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Abstract. A family of discrete time stochastic control problems with linear dynamics and
convex cost functionals are studied. For the case of a scalar control for such a model with
additive finite time horizon, discounted, and average cost per unit time convex cost functionals
as well as multiplicative (exponential) finite time horizon, discounted and long run average convex
functionals explicit solutions are described for suitable Bellman equations. In the particular case
of a linear quadratic control problem a general continuous time problem is described. The form
of the optimal strategies for each of these control problems is characterized.

1. Introduction. In this paper the primary model for control is a one dimensional
discrete time stochastic dynamical system described as follows on given probability space
(Ω,F ,P):

xn+1 = anxn + bnun + cnWn+1, (1)

where n = 0, 1, . . . , T −1, an, bn and cn are constants, (Wn) is a sequence of independent
and identically distributed (i.i.d.) symmetric random variables. Various cost functionals
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are considered consisting of strictly convex, even functions that are additive or expo-
nential with finite time horizons or infinite time horizons either discounted or long run
average. The results given here can be generalized for finite time horizon problems to
multidimensional control models. Finite time horizon linear convex problems with linear
cost functions with respect to control were studied in discrete time in [2] using a de-
terministic approach, and then generalized to continuous time in [13]. For infinite time
horizon problems some special properties are required that are typical for scalar controls.
The assumption concerning independence of the sequence of noise in the case of finite
horizon problems can be relaxed by assuming only symmetry of the conditional laws
(which justifies and extends the results of the papers [7] and [8]). The case with finite
time horizon can also be studied in continuous time for a general noise and for quadratic
functionals using the family of nearly optimal controls consisting of linear controls of the
current state of the process. The purpose of this paper is to show that linear stochas-
tic dynamics and the functions in the cost functionals being strictly convex allows one
to find solutions to suitable Bellman equations for various kinds of stochastic control
problems. While the explicit forms of optimal controls are not obtained as occurs in the
case of linear quadratic problems, there are inductive characterizations for optimal con-
trols. This work generalizes several papers in various directions (see [6], [5] and references
therein). An infinite horizon discrete time linear convex problem was considered in [1].
A finite horizon discrete time linear convex Gaussian problem with partial observation
is considered e.g. in [10]. Continuous linear convex problems were also studied using a
stochastic maximum principle in [4]. In the first part of this paper additive functionals
consisting of strictly convex, even functions are studied and optimal controls for finite
horizon problems, discounted and average cost per unit time problems are characterized.
In the second part of the paper exponential (multiplicative) functionals are considered
and solved for finite horizon, discounted and long run average control problems. The
main novelty of the paper consists in a unified approach to discrete time linear convex
control problems, allowing in certain cases to consider general noise processes and to find
the particular form of optimal controls for general discrete and continuous time linear
quadratic control problems. The results concerning infinite time horizon linear convex
problems seem to be original in particular a solution to an average cost per unit time
control problem for a discrete time linear convex problem. Furthermore solutions to the
Bellman equations corresponding to long run exponential functionals are obtained. This
latter result is obtained in a weaker form as a limit of finite horizon exponential problems
and in a stronger form using a vanishing discount approach.

2. Finite horizon problem. For the model with dynamics (1) in this section the fol-
lowing finite horizon additive functional is considered

JTx (V ) = Ex

[T−1∑
t=0

(ft(xt) + gt(ut)) +G(xT )
]

(2)

which is minimized over all strategies V = (u0, . . . , uT−1), that are adapted, that is, ut is
measurable with respect to the filtration Ft = σ{Wn, n ≤ t} for t = 1, 2, . . . .. It is also
noted that the probability measure Px, and therefore its expected value is conditional
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given the initial point x0 = x of the model (1). The right hand side of (2) depends on V
since dynamics of (xt) is given by (1). Therefore we could write (xVt ) but we shall not
point out this dependence whenever it would not lead to ambiguity. It is assumed that
the functions ft, gt and G are even and strictly convex. It is clear that then their minima
occur at 0. The following lemmas are used subsequently.

Lemma 2.1. When F is strictly convex (resp. convex) and even then, assuming integra-
bility of F (z + cW1) for a constant c, we infer that the function F̃ given by

F̃ (z) = E[F (z + cW1)] (3)

is also even and strictly convex (resp. convex).

Proof. Strict convexity of F̃ follows from strict convexity of F . F̃ is even because F is even
and the random variable W1 is symmetric. The case for convex F follows analogously.

Lemma 2.2. For strictly convex (resp. convex) and even functions F̃ and g and constants
a and b the following function

H(x) = inf
u

[
g(u) + F̃ (ax+ bu)

]
(4)

is even and strictly convex (resp. convex). Furthermore its minimum is uniquely attained
in the interval [0, −axb ] if −axb > 0 and in the interval [−axb , 0] if −axb < 0, and at 0 if
a = 0. Note that H(0) = g(0) + F̃ (0) that is for x = 0 the optimal control is u = 0.

Proof. It is clear that the infimum (4) is attained. For arbitrary x, x′ there are u, u′ such
that H(x) =

[
g(u) + F̃ (ax+ bu)

]
and H(x′) =

[
g(u′) + F̃ (ax′+ bu′)

]
. Then for λ ∈ (0, 1)

taking into account strict concavity of F̃ and g we have

H(λx+ (1− λ)x′) ≤ g(λu+ (1− λ)u′) + F̃
(
λ(ax+ bu) + (1− λ)(ax′ + bu′)

)
< λ(g(u) + F̃ (ax+ bu)) + (1− λ)(g(u′) + F̃ (ax′ + bu′)) = λH(x) + (1− λ)H(x′) (5)

so that H is strictly convex. Now

H(−x) = inf
u

[
g(u) + F̃ (−ax+ bu)

]
= inf

u′

[
g(−u′) + F̃ (−ax− bu′)

]
= inf

u′

[
g(u′) + F̃ (ax+ bu′)

]
(6)

using the fact that g and F̃ are even. Therefore H is even as well. The case when F̃ and g
are only convex can be shown almost identically. The function H is an infimum of the
sum of two convex in u functions g(u) and F̃ (ax+ bu). They attain their infima at u = 0
and u = −ax

b respectively. Therefore the infimum of the sum is somewhere between u = 0
and u = −ax

b , and by strict convexity there is a unique point where it is attained.

