe that the study of the spaces Cp,w :=
HwLp is more or less equivalent to the study of CLp(w), that is, the Cesàro
operator on weighted Lp-spaces. Of course, if we take w(x) = 1/x then
CwX ≡ CX. Moreover, if w ≡ 1 then Hw = V , where V denotes the
Volterra operator

V : f 7→ V f(x) :=

x�

0

f(t) dt for t ∈ I.

Easy computations involving Fubini’s theorem show that the conjugate op-
erator H∗w to the weighted Cesàro operator Hw is given by the formula

H∗w : f 7→ H∗wf(x) :=
�

I∩[x,∞)

w(t)f(t) dt for t ∈ I.

The space C∗wX(I) = C∗wX associated with this operator can be called the
weighted Copson function space. Again, if w(t) = 1/t then C∗wX ≡ C∗X and
if w(t) ≡ 1 then C∗wX ≡ V ∗X.
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Note that

(8.1) ‖f‖CwX =
∥∥∥w(x) x�

0

|f(t)|dt
∥∥∥
X

= ‖C |f |‖X(v) = ‖f‖CY ,

that is, CwX ≡ CY , where Y = X(v) and v(x) := xw(x). That is why it is
easy to transfer claims about the Cesàro spaces CX for X being a Banach
function space (more often nonsymmetric) to the spaces CwX. Moreover,
CwX ≡ V (X(w)).

It is easy to see that CwX is nontrivial if and only if w(x)χ[λ0,m(I))(x)∈X
for some 0<λ0<m(I) (cf. (8.1) and [54, Theorem 1(a, b)]). Furthermore,
if C∗wX is nontrivial then χ[0,λ0]∈X for some 0<λ0<m(I) (cf. Lemma 3.1).
Keeping in mind this observation and following the proofs of Lemmas 4.1
and 4.2 we can show

Lemma 8.1. Let X be a Banach function space on I.

(i) Assume that CwX 6= {0}. Then there exist 0 ≤ λ0 ∈ I with

(8.2) ‖w(x)χ[b,m(I))(x)‖X‖f‖L1 ≤ ‖f‖CwX ≤ ‖w(x)χ[a,m(I))(x)‖X‖f‖L1

for all f ∈CwX such that supp(f)⊂ [a, b], where 0≤λ0<a<b<m(I).
(ii) If C∗wX 6= {0}, then we can find 0 < η0 ∈ I with

(8.3) ‖χ[0,a]‖X‖f‖L1(w) ≤ ‖f‖C∗wX ≤ ‖χ[0,b]‖X‖f‖L1(w)

for all f ∈C∗wX such that supp(f)⊂ [a, b], where 0<a<b<η0≤m(I).

The next theorem, in the case of the weighted Cesàro function spaceCwX,
easily follows from the identification CwX ≡ CY , where Y = X(v) and
v(x) = xw(x) (cf. (8.1)), and Theorem 4.5. On the other hand, if T = H∗w,
it is sufficient to use the same argument as in the proof of Theorem 4.6
and Lemma 8.1(ii) instead of Lemma 4.2 (actually, the proof will be almost
identical, because we can use the same function GX). Summarizing the above
discussion, we can obtain

Theorem 8.2. Let X be a Banach function space on I and T = Hw or
T = H∗w. Then the nontrivial space TX contains an order asymptotically
isometric copy of `1.

A similar result for Cp,w := CwL
p, where 1 ≤ p < ∞, was obtained by

Kubiak [52, Theorem 5.1].
Now, a direct consequence of Theorem 8.2 and Dowling–Lenard–Turett’s

result [30] (cf. proof of Theorem 7.1) is

Theorem 8.3. Let X be a Banach function space on I and T = Hw
or T = H∗w. Then TX fails to have the fixed point property whenever it is
nontrivial.

A direct application of the above discussion yields
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Corollary 8.4. The nontrivial Volterra space V X contains an asymp-
totically isometric copy of `1, and so fails to have the fixed point property.

Finally, let us mention that Vol1 := V L1 ≡ L1(1 − t) and Vol∞ :=
V L∞ ≡ L1 (cf. Example 3.3(b, c)) and consequently we have

Theorem 8.5. The spaces Vol1 and Vol∞ fail to have the weak fixed
point property.

9. Appendix. In the proof of Theorem 4.5 it was necessary for the
function FX to be continuous at least at one point. It turned out that it
is always continuous at uncountably many points. However, the question
whether this function is actually continuous on the whole domain may be of
interest.

