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Abstract. The impulse control problems for a Markov–Feller process with a long-term cost
(ergodic) are considered, but the controls are allowed only when a signal arrives. This is referred
to as control problems with constraint. Such problems are studied by the authors in SIAM
J. Control. Optim. vol. 54, 55, 56 for the case of a compact metric state space and are extended
in [Modeling, Stochastic Control, Optimization, and Applications, Springer, 2019, 427–450] to the
situation of a locally compact state space with a uniform ergodicity assumption. The long term
average cost problem is re-considered here with a non-uniform ergodicity assumption satisfied,
for example, by a large class of diffusion processes in the whole space.

1. Introduction. A vast body of literature has been devoted to optimal stopping and
impulse control of Markov processes, e.g., see the references in Bensoussan and Lions [2, 3],
Bensoussan [1], Davis [4], and for ergodic impulse control, Palczewski and Stettner [21]
and the references therein. A relatively small part of this literature concerns problems
where constraints are imposed on the stopping times (see the references in [16]). In
[13, 14, 15] we have studied optimal stopping and impulse control problems of a Markov
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process xt when the stopping times must satisfy a constraint, namely, the control is
allowed to take place only at the jump times of a given process yt, these times representing
the arrival of a signal. In these references, xt belongs to a compact metric space, and an
extension to a locally compact Polish space appears in [16] under a uniform ergodicity
assumption for what concerns the ergodic impulse control. In particular, this means that
the case when xt is a diffusion process in the whole space Rd is not covered.

The aim of the present work is to address the ergodic impulse control problem with
constraint, with a locally compact state space, under more general ergodicity assumptions.
We use a similar method as in the previous work, namely, relying on an auxiliary problem
in discrete time, which here turns out to give an HJB equation which is of the same type of
the equation for semi-Markov decision processes (as in Jaśkiewicz [8], Luque-Vasquez and
Hernandez-Lerma [11]. We use specific additional assumptions, in particular to obtain an
optimal control based on the exit times of a continuation region as it is usual for classical
impulse control.

The paper is organized as follows. In Section 2, we introduce the statement of the prob-
lem (definitions the uncontrolled process, which is the two components process (xt, yt),
the admissible controls, the total average cost). Section 3 includes the main assumptions
and preliminary properties. Section 4 presents the HJB equations. In Section 5, we study
the existence of an optimal control based on the exit time of a continuation region. Sec-
tion 6 gives comments on the ergodicity assumptions and Section 7 adds a few remarks
on the case of diffusion processes.

2. Statement of the problem. In short, an impulse control problem for a Markov–
Feller process with a long-term cost (ergodic) is considered, but the controls are allowed
only when a signal arrives, but the details are many. Let us begin with some notation,
definitions, comments, and the actual statement of our ergodic problem.

2.1. The uncontrolled process. First let us mention our
Basic notation:

• R+ = [0,∞[, E a locally compact, separable and complete metric space (in short, a
locally compact Polish space), and also N0 = {0, 1, . . . } (i.e., natural numbers and 0),
N0 = N0 ∪ {∞};
• B(Z) the Borel σ-algebra of sets in Z, B(Z) the space of real-valued Borel and bounded
functions on Z, Cb(Z) the space of real-valued continuous and bounded functions on Z,
C0(Z) real-valued continuous functions vanishing at infinity on Z, i.e., a real-valued
continuous function v belongs to C0(Z) if and only if for every ε > 0 there exists a
compact set K of Z such that |v(z)| < ε for every z in Z \K1, and also, if necessary,
B+(Z), C+

b (Z), C+
0 (Z) for nonnegative functions; usually either Z = E or Z = E×R+;

• the canonical space D(R+, Z) of cad-lag functions, with its canonical process denoted
by zt(ω) = ω(t) for any ω ∈ D(R+, Z), and its canonical filtration F0 = {F0

t : t ≥ 0},
F0
t = σ(zs : 0 ≤ s ≤ t).

1Typically E = Rd and this means that v(z)→ 0 as |z| → ∞.
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Assumption 2.1. Let (Ω,F, xt, yt, Pxy) be a (realization of a) strong and normal homo-
geneous Markov process, on Ω = D(R+, E × R+) with its canonical filtration universally
completed F = {Ft : t ≥ 0} with F∞ = F , where (xt, yt) is the canonical process having
values in E × R+, and Exy denotes the expectation relative to Pxy.

(a) It is also assumed that xt is a Markov process by itself (referred as the reduced state),
with a C0-semigroup Φx(t) (i.e., Φx(t)C0(E) ⊂ C0(E), ∀ t ≥ 0), and infinitesimal
generator Ax with domain D(Ax) ⊂ C0(E).