Consequently the following theorem can be verified.

Theorem 2.3. Assume that the functions ft, gt and G are nonnegative, strictly convex
and even and for each x

Ex

[T−1−k∑
t=0

ft(xt) +G(xT−k)
]
<∞, (7)
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for k = 0, 1, . . . , T−1, where (xn) corresponds to the state process satisfying (1) with con-
trol u ≡ 0. Then there is a sequence of strictly convex even functions wt, t = 0, 1, . . . , T ,
that are solutions to the following system of Bellman equations:
wT (x) = G(x)
wn(x) = fn(x) + inf

u

[
gn(u) + E[wn+1(anx+ bnu+ cnWn+1)]

]
, n = T − 1, . . . , 0. (8)

Furthermore w0(x) = infV JTx (V ), and the optimal strategies are in the form ûn(xn) at
time n, where ûn are selectors to the equations (8), which are continuous functions.
Proof. By the assumption (7) it follows that equations (8) are well defined. By Lemmas
2.1 and 2.2 the functions wn are even and strictly convex. Since the selectors are defined
in a unique way (by strict concavity) they are also continuous. The proof that w0(x) =
infV JTx (V ) follows in a standard way (see Section 3.2 of [11] or Theorem 4.1.1 of [15]).

Consider now the case of a general noise process. Assume that random variables (Wn)
are not independent but

conditional laws P{Wn+1 ∈ ·|W1,W2, . . . ,Wn} are symmetric.
This assumption covers in particular the cases (in one dimension) given in the papers [7]
and [8]. This law can be chosen as a regular conditional probability and define the system
of Bellman equations

wT (x) = G(x)
wn(x) = fn(x) + inf

u

[
gn(u) + E[wn+1(anx+ bnu+ cnWn+1)|W1, . . . ,Wn]

]
,

n = T − 1, T − 2, . . . , 1
w0(x) = f0(x) + inf

u

[
g0(u) + E[w1(a0x+ b0u+ c0W1)]

]
.

(9)

Notice now that the functions (wt) defined above are random since they depend on
conditional expectations. Conditional expectations considered as with respect to regu-
lar conditional probabilities are defined everywhere. Functions (wt) exist, i.e. are finite
under suitable integrability conditions. The following theorem explains solvability of the
system (9).
Theorem 2.4. Assume that the functions ft, gt and G are nonnegative, strictly convex
and even and the right hand sides of (9) are well defined. Then there is set Ω′ such that
P (Ω′) = 1 and a sequence of convex even random functions wt(·, ω), t = 0, 1, . . . , T ,
which for ω ∈ Ω′ are solutions to the system of Bellman equations (9). Furthermore
w0(x) = infV JTx (V ), and the optimal strategies are in the form ûn(xn, ω) at time n,
where ûn are for ω ∈ Ω′ selectors to the equations (9) and are continuous functions.
Proof. Since we consider regular conditional probabilities we can use Theorem 5 of [9] to
guarantee measurability of random functions wt(·, ω), t = 0, 1, . . . , T . Note that selectors
to the equations (9) are random and by Theorem 5 of [9] measurable. In the system (9)
we are allowed to replace essential infimum by infimum since selectors by strict convexity
of ft, gt and G are uniquely defined and therefore are continuous functions. The last
part, i.e. identity w0(x) = infV JTx (V ), follows in a similar way as in Section 3.2 of [11]
or Theorem 4.1.1 of [15].
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3. General stochastic linear quadratic problems. In this section initially quadratic
functionals are considered, that is, the case where ft(x) = qtx

2, gt(u) = etu
2 and

G(x) = lx2 with positive constants qt, et and l are positive deterministic functions for
discrete time dynamics (1), and the results of Theorem 2.4 are used.
Corollary 3.1. Assume that functions ft, gt and G are quadratic (as above) and the
conditional laws of the noise sequence Wn are symmetric and their conditional second
moments are finite. Then w0 is a quadratic function and an explicit form for an optimal
control is ûn(xn, ω) = knxn, where kn is deterministic.
Proof. A standard completion of squares method is used. It is only necessary to show
that if wn+1(x) = r1x

2 + r2 for constant r1 > 0, where r2 is random, then wn determined
from (9) is also of the same form and an optimal value of u occurs as in the statement of
this corollary. Since E[Wn+1|W1, . . . ,Wn] = 0 it follows that
wn(x) = qnx

2 + inf
u

[
enu

2 + E[r1(anx+ bnu+ cnWn+1)2 + r2|W1, . . . ,Wn]
]

= qnx
2 + inf

u

[
enu

2 + r1(a2
nx

2 + b2nu
2 + c2nE[W 2

n+1|W1, . . . ,Wn]

+ 2anxbnu+ 2(anx+ bnu)cnE[Wn+1|W1, . . . ,Wn]) + E[r2|W1, . . . ,Wn]
]

= (qn + r1a
2
n)x2 + inf

u

[
(en + r1b

2
n)u2 + 2r1anxbnu

]
+ r1c

2
nE[W 2

n+1|W1, . . . ,Wn] + E[r2|W1, . . . ,Wn]