Lemma 9.1. Let X be a Banach function space on I such that the oper-
ator C is bounded on X. Assume that one of the following holds true:

(i) X is order continuous,
(ii) X is symmetric and X ↪9 L∞.

Then the function FX is finitely valued and continuous for all 0 < λ ∈ I.
Proof. Actually, the proof of Lemma 4.1 shows that FX is finitely valued.

Moreover, supp(CX) = I because the Cesàro operator is bounded on X, by
Theorem D. It remains to prove that FX is also continuous. We will consider
two situations.

Assume that I=[0, 1]. Fix 0<λ0<1 and take a sequence (λn)
∞
n=1⊂ [0, 1]

such that λn → λ0. We will show that

(9.1) FX(λn)→ FX(λ0),

that is, FX is continuous on (0, 1). Note first that there exist 0 < ε <
min{λ0, 1− λ0} and N ∈ N such that

0 ≤ |fλn(x)− fλ0(x)|(9.2)

=
1

x
χ(min{λ0,λn},max{λ0,λn})(x) ≤ max

n≥N

{
1

λ0
,
1

λn

}
χ(λ0−ε,λ0+ε)(x)

for n ≥ N and 0 < x ≤ 1. Put

hn :=
1

x
χ(min{λ0,λn},max{λ0,λn}) and H := max

n≥N

{
1

λ0
,
1

λn

}
χ(λ0−ε,λ0+ε).

Then hn → 0 almost everywhere on [0, 1] as n→∞, and it follows from (9.2)
that 0 ≤ hn ≤ H. We claim that H ∈ Xa. In fact, if X is a symmetric space
and X ↪9 L∞, then Xa = Xb, where Xb is the closure in X of the set of
bounded functions supported in sets of finite measure (see, for example, [48,
Theorem B]). It is clear that H is such a function and so H ∈ Xa. However,
if X is an order continuous Banach function space then the situation is a
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little different. Due to boundedness of the Cesàro operator and Theorem D,
we can see that χ[λ,1] ∈ X for all 0 < λ < 1. Therefore, H ∈ X = Xa and
the claim follows. Just from the definition of order continuity and (9.2) we
obtain

0 ≤ |FX(λn)− FX(λ0)| =
∣∣∣∣∥∥∥∥1xχ(λn,1](x)

∥∥∥∥
X

−
∥∥∥∥1xχ(λ0,1](x)

∥∥∥∥
X

∣∣∣∣
≤
∥∥∥∥1xχ(λn,1](x)−

1

x
χ(λ0,1](x)

∥∥∥∥
X

=

∥∥∥∥1xχ(min{λ0,λn},max{λ0,λn})(x)

∥∥∥∥
X

= ‖hn‖X → 0

as n→∞. This proves (9.1). In the remaining case of λ0 = 1, the argument
is essentially the same, so we omit it.

Now suppose that I = [0,∞). Note only that in this case 1
xχ[λ,∞)(x) ∈ X

for each 0 < λ ∈ I and χ[a,b] ∈ X for each 0 < a < b < ∞, by Theorem D.
Thus we can proceed as in the previous case.

It is not surprising that we can also prove an analogous lemma for the
function GX .

Lemma 9.2. Let X be a Banach function space on I such that the Copson
operator is bounded on X. Assume that one of the following holds true:

(i) X is order continuous,
(ii) X is symmetric and X ↪9 L∞.

Then the function GX is finitely valued and continuous for all λ ∈ I.
Proof. We proceed as in the proof of Lemma 9.1 and use Corollary 3.2

instead of the proof of Lemma 4.2.

If we replace the assumption that the operator T , where T = C or
T = C∗, is bounded on X by the assumption that TX 6= {0}, then us-
ing the same arguments as before we find that FX (resp. GX) is finitely
valued and continuous for all x ∈ int(supp(TX)).

The above lemma does not exclude the possibility that FX is continuous
at each x with 0 < x ∈ I but X has trivial order continuous part. In fact,
it is rather common for spaces with Xa trivial to have this property. We
will now give some examples illustrating the discussion about the continuity
of FX .

Example 9.3. (a) Let X be a Banach function space on I and
w0, w1 : I → (0,∞) be weights that differ only on a set of measure zero,
i.e., m({x ∈ I : w0(x) 6= w1(x)}) = 0. Then, of course, X(w0) ≡ X(w1). In
particular, if X satisfies the assumptions of Lemma 9.1 and w1 = D, where

D : I 3 x 7→ D(x) := χI\Q(x)
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is the Dirichlet function, then X ≡ X(D) and D is a nowhere continuous
function on I but FX(D) is a continuous function for all 0 < x ∈ I.