(b) The process yt (which is referred to as the signal process) has jumps to zero at times
τ1, . . . , τn → ∞ and yt = t − τn for τn ≤ t < τn+1 (i.e., τ1 is the time of the first
jump –to zero– of yt, each jump is ‘the signal’ and yt is exactly the ‘time elapsed
since the last jump or signal’), and if y0 = 0 and τ0 = 0 then it is assumed that
conditionally to xt, the intervals between jumps Tn = τn − τn−1 are independent,
identically distributed random variables with a continuous intensity function satisfy-
ing k0 ≤ λ(x, y) ≤ k1, for suitable positive constants.

Remark 2.1. Actually, we begin with a realization of the reduced state process xt on
the canonical space D(R+, E) and the signal process yt is constructed based on the given
intensity λ(x, y), and this procedure yields a C0(E × R+)-semigroup denoted by Φxy(t).
Thus, in view of Palczewski and Stettner [19], all this implies that both semigroups Φx(t)
and Φxy(t) have the Feller property, i.e., Φx(t)Cb(E) ⊂ Cb(E) and Φxy(t)Cb(E × R+) ⊂
Cb(E×R+), and since only a strong and normal Markov process is assumed, the semigroup
Φxy(t) is (initially) acting on B(E×R+) and so, weak (or stochastic) continuity is deduced
from the assumption of a cad-lag realization, which means that

(x, y, t) 7→ Exy{h(xt, yt)} is a continuous function, (1)
for any h in Cb(E×R+). In [13, 14, 15] a probabilistic construction of the signal process yt
was described, but there are other ways to construct Φxy(t). For instances, begin with
the process (xt, ỹt) with ỹt = y + t having infinitesimal generator A0 = Ax + ∂y and a
C0(E×R+)-semigroup. Then, add the perturbation Bh(x, y) = λ(x, y)[h(x, 0)−h(x, y)],
which is a bounded operator generating a C0(E × R+)-semigroup, with domain D(B) =
C0(E × R+). Hence Axy = A0 + B generates a C0(E × R+)-semigroup, with D(Axy) =
D(A0), e.g., see Ethier and Kurtz [6, Section 1.7, pp. 37–40, Theorem 7.1]. Therefore Axy
will also denote the weak infinitesimal generator in Cb(E × R+), in several places of the
following sections.

Remark 2.2. Note that Assumption 2.1 (b) on yt means, in particular, that

Px0
{
Tn ∈ (t, t+ dt) | xs, 0 ≤ s ≤ t

}
= λ(xt, t) exp

(
−
∫ t

0
λ(xs, s) ds

)
dt, (2)

and then it is deduced that Φxy(t) has an infinitesimal generator Axy = Ax +Ay with
Ayϕ(x, y) = ∂yϕ(x, y) + λ(x, y)[ϕ(x, 0)− ϕ(x, y)], (3)

and recall that ∂y denotes the derivative with respect to y, and that λ ≥ 0 and λ ∈
Cb(E×R+). Moreover, using the law of τ1 as in (2) and the Feller property of (xt, yt), it
is also deduced that

(x, y) 7→ Exy
{
g(xτ1)

}
belongs to Cb(E × R+), (4)
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for any g in Cb(E). Note that if we begin with a sequence {T1, T2, . . . } of IID random
variables and y0 = y then τ1 (the first signal) is random variable independent of T1, T2, . . .

with distribution

Pxy{τ1 ∈ ]a, b]} = Px0{T1 ∈ ]a+ y, b+ y]}
Px0{T1 ≥ y}

.

Furthermore, in turn, by applying Dynkin’s formula to Axyϕ(x, y) = f(x, y), it follows
that

(x, y) 7→ Exy
{∫ τ1

0
f(xt, yt) dt

}
is in Cb(E × R+), (5)

for any f in Cb(E × R+).

Remark 2.3. Note that because λ(x, y) is bounded (for y near 0 is sufficient), there
exists a constant a such that Px0{τ1 ≥ a > 0} ≥ a > 0, for any x in E. Moreover, from
Assumption 2.1 (b) on the signal process yt we have

Ex0{τ1} = Ex0

{∫ ∞
0

tλ(xt, t) exp
(
−
∫ t

0
λ(xs, s) ds

)
dt
}
,

so if λ(x, y) ≤ k1 < ∞, for every y ≥ 0, and x ∈ E, then Ex0{τ1} ≥ a1 = 1/k1. Also,
the condition Ex0{τ1} ≤ a2 is satisfied since by Assumption 2.1 (b) λ(x, y) ≥ k0 > 0 for
y ≥ y0, x ∈ E, then a2 = y0 + 1/k0. Moreover, since λ(x, y) is a continuous function in
E × R+, the continuity of Exy{τ1} follows.