= (qn + r1a
2
n)x2 + inf

u

[
(en + r1b

2
n)
(
u+ r1anbnx

en + r1b2n

)2
− r2

1a
2
nb

2
nx

2

en + r1b2n

]
+ r1c

2
nE[W 2

n+1|W1, . . . ,Wn] + E[r2|W1, . . . ,Wn]

=
(
qn + r1a

2
n −

r2
1a

2
nb

2
n

en + r1b2n

)
x2 + r1c

2
nE[W 2

n+1|W1, . . . ,Wn] + E[r2|W1, . . . ,Wn]

(10)

where note that qn + r1a
2
n−

r2
1a

2
nb

2
n

en+r1b2
n
> 0, and an optimal u is in the form − r1anbnx

en+r1b2
n
. The

remaining part of the proof follows by induction.
Now consider a continuous time linear equation

ẋt = (axt + but) dt+ c dWt (11)
with general noise (Wt) with finite second moments, symmetric conditional increments,
as P{Wt+s −Wt|Wu, u ≤ t} and continuous trajectories. It is assumed that the control
process (ut) is dyadic, that is, it is piecewise constant, adapted to the filtration Ft =
σ{Ws, s ≤ t} and changed only at the multiples of some ∆. The solution to (11) is
understood in the time interval [0,∆] in the following way

y(t) = x0 + bu0t+ c(Wt −W0) (12)
for t ∈ [0,∆]. Clearly y(t) is continuous and consider z as solution to the equation

ż(t) = a(z(t) + y(t)) (13)
with z(0) = 0. Then one can show that xt = z(t) + y(t) is the solution to (11). Conse-
quently we obtain

xt = eatx0 + bu0

(
t+
(

1 + 1
a

)
(eat − 1)

)
+ a

∫ t

0
ea(t−s)c(Ws −W0) ds (14)
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for t ≤ ∆. Consider now the quadratic cost functional

JT,cx (V ) = Ex

[∫ T

0
(f(xt) + g(ut)) dt+G(xT )

]
(15)

with f(x) = qx2, g(u) = eu2 and G(x) = lx2, where V = (ut). If we assume for simplicity
that T is a multiple of ∆ and (ut) is fixed on intervals of the length ∆ it follows that

JT,cx (V ) = Ex

[T/∆−1∑
i=0

∫ (i+1)∆

i∆
(f(xt) + g(ui∆)) dt+G(xT )

]
. (16)

Now consider the following sequence of random backward Bellman equations (compare
to (9)):

wT (x) = G(x)

wi∆(x) = inf
u

[
eu2∆ + E

[∫ ∆

0
f(xs) ds+ w(i+1)∆

(
d1x+ d2u

+ a

∫ ∆

0
ea(∆−s)c(Wi∆+s −Wi∆) ds

)
|Fi∆

]]
, i = T/∆− 1, . . . , 0,

(17)

with d1 = ea∆, d2 = b(∆ + (1 + 1
a )(ea∆ − 1)), and (xs) appearing in the formula for wi∆

being solution to (14) withWs−W0 replaced byWi∆+s−Wi∆. The following proposition
provides a solution to the family of Bellman equations.

Proposition 3.2. Assume that the right hand sides of (17) are well defined. Then there
is Ω′, such that P (Ω′) = 1 and a sequence of convex even random functions wt(·, ω),
t = 0, 1, . . . , T , which for ω ∈ Ω′ are solutions to the system of Bellman equations (17).
For each fixed ∆ the optimal strategy is of the form un∆ = knxn∆ with deterministic kn.
Furthermore each solution to (17) is of the form wiδ = r1,nx

2 + r2,n where r1,n is deter-
ministic while r2,n can be random.

Proof. Since the family of functions wn∆ are random use [9] to have measurable versions
of these functions. When wT (x) = lx2, it suffices to show the step from w(n+1)∆ to wn∆.
Assume that w(n+1)∆(x) = r1,n+1x

2 + r2,n+1. Then under the infimum sign for wn(x) it
follows (using the fact that E[Wi∆+s −Wi∆|Fi∆] = 0)

eu2∆ + E

[∫ ∆

0
q
(
xeas + bu

(
s+

(
1 + 1

a

)
(eas − 1)

)
+ a

∫ s

0
ea(s−r)c(Wr+n∆ −Wn∆) dr

)2
ds+ r1,n+1

(
xeas + bu

(
s+

(
1 + 1

a

)
(eas − 1)

)
+ a

∫ s

0
ea(s−r)c(Wr+n∆ −Wn∆) dr

)2
+ r2,n+1|Fn∆

]
= h1x

2 + h2u
2 + h3xu+ q4 =

(
h1 −

h2
3

2h2

)
x2 + h2

(
u+ h3

2h2
x
)2

+ h4 (18)

with h1 >
h2

3
2h2

, where h4 can be random, while h1, h2 and h3 are deterministic. Therefore
the optimal (minimal) u is of the form − h3

2h2
x, which by induction completes the proof.
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Remark 3.3. In the case of continuous time it is necessary to define the class of con-
trols (us) for which equation (14) is satisfied. Therefore the family of piecewise constant
controls seems to be reasonable. When a solution in a certain sense is given to (14) then
it is necessary to introduce some kind of Ito’s formula and some Riccatti equation (see
[5] or [7]). In the case here the main result states that whenever there is restriction to
dyadic controls then nearly optimal controls are of the form ktxt for dyadic t, where
k is deterministic. This result is valid for very general stochastic noise processes (Wt)
provided that their increments are conditionally symmetric and the right hand sides of
equation (17) are well defined.