(b) Put

w2 : [0, 1] 3 x 7→ w2(x) := 2χC(x) + χ[0,1]\C(x),

where C is the Smith–Volterra–Cantor set (or the fat Cantor set). The set
of discontinuities of w2 is C, so it is uncountable and of positive measure.
However, the set of discontinuities of FY , where Y := L∞(w2)[0, 1], is at
most countable.

(c) Let (qn) ⊂ Q ∩ [0, 1] and put Z := L∞(w3)[0, 1], where

w3 : [0, 1] 3 x 7→ w3(x) :=

∞∑
qn<x

qn∈Q∩[0,1]

2−n.

Then FZ is discontinuous at every rational number from the interval [0, 1]
and continuous elsewhere.

(d) Let X be a symmetric space such that X ∼= L∞, i.e., X and L∞

have the same elements and ‖f‖X = A‖f‖L∞ for f ∈ X and some constant
A > 0. Then, with the same notation as in the proof of Lemma 9.1, we have

|FX(λn)− FX(λ0)| =
∣∣∣∣∥∥∥∥1xχ(λn,m(I))(x)

∥∥∥∥
X

−
∥∥∥∥1xχ(λ0,m(I))(x)

∥∥∥∥
X

∣∣∣∣
= A

∣∣∣∣ 1λn − 1

λ0

∣∣∣∣→ 0

as n→∞. But this means that FX is continuous at 0 < x ∈ I. It is also worth
noting that if X is a symmetric space on [0, 1] then the condition Xa = {0}
is equivalent to X = L∞[0, 1] [48, Theorem B]. However, in the class of
Orlicz spaces the condition (LΦ)a = {0} (that is, the Orlicz function Φ takes
also infinite values) is equivalent to LΦ ∼= L∞[0, 1]. Moreover, for symmetric
spaces on [0,∞) the condition Xa = {0} is equivalent to X ↪→ L∞[0,∞)
(see also [48, Theorem B]).

(e) Let Y be a Banach function space on I such that Y ∼= X∩L∞, where

X ∩ L∞ :=
{
f ∈ L0 : ‖f‖Y := max{‖f‖X , ‖f‖L∞} <∞

}
,

andX is an order continuous Banach function space on I. Of course, Ya={0}
but we can prove that FY is continuous at 0 < x ∈ I (we will sketch the
proof only for I = [0, 1] because the remaining case is the same). Indeed, we
have

|FY (λn)− FY (λ0)| =
∣∣∣∣∥∥∥∥1xχ(λn,1](x)

∥∥∥∥
Y

−
∥∥∥∥1xχ(λ0,1](x)

∥∥∥∥
Y

∣∣∣∣
= B

∣∣∣∣∥∥∥∥1xχ(λn,1](x)

∥∥∥∥
X∩L∞

−
∥∥∥∥1xχ(λ0,1](x)

∥∥∥∥
X∩L∞

∣∣∣∣,
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for some constant B > 0. Example 9.3(d) above and Lemma 9.1 imply
that FL∞ and FX are continuous at all 0 < x ∈ I. Consequently, FY =
Bmax{FX , FL∞} is also continuous at 0 < x ∈ I as the maximum of two
continuous functions, and the claim follows.

The same examples can be considered also in the context of the func-
tion GX .
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[58] G. Ja. Lozanovskĭı, On isomorphic Banach structures, Sibirsk. Mat. Zh. 10 (1969)
93–98 (in Russian); English transl.: Siberian Math. J. 10 (1969), 64–68.

[59] W. A. J. Luxemburg and A. C. Zaanen, Some examples of normed Köthe spaces,
Math. Ann. 162 (1966), 337–350.

[60] L. Maligranda, Indices and interpolation, Dissertationes Math. (Rozprawy Mat.) 234
(1985), 49 pp.

[61] L. Maligranda, Orlicz Spaces and Interpolation, Sem. Mat. 5, Univ. Estadual de
Campinas, Dep. Mat., Campinas, 1989.

[62] L. Maligranda, Type, cotype and convexity properties of quasi-Banach spaces, in:
M. Kato and L. Maligranda (eds.), Banach and Function Spaces (Kitakyushu, 2003),
Yokohama Publ., Yokohama, 2004, 83–120.

[63] P. Meyer-Nieberg, Banach Lattices, Springer, Berlin, 1991.
[64] A. Nekvinda and L. Pick, Optimal estimates for the Hardy averaging operator, Math.