Definition 2.1 (with comments). The expression

{Xn = xτn , n = 0, 1, . . . }, (6)

with τ0 = 0 and X0 = x, defines a homogeneous Markov chain in E with respect to the
filtration G = {Gn : n = 0, 1, . . . } obtained from F, namely, Gn = Fτn . In this context, if

τ = inf{t > 0 : yt = 0}, (7)

is considered as a functional on Ω, then the sequence of signals (i.e., the instants of jumps
for yt) is defined by recurrence

τk+1 = inf{t > τk : yt = 0}, ∀ k = 1, 2, . . . , (8)

with τ1 = τ , and by convenience, set τ0 = 0. Let us also mention that Remark 2.3 yields:
there exists a constant a1 such that

Px0{τ ≥ a1 > 0} ≥ a1 > 0, ∀x ∈ E, (9)

and by Assumption 2.1, there exists another constant a2 > 0 such that

Ex0{τ} ≤ a2, ∀x ∈ E, (10)

therefore,
0 < a1 ≤ τ(x) := Ex0{τ} ≤ a2, ∀x ∈ E, (11)

for some real numbers a1, a2.
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2.2. The controlled process. For a detailed construction we refer to Bensoussan and
Lions [3] (see also Davis [4], Lepeltier and Marchal [10], Robin [22], Stettner [24]).

Let us consider Ω∞ = [D(R+;E ×R+)]∞, and define F0
t = Ft and Fn+1

t = Fnt ⊗Ft,
for n ≥ 0, where Ft is the universal completion of the canonical filtration as previously.

An arbitrary impulse control ν (not necessarily admissible at this stage) is a sequence
(θn, ξn)n≥1, where θn is a stopping time of Fn−1

t , θn ≥ θn−1, and the impulse ξn is Fn−1
θn

measurable random variable with values in E.
The coordinate in Ω∞ has the form (x0

t , y
0
t , x

1
t , y

1
t , . . . , x

n
t , y

n
t , . . . ), and for any impulse

control ν there exists a probability P νxy on Ω∞ such that the evolution of the controlled
process (xνt , yνt ) is given by the coordinates (xnt , ynt ) of Ω∞ when θn ≤ t < θn+1, n ≥ 0
(setting θ0 = 0), i.e., (xνt , yνt ) = (xnt , ynt ) for θn ≤ t < θn+1. Note that clearly (xνt , yνt )
is defined for any t ≥ 0, but (xit, yit) is only used for any t ≥ θi, and (xi−1

θi
, yi−1
θi

) is the
state at time θi just before the impulse (or jump) to (ξi, yi−1

θi
) = (xiθi , y

i
θi

), as long as
θi <∞. Remark that the impulse control ν = {(θi, ξi) : i ≥ 1} and the probability P νxy are
constructed by means of a sequential (or inductive) procedure, and it may be convenient
to add θ0 = 0 and ξ0 = x, which is not considered as an impulse. Hence, {(x0

t , y
0
t ) : t ≥ 0}

is the uncontrolled Markov evolution (of the state) and {(xit, yit) : t ≥ θi} denotes the
Markov evolution after the i-impulse, i.e., only the first i impulses are applied and the
Markov process restart anew at time θi < ∞ with initial condition (xiθi , y

i
θi

) = (ξi, 0),
since yi−1

θi
= 0. Also the sequence {τ ik : k ≥ 1} of signals after θi is given by the functional

τ ik+1 = inf{t > τ ik : yit = 0}, beginning with τ i0 = θi < ∞, and using the convention
inf{∅} = ∞. For the sake of simplicity, we will not always indicate, in the sequel, the
dependency of (xνt , yνt ) with respect to ν. A Markov impulse control ν is identified by
a closed subset S of E × R+ and a Borel measurable function (x, y) 7→ ξ(x, y) from S

into C = E × R+ \ S, with the following meaning: intervene only when the the process
(xt, yt) is leaving the continuation region C and then apply an impulse ξ(x, y), while
in the stopping region S, moving back the process to the continuation region C, i.e.,
θi+1 = inf{t > θi : (xit, yit) ∈ S}, with the convention that inf{∅} = ∞, and ξi+1 =
ξ(xiθi+1

, yiθi+1
), for any i ≥ 0, as long as θi <∞.