4. Discounted control problem. Now a discounted control problem with an i.i.d.
noise sequence (Wn) in the dynamics of the state equation in the following form is con-
sidered

xn+1 = axn + bun + cWn+1 (19)

for n = 0, 1, . . . , with x0 = x. It is desired to minimize the following cost functional for
a given fixed β ∈ (0, 1)

Jβx (V ) = Ex

[ ∞∑
t=0

βt(f(xt) + g(ut))
]
. (20)

A function wβ is sought as a solution to

wβ(x) = f(x) + inf
u

[
g(u) + βE[wβ(ax+ bu+ cW1)]

]
. (21)

For a function v let

T βv(x) := f(x) + inf
u

[
g(u) + βE[v(ax+ bu+ cW1)]

]
. (22)

In what follows it is assumed that the functions g and f are nonnegative, strictly convex
and even.

Theorem 4.1. Assume that mβ(x) := E[
∑∞
i=0 β

if(xi)] < ∞ where (xi) corresponds to
the state process with control un ≡ 0, for n = 0, 1, . . . . Then there is a solution w to the
Bellman equation (21), which is convex, even and wβ(x) = infV Jβx (V ).

Proof. Let wβ,n(x) = (T β)n0(x). Since f and g are nonnegative wβ,n+1(x) ≥ wβ,n(x).
Moreover by Lemmas 2.1 and 2.2 the functions wβ,n are strictly convex and even. Since
as one can show (T β)n0(x) (see e.g. Theorem 4.1.1. of [15]) is an optimal value of the
functional

Jβ,nx (V ) = Ex

[n−1∑
t=0

βt(f(xt) + g(ut))
]

(23)

and
∑∞
i=0 β

iEx[f(xi)] < ∞ then it is uniformly in n bounded by mβ(x). Consequently
there is a limit wβ(x) of wβ,n(x). It is also a convex and even function. Therefore wβ(x) is
also a continuous function and by Dini’s theorem wβ,n(x) converges to wβ(x) uniformly
on compact sets. Moreover the following equality is satisfied

wβ,n+1(x) = f(x) + inf
u

[
g(u) + βEx[wβ,n(ax+ bu+ cW1)]

]
. (24)
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Let Gn(x) := Ex[wβ,n(x+cW1)]. By Lemma 2.1 Gn is a strictly convex and even function.
Then by Lemma 2.2 the infimum in (24) is attained for u from the interval

[
−|axb |, |

ax
b |
]
.

Since Gn(x) ≤ mβ(x) and Gn(x) converges to G(x) = Ex[w(x + cW1)], which is again
convex and therefore continuous, by Dini’s theorem Gn converges to G uniformly on
compact sets. Therefore let n→∞ in (24), which leads to the Bellman equation (21).

5. Average cost per unit time problem. Now consider the minimization of the
following long run average cost functional

Jax (V ) = lim sup
T→∞

1
T
Ex

[T−1∑
t=0

(f(xt) + g(ut))
]

(25)

over strategies V = (u0, . . . , uT−1, . . . ). By a Tauberian Lemma (see Lemma 8.3.1 in [15])
it follows directly that

lim sup
β→1

(1− β)Jβx (V ) ≤ Jax (V ). (26)

Consequently
lim sup
β→1

(1− β) inf
V
Jβx (V ) ≤ inf

V
Jax (V ). (27)

Let w̄β(x) = wβ(x)− wβ(0). Since wβ is convex and even, its minimum is at x = 0 and
therefore w̄β(x) ≥ 0. Furthermore by (21) it is a solution to

w̄β(x) + (1− β)wβ(0) = f(x) + inf
u

[
g(u) + βE[w̄β(ax+ bu+ cW1)]

]
. (28)

In what follows using a vanishing discount approach it is desired to let β → 1 in (28).
The following result is valid.
Theorem 5.1. Assume that E{f(d + cW1)} < ∞ and E{g(d + eW1)} < ∞, for each
d, e ∈ R and lim infβ→1(1− β)mβ(0) <∞. Then there is a constant λ and a convex and
even function w ≥ 0 that are solutions to the equation

w(x) + λ = f(x) + inf
u

[
g(u) + E[w(ax+ bu+ cW1)]

]
. (29)

Proof. We are going to show that the family {w̄β(x), β ∈ (0, 1)} is locally bounded (i.e.
bounded on any compact set) and is equicontinuous at each point. By assumption choose
a subsequence βn → 1 such that (1 − βn)mβn

(0) is bounded. Then there is a further
subsequence, for simplicity still denoted by βn, such that (1− βn)wβn(0) converges to λ.
By Ascoli–Arzela theorem (see Theorem 2.3 in [3]) choose a further subsequence (again
denoted by βn) such that w̄βn(x) converges uniformly in x from compact subsets to a
continuous function w(x). Since the functions w̄β are convex and even, the function w is
convex and even as well. Then we show in Step 3 that we are allowed let βn → 1 in (28),
which completes the proof. The proof now consists of several steps:

Step 1. Local boundedness of {w̄β(x), β ∈ (0, 1)}. The following inequalities are satis-
fied

0 ≤ w̄β(x) = wβ(x)− wβ(0) ≤ f(x) + g
(−ax

b

)
+ βE[w̄β(cW1)]

− f(0)− g(0)− βE[w̄β(cW1)] = f̄(x) + ḡ
(−ax

b

)
(30)

where f̄(x) = f(x)− f(0) and ḡ(x) = g(x)− g(0).
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Step 2. Equicontinuity at each point of w̄β . Denote by ûβ the selector minimizing
right hand side of (21). Then it follows that

w̄β(x)− w̄β(y) ≤ f(x) + g
(
ûβ(y) + y − x

b

)
+ βE

[
w̄β(ay + bûβ(y) + cW1)

]
− f(y)− g(ûβ(y))− βE

[
w̄β(ay + bûβ(y) + cW1)

]
= f(x)− f(y) + g

(
ûβ(y) + y − x

b

)
− g(ûβ(y)). (31)

Since by Lemma 2.2 |ûβ(y)| ≤ |ayb | equicontinuity at each point follows.
Step 3. Take the limit in (28) along a suitable subsequence. Note first that w̄β is convex

and even and therefore w̄β ≥ 0. Moreover by Lemma 2.2 infimum in (28) is attained for u
between 0 and −bx2a , that does not depend on β and by Step 1 w̄β(ax + bu + cW1) ≤
f̄(ax+ bu+ cW1) + ḡ(−aax+bu+cW1

b ) and both functions are integrable. Consequently

E[w̄βn(ax+ bu+ cW1)]→ E[w̄(ax+ bu+ cW1)] (32)

uniformly in u taking values between 0 and −bx2a , as βn → 1. Therefore let the subsequence
βn → 1 in (28) from which (29) follows.