Nachr. 283 (2010), 262–271.
[65] S. Okada, W. J. Ricker and E. Sánchez Pérez, Optimal Domain and Integral Extension

of Operators Acting in Function Spaces, Birkhäuser, Basel, 2008.

http://dx.doi.org/10.4153/CJM-2000-033-9
http://dx.doi.org/10.1007/s11117-016-0449-6
http://dx.doi.org/10.1007/s11117-017-0515-8
http://dx.doi.org/10.1007/s00025-018-0773-1
http://dx.doi.org/10.1016/j.jmaa.2017.06.061
http://dx.doi.org/10.1016/j.jmaa.2018.10.054
http://dx.doi.org/10.1016/j.jmaa.2014.11.023
http://dx.doi.org/10.1007/s00020-014-2203-4
http://dx.doi.org/10.1016/j.indag.2016.01.009
http://dx.doi.org/10.1007/978-3-642-85997-7_22
http://dx.doi.org/10.1007/978-3-642-76724-1
http://dx.doi.org/10.1002/mana.200711155
http://dx.doi.org/10.1007/978-3-7643-8648-1


Optimal domains for Hardy-type operators 89

[66] A. Pełczyński, On the isomorphism of the spaces m and M , Bull. Acad. Polon. Sci.
Sér. Sci. Math. Astronom. Phys. 6 (1958), 695–696.

[67] A. Pełczyński, On Banach spaces containing L1[0, 1], Studia Math. 30 (1968), 231–
246.

[68] W. J. Ricker, On the optimally defined Hardy operator in Lp-spaces, Proc. Amer.
Math. Soc. 146 (2018), 4693–4705.

[69] J. S. Shiue, A note on Cesàro function spaces, Tamkang J. Math. 1 (1970), 91–95.
[70] G. Sinnamon, Interpolation of spaces defined by the level function, in: Harmonic Anal-

ysis (Sendai, 1990), Springer, Tokyo, 1991, 190–193.
[71] G. Sinnamon, Spaces defined by the level function and their duals, Studia Math. 111

(1994), 19–52.
[72] G. Sinnamon, The level functions in rearrangement invariant spaces, Publ. Mat. 45

(2001), 175–198.
[73] G. Sinnamon, Transferring monotonicity in weighted norm inequalities, Collect. Math.

54 (2003), 181–216.
[74] G. Sinnamon, Monotonicity in Banach function spaces, in: Nonlinear Analysis, Func-

tion Spaces and Applications (NASFA 8), Vol. 8, Czech. Acad. Sci., Prague, 2007,
204–240.

[75] P. W. Sy, W. Y. Zhang and P. Y. Lee, The dual of Cesàro function spaces, Glas. Mat.
Ser. III 22 (1987), 103–112.

[76] K. Tandori, Über einen speziellen Banachschen Raum, Publ. Math. Debrecen 3 (1954),
263–268.

[77] W. Wnuk, Banach Lattices with Order Continuous Norms, PWN, Warszawa, 1999.
[78] A. C. Zaanen, Riesz Spaces II, North-Holland, Amsterdam, 1983.

Tomasz Kiwerski, Paweł Kolwicz
Institute of Mathematics
Poznan University of Technology
Piotrowo 3A
60-965 Poznań, Poland
E-mail: tomasz.kiwerski@gmail.com

pawel.kolwicz@put.poznan.pl

Lech Maligranda
Department of Engineering Sciences and Mathematics
Luleå University of Technology
SE-971 87 Luleå, Sweden
E-mail: lech.maligranda@ltu.se
Current address:
Institute of Mathematics
Poznan University of Technology
Piotrowo 3A
60-965 Poznań, Poland
E-mail: lech.maligranda@put.poznan.pl

http://dx.doi.org/10.4064/sm-30-2-231-246
http://dx.doi.org/10.1090/proc/14005
http://dx.doi.org/10.4064/sm-111-1-19-52
http://dx.doi.org/10.5565/PUBLMAT_45101_08



	1. Introduction
	2. Notation and preliminaries
	2.1. Banach function spaces and symmetric spaces
	2.2. Cesàro, Copson and Tandori function spaces

	3. Some auxiliary results
	4. Copies of 1, , L1[0,1] and L[0,1] in Cesàro, Copson and Tandori function spaces
	5. Differences in the Cesàro construction on [0,1] and [0,)
	6. Transfer of properties between X and TX
	7. Applications to metric fixed point theory
	8. Generalizations and applications
	9. Appendix
	References