Corollary 5.2. For any control V it follows that λ ≤ infV Ja0 (V ) ≤ infV Jax (V ). For the
control V̂ consisting of controls for which equality in (29) is satisfied, we have λ = Jax (V̂ ).

Proof. The first inequality follows from the proof of Theorem 5.1 and inequality (26).
Note now that for V = (u0, u1, . . . ) and V ′ = (axb + u0, u1, . . . ) it follows that xV1 =
ax + bu0 + cW1 with x0 = x under V and xV

′

1 = ax0 + bu0 + cW1 = xV1 with x0 = 0
under V ′. Therefore

Ex

[T−1∑
t=0

(
f(xVt ) + g(ut)

)]
= E0

[T−1∑
t=1

(
f(xV

′

t ) + g(ut)
)]

+ f(x) + g(u0) (33)

and consequently Jax (V ) = Ja0 (V ′). Thus infV Jax (V ) ≥ infV Ja0 (V ) ≥ λ.
For the control V̂

w(xn) + λ = f(xn) + g(un) + E[w(xn+1)|x0, . . . , xn]. (34)

Therefore by summing first T − 1 equations in (34) it follows that

w(x) + Tλ = E
[T−1∑
i=0

(f(xn) + g(un)) + w(xT )
]

(35)

and since w ≥ 0 it follows that λ ≥ Jax (V̂ ) and by the first part of the proof there is the
equality.

Remark 5.3. Note that in the discounted problem and now also in the average cost per
unit time problem it was important to know that optimal controls, which may depend
in the discounted case on n and in the average cost per unit time on β in the problems
approximating the studied problem, are from a given compact set (in our case an interval),
which does not depend on these parameters. This allows one to insert the limit under the
infimum sign. Such a property does not hold in general in the multidimensional control
case. One can easily construct suitable counterexamples.
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6. Finite time horizon exponential functional. Now consider a discounted expo-
nential functional

JeTx (V ) = ln
(
Ex

[
exp
{T−1∑
t=0

(ft(xt) + gt(ut)) +G(xT )
}])

(36)

where ft, gt and G are nonnegative, strictly convex and even for t = 0, 1, . . . , T − 1 and
(xt) follows (19). The following technical lemma is used subsequently.

Lemma 6.1. If F is strictly convex and E[eF (x+cW1)] is well defined for each x, then
E[eF (x+cW1)] = eF̃ (x) (37)

where F̃ is strictly convex.

Proof. Let F̃ (x) = lnE[eF (x+cW1)]. Then by using the strict convexity of F and the
Hölder inequality for λ ∈ [0, 1] the following inequality is satisfied:

E
[
eF (λx+(1−λ)y+cW1)] ≤ E[eλF (x+cW1)+(1−λ)F (y+cW1)]

=
(
E[eF (x+cW1)]

)λ(
E[eF (y+cW1)]

)1−λ = eλF̃ (x)e(1−λ)F̃ (y) (38)
with strict inequality for λ ∈ (0, 1), which completes the proof.

Corollary 6.2. For strictly convex and even functions F and g and constants a and b,
assuming that E[eF (x+cW1)] is well defined for each x the function H defined by

H(x) := inf
u

[
g(u) + ln

(
E[eF (ax+bu+cW1)]

)]
(39)

is even and strictly convex. Furthermore the minimum in (39) is attained in the interval
[0, −axb ] whenever −axb > 0 and in the interval [−axb , 0] whenever −axb < 0, and at 0 when
a = 0 or x = 0.

Proof. Note that H(x) = infu[g(u) + F̃ (ax + bu)] is by Lemmas 6.1 and 2.2 strictly
convex. Since F and g are even functions by Lemma 2.1 and 2.2 the function H is also
even and the minimum is attained in the intervals described above. Note that H(0) =
g(0) + ln(EF̃ (cW1)), that is, for x = 0 the optimal control is u = 0.

Consider now the following system of Bellman equations
ew

e
0(x) = eG(x)

ew
e
n+1(x) = inf

u
exp
(
fT−(n+1)(x) + gT−(n+1)(u)

)
E
[
exp(wen(ax+ bu+ cW1))

]
for n = 0, 1, . . . , T − 2

ew
e
T (x) = inf

u
ef0(x)+g0(u)E

[
exp
(
weT−1(ax+ bu+ cW1)

)]
.

(40)

Optimal strategies are described in the following theorem.

Theorem 6.3. Assume that for each x

Ex

[
exp
(T−1−k∑

t=0
ft(xt) +G(xT−k)

)]
<∞, (41)

for k = 0, 1, . . . , T − 1, where xn corresponds to the state process with control u ≡ 0
and the functions ft, gt and G are nonnegative, strictly convex and even. Then functions
wn defined in (40) for n = 0, 1, . . . , T are well defined, strictly convex and even and
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wT (x) = supV JeTx (V ). Furthermore optimal strategies at time n, for n = 0, 1, . . . , T − 1,
are of the form un(xn) where un is a uniquely defined continuous selector in the equation
for wT−n.

Proof. With the assumption (41) the right hand sides of the equations (40) are well
defined. Then use Lemma 6.1 and Corollary 6.2 to obtain that the family wn is strictly
concave and even. The remaining part of the proof is rather standard (see e.g. [11]).

7. Discounted exponential functional. Now consider the following exponential func-
tional for β, γ ∈ (0, 1)

Je,βx (V, γ) = ln
(
Ex

[
exp
{ ∞∑
t=0

βtγ(f(xt) + g(ut))
}])

(42)

with dynamics of (xn) of the form (19). A solution of the following Bellman equation is
sought:

exp
(
we,β(x, γ)

)
= inf

u

[
exp
(
γ(f(x) + g(u))

)
E
{

exp(we,β(ax+ bu+ cW1, γβ))
}]

=: exp
(
T e,βwe,β(x, γ)

)
(43)

where f and g are nonnegative, strictly convex and even.
Assume that f and g are nonnegative and g(0) = 0. Then

T e,β0(x, γ) = inf
u

ln
(
eγ(f(x)+g(u))) = γf(x) =: we,β0 (x, γ) ≥ 0,

and the mapping x 7→ T e,β0(x, γ) is convex. Therefore (T e,β)n0(x, γ) := we,βn (x, γ) is an
increasing sequence, and by Corollary 6.2 it consists of convex functions.

Furthermore there is equality
exp
(
we,βn+1(x, γ)

)
= inf

u

[
eγ(f(x)+g(u))E

{
exp(we,βn (ax+ bu+ cW1, γβ))

}]
. (44)

Theorem 7.1. Assume that m̃β(x, γ) := E
[
exp
(∑∞

i=0 γβ
if(xi)

)]
< ∞ where (xi) cor-

responds to the state process with the control un ≡ 0, for n = 0, 1, . . . . Then there is a
solution we,β to the Bellman equation (43) which is convex in x, even, convex in γ and
we,β(x, γ) = infV Je,βx (V ).

Proof. Note that we,βn (x, γ) is an optimal value of the functional

Je,β,nx (x, γ, V ) = ln
(
Ex

[
exp
(
γ

n−1∑
t=0

βt(f(xt) + g(ut))
)])

(45)

and is uniformly bounded by ln(m̃β(x, γ)). Consequently there is a limit we,β(x, γ) of
we,βn (x, γ). Since x 7→ we,βn (x, γ) is strictly convex, the function x 7→ we,β(x, γ) is convex
as well. Therefore x 7→ we,β(x, γ) is continuous and by Dini’s theorem for each γ func-
tion we,βn (x, γ) converges uniformly on compact sets to we,β(x, γ). Moreover by Corol-
lary 6.2 the functions we,βn are even and therefore we,β is also even. Let Gn(x, γ) :=
ln
(
E
{

exp(we,βn (ax + bu + cW1, γ))
})

. By Corollary 6.2 the function x 7→ Gn(x, γ) is
strictly convex and even. Furthermore Gn(x, γ) ≤ m̃β(x, γ). Sequence Gn(x, γ) is in-
creasing and converges to G(x, γ) and x 7→ G(x, γ) is convex and therefore continuous.
Consequently Gn(x, γ) converges uniformly to G(x, γ) for fixed γ. By Corollary 6.2 the
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infimum in (44) is attained for u from the interval
[
−|axb |, |

ax
b |
]
. By letting n to∞ in (44)

it follows that we,β is a solution to (43). Moreover note that we,βn (x, γ) is also convex in γ
because Je,β,nx (x, γ, V ) is convex for fixed x and each V (which follows in a similar way
as the proof of Lemma 6.1). Therefore we,β is convex in γ. The fact that we,β is a value
function follows in a standard way.

8. Long run exponential functional. Now consider the minimization of

Jel,γx (V ) = lim sup
T→∞

1
T

ln
(
Ex

[
exp
{
γ

T−1∑
t=0

(f(xt) + g(ut))
}])

. (46)

This kind of functional is in a sense motivated by risk sensitive control problems and
the method is based on a vanishing discount approach which follows some ideas of [14].
Now consider solving the following Bellman equation, that is, to find a constant λe and
a function w such that

exp(v(x, γ)− λe(γ)) = inf
u

[
eγ(f(x)+g(u))E

{
exp(v(ax+ bu+ cW1, γ))

}]
. (47)

From equation (43) by letting w̄e,β(x, γ) := w̄e,β(x, γ)− we,β(0, γ) it follows that

exp
(
w̄e,β(x, γ) + we,β(0, γ)− we,β(0, γβ)

)
= inf

u

[
eγ(f(x)+g(u))E

{
exp(w̄e,β(ax+ bu+ cW1, γβ))

}]
. (48)

Furthermore note that w̄e,β(x, γ) ≥ 0 since each function w̄e,β(x, γ) attains its minimum
at 0. For x = 0 in (43) the infimum is attained by choosing u = 0 so that

exp(w̄e,β(x, γ)) ≤
exp
(
γ(f(x) + g(−axb ))

)
E
{

exp
(
we,β(cW1, γβ)

)}
exp(γ(f(0) + g(0)))E{exp(we,β(cW1, γβ))}

= exp
(
γ
(
f̄(x) + ḡ

(−ax
b

)))
(49)

where f̄(x) = f(x) − f(0) and ḡ(x) = g(x) − g(0). Let ux be an optimal control for x.
Then

exp(w̄e,β(x, γ)) ≥ exp(γ(f(x) + g(ux)))E{exp(we,β(ax+ bux + cW1, γβ))}
exp
(
γ(f(0) + g(axb + ux))

)
E
{

exp(we,β(ax+ bux + cW1, γβ))
}

= exp
(
γ
(
f̄(x) + g(ux)− g

(ax
b

+ ux

)))
(50)

and

exp(we,β(x, γ)− we,β(y, γ))

≤
exp(γ(f(x) + g(uy + y−x

b )))E{exp(we,β(ay + buy + cW1, γβ))}
exp(γ(f(y) + g(uy)))E{exp(we,β(ay + buy + cW1, γβ))}

= exp
(
γ
(
f(x)− f(y) + g

(
uy + y − x

b

)
− g(uy)

))
. (51)

Theorem 8.1. Assume that m̃β(x, γ) <∞ for each x and

E
[
exp
(
γβ
(
f(cW1) + g

(−acW1

b

)))]
<∞ (52)
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for all β, γ ∈ (0, 1). Then there is a constant λe(γ) and nonnegative continuous even
convex functions ve, for n = 0, 1, . . . , such that

exp(ve(x, γ) + λe(γ)) = inf
u

[
eγ(f(x)+g(u))E{exp(ve(ax+ bu+ cW1, γ))}

]
. (53)

Furthermore functions ve have the following uniform bounds

inf
|u|∈[0,| b

a |]
exp
(
γ
(
f̄(x)+g(u)−g

(ax
b

+u
)))

≤ ev
e(x,γ) ≤ exp

(
γ
(
f̄(x)+ ḡ

(−ax
b

)))
(54)

and there is the inequality
λe(γ) ≥ Jel,γx ((û)) (55)

for control functions û which is a selector in the equation (53). Furthermore if for a given
control V = (u0, u1, . . . ) we define a sequence of finite horizon controls

VT = (u0, u1, . . . , uT−2, uT−1 = −axT−1/b)
then for such a sequence of controls we have the inequality

lim sup
T→∞

1
T

ln
(
Ex

[
exp
{
γ

T−1∑
t=0

(f(xVT
t ) + g(ut))

}])
≥ λe(γ). (56)

Proof. Since by Corollary 6.2 an optimal control ux is between 0 and −a
2b it follows

that for each β and γ ∈ (0, 1) functions w̄e,β(·, γ) are locally bounded equicontinuous
at each point (uniformly in β and γ). Therefore by Theorem 2.3 in [3] for each γ there
is a convergent subsequence βn → 1 such that for each m = 0, 1, . . . it follows that
w̄e,βn(x, γβmn ) → wem(x, γ) as n → ∞ uniformly in x from compact sets. Furthermore
wem(·, γ) are convex and even functions because such are the functions w̄e(x, γβm). It is
clear that we,β(0, γβm) − we,β(0, γβm+1) ≥ 0. On the other hand using (49) we obtain
for each γ ∈ (0, 1), and m = 0, 1, . . .

exp(we(0, γβm)) = eγ(f(0)+g(0))E
{

exp
(
we,β(cW1, γβ

m+1)
)}

= eγ(f(0)+g(0))E
{

exp
(
w̄e,β(cW1, γβ

m+1)
)}

exp(we,β(0, γβm+1)). (57)
Therefore λe,βn

m (γ) := we,βn(0, γβmn ) − we,βn(0, γβm+1
n ) converges to λem(γ) as n → ∞.

Moreover by convexity with respect to γ it follows for m = 0, 1, . . . that

0 ≤ we,β(x, γβm)− we,β(x, γβm+1)
γβm(1− β) ≤ we,β(x, γβm+1)− we,β(x, γβm+2)

γβm+1(1− β) (58)

and therefore in particular
βnλ

e,βn
m (γ) ≤ λe,βn

m+1(γ). (59)

Consequently λem(γ) is nondecreasing in m. Since in (48) the controls u can be restricted
between 0 and −axb , letting βn → 1 in (48) we obtain for m = 0, 1, . . .

exp(wem(x, γ) + λem(γ)) = inf
u

[
eγ(f(x)+g(u))E

{
exp(wem+1(ax+ bu+ cW1, γ))

}]
. (60)

Note that by (49)–(51) for functions wem(x, γ) it follows that

inf
|u|∈[0,| b

a |]
exp
(
γ
(
f̄(x)+g(u)−g

(ax
b

+u
)))

≤ ew
e
m(x,γ) ≤ exp

(
γ
(
f̄(x)+ḡ

(−ax
b

)))
(61)

and 0 ≤ λem(γ) ≤ K(γ), where K(γ) is a constant depending on γ. Now
w̄e,βn(x, γβmn )− w̄e,βn(x, γβm+1

n ) = −λe,βn
m (γ) + we,βn(x, γβmn )− we,βn(x, γβm+1

n ) (62)
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and since from (58)

βn
(
we,βn(x, γβmn )− we,βn(x, γβm+1

n )
)
≤ we,βn(x, γβm+1

n )− we,βn(x, γβm+2
n ) (63)

by letting n→∞ it follows that

wem(x, γ)− wem+1(x, γ) = −λem(γ) + zm(x, γ), (64)

where zm is a nondecreasing sequence of functions. Clearly λem(γ) converges to λe(γ) and
by (61) also zm(x, γ) converges to z(x, γ). Therefore

wem+1(x, γ) = wem(x, γ) + λem(γ)− zm(x, γ) (65)

and if λe(γ) > z(x, γ) letting m → ∞ it follows that the sequence wem+1(x, γ) is un-
bounded, which contradicts (61), while if λe(γ) < z(x, γ) it follows that wem(x, γ) is
unbounded which again contradicts (61). Consequently λe(γ) = z(x, γ) and

lim
m→∞

(wem+1(x, γ)− wem(x, γ)) = 0.

By (61) and Theorem 2.3 in [3] there is a subsequence mk → ∞ as well as a sequence
of functions vei such that wemk+i(x, γ) → vei (x, γ) for i = 0, 1 . . ., uniformly on compact
subsets. Using limm→∞(wem+1(x, γ) − wem(x, γ)) = 0 we find that the functions vei (x, γ)
do not depend on i and so this is denoted as ve(x, γ). Clearly x 7→ ve(x, γ) is convex and
even (since such is x 7→ wem(x, γ)). Ifmk →∞ in equation (60), (53) follows. Furthermore
it can be shown that for any control (ûn) which consists of the selectors in equation (53)

ev
e
n+1(x,γ)+(m+1)λe(γ) =

[
Ex

{
exp
(
γ

m∑
i=0

(f(Xi) + g(ûi))
)

exp(ven−m(Xm+1, γ))
}]

≥
[
Ex

{
exp
(
γ

m∑
i=0

(f(Xi) + g(ûi))
)}]

, (66)

since ven−m ≥ 0, so by taking the logarithm of both sides of (66) and dividing by m+ 1
(55) follows. Note now that from equation (53) in a similar way as in the finite horizon
case there is the equality

exp(ven+1(x, γ) + nλe(γ)) = inf
un

Ex

[
exp
{
γ

n∑
t=0

(f(xt) + g(ut)) + ve(xn+1, γ)
}]

(67)

where xn corresponds to the state process corresponding to control sequence (un). Con-
sequently for any control (un) there is the inequality

Ex

[
exp
{
γ

n∑
t=0

(f(xt)+g(ut))+ve(xn+1, γ)
}]
≥ exp(ven+1(x, γ)+nλe(γ)) ≥ enλ

e(γ). (68)

By (54) it follows that ve(xn+1, γ) ≤ γ(f̄(x) + ḡ(−axb )) and therefore for un+1 = −axn+1
b

we have the inequality

Ex

[
exp
{
γ

n+1∑
t=0

(f(xVn+2
t ) + g(ut))− f(0)− g(0)

}]
≥ enλ

e(γ) (69)

from which (56) follows.
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9. Long run exponential functional—finite horizon approach. Now consider a
finite horizon exponential Bellman equation. Let w̄en(x) = wen(x)−wen(0). Then from (40)
it follows that

exp
(
w̄en+1(x) + (wen+1(0)− wen(0))

)
= inf

u
ef(x)+g(u)E

[
exp(w̄en(ax+ bu+ cW1))

]
. (70)

A few estimates are needed now:

exp(w̄en+1(x)) ≤
exp(f(x) + g(−axb ))E{exp(wen(cW1))}

e(f(0)+g(0))E{exp(wen(cW1))}
= exp

(
f̄(x) + ḡ

(−ax
b

))
(71)

and for n ≥ 2

1 ≤ exp(wen+1(0)− wen(0)) ≤ ef(0)+g(0)E{exp(w̄en(cW1))}

≤ ef(0)+g(0)E
{

exp
(
f̄(cW1) + ḡ

(−acW1

b

))}
. (72)

Furthermore denoting by ûn the selector in (70) we obtain

exp(wen+1(x)− wen+1(y))

≤
exp(f(x) + g(−a(x−y)−bûn(y)

b )
)
E{exp(wen(ay + bûn(y) + cW1))}

exp(f(y) + g(bûn(y)))E{exp(wen(ay + bûn(y) + cW1))}

= exp
(
f(x)− f(y) + g

(
−a(x− y)− bûn(y)

b

)
− g(u(y))

)
. (73)

Theorem 9.1. Assume that for each x

Ex

[
exp
(T−1−k∑

t=0
f(xt)

)]
<∞, (74)

for k = 0, 1, . . . , T − 1, where xn corresponds to the state process with control u ≡ 0,

E

[
exp
(
f(cW1) + g

(−acW1

b

))]
<∞. (75)

and functions f , g are nonnegative, strictly convex and even. Then there is a pair : a con-
stant λe and a sequence of functions ven that are solutions to the Bellman equations

exp(ven+1(x, γ) + λe(γ)) = inf
u

[
eγ(f(x)+g(u))E

{
exp(ven(ax+ bu+ cW1, γ))

}]
. (76)

Furthermore the functions ven are convex and even and

ven(x) ≤ f̄(x) + ḡ
(−ax

b

)
. (77)

Proof. With the assumption (74) the finite horizon exponential Bellman equations (40)
have solutions wen which by Theorem 6.3 are strictly convex and even. Using (71) and (73)
it follows that the family {w̄en, n = 1, 2, . . . } is locally bounded and uniformly continuous
at each point. From (50) one can choose a subsequence nk such that

exp(wenk+i+1(0)− wenk+i(0))→ λei ,

as k →∞ for i = 0, 1, 2, . . . . By (72) it follows that λe ≥ 0. By Ascoli–Arzela arguments
(see [3]) there is a further subsequence, which for simplicity is still denoted by nk such that
w̄enk+i(x)→ v̄ei (x) for i = 0, 1, . . . and the functions v̄ei are convex and even. Therefore by
letting k → ∞ in (70), using that the infimum is attained between 0 and −axb it follows
that

exp(v̄en+1(x, γ) + λen(γ)) = inf
u

[
eγ(f(x)+g(u))E{exp(v̄en(ax+ bu+ cW1, γ))}

]
. (78)
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Choosing a further subsequence nk we deduce that the limits limk→∞ λenk
(γ) → λe(γ)

and v̄enk+i(x)→ vei (x) exist uniformly on compact subsets as k →∞, and therefore (76)
is satisfied. By (71) we immediately obtain (77).
Remark 9.2. Using finite horizon approximation we obtain weaker version of the Bell-
man equation (53). Instead of one function ve we have a sequence of convex and even
functions vei . We have however a uniform bound (77) for these functions. There are no
reason to expect that vei do not depend on i as we managed to show in the case when we
were using discounted approximation (see the end of the proof of Theorem 8.1).
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