Now, recalling that τn are the arrival times of the signal given by (8), the admissible
controls are defined as follows:

Definition 2.2.
(i) A stopping time θ is called admissible if almost surely there exists n = η(ω) ≥ 1

such that θ(ω) = τη(ω)(ω), or equivalently if θ satisfies θ > 0 and yθ = 0 a.s. If θ = 0
(i.e., η = 0) is allowed, then θ is called a zero-admissible stopping time.

(ii) An impulse control ν = {(θi, ξi), i ≥ 1} as above is called admissible, if each θi
is admissible (i.e., θi > 0 and yθi = 0), and ξi ∈ Γ(xi−1

θi
). The set of admissible impulse

controls is denoted by V.
(iii) If θ1 = 0 is allowed, then ν is called zero-admissible. The set of zero-admissible

impulse controls is denoted by V0.
(iv) An admissible Markov impulse control corresponds to a stopping region S =

S0 × {0} with S0 ⊂ E, and an impulse function satisfying ξ(x, 0) = ξ0(x) ∈ Γ(x), for
any x ∈ S0, and therefore, if {(x0

t , y
0
t ) : t ≥ 0} is the uncontrolled Markov evolution (of
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the state) and {(xit, yit) : t ≥ θi} denotes the Markov evolution after the i-impulse then
η0 = 0, τ0

0 = 0, θ0 = τ0
0 , ξ0 = x, τ0

k = inf{t > τ0
k−1 : y0

t = 0} (∀ k ≥ 1), η1 = inf{k > η0 :
x0
τ0
k
∈ S0}, θ1 = τ0

η1
, τ1

η1
= θ1, ξ1 = ξ(x0

θ1
, 0), and next, τ1

k = inf{t > τ1
k−1 : y1

t = 0}
(∀ k > η1), η2 = inf{k > η1 : x1

τ1
k
∈ S0}, θ2 = τ1

η2
, τ2

η2
= θ2, ξ2 = ξ(x1

θ2
, 0), and so

forth. For a zero-admissible Markov impulse control, it suffices to use η1 = inf{k ≥ η0 :
x0
τ0
k
∈ S0}, i.e., to replace k > η0 with k ≥ η0, within the construction of η1 in the previous

iteration.

As seen later, it will be useful to consider an auxiliary problem in discrete time, for
the Markov chain Xn = xτn , with the filtration G = {Gn, n ≥ 0}, Gn = Fn−1

τn . The
impulses occur at the stopping times ηi with values in the set N = {0, 1, 2, . . . } and are
related to θi by ηi = inf{k > ηi−1 : θi = τ ik} for admissible controls {θi} and similarly
for zero-admissible controls with ηi = inf{k ≥ ηi−1 : θi = τ ik}. The discrete time impulse
control problem has been consider in Bensoussan [1], Stettner [23]. Thus

Definition 2.3. If ν = {(ηi, ξi), i ≥ 1} is a sequence of G-stopping times and
Gηi-measurable random variables ξi, with ξi ∈ Γ(xτηi ), ηi increasing and ηi → +∞
a.s., then ν is referred to as an admissible discrete time impulse control if η1 ≥ 1. If
ηi ≥ 0 is allowed, it is referred as an zero-admissible discrete time impulse control.

For an admissible impulse control ν, with a running cost f(x, y) and a cost-per-impulse
c(x, ξ), the average cost is defined as

JT (0, x, y, ν) = Eνxy
{∫ T

0
f(xνs , yνs ) ds+

∑
i

1θi≤T c(xi−1
θi

, ξi)
}
,

J(x, y, ν) = lim inf
T→∞

1
T
JT (0, x, y, ν).

(12)

The ergodic control problem is to characterize

µ(x, y) = inf
ν∈V

J(x, y, ν), (13)

and to find an optimal control. Also, consider an auxiliary problem given as
µ0(x, y) = inf

ν∈V0
J̃(x, y, ν), with

J̃(x, y, ν) = lim inf
n→∞

1
Eνxy{τn}

Jτn(0, x, y, ν),
(14)

and Jτn(0, x, y, ν) as in (12) with T = τn. Later it is shown that µ(x, y) = µ0(x, y) is a
constant.

Remark 2.4. Similarly to [15, Remark 5.4]), it can be shown that the results which
follow are the same if ‘lim inf’ is replaced by ‘lim sup’ in the definition of the cost either
(12) or (14).

3. Main assumptions and preliminaries. It is assumed that the running cost f(x, y)
and the cost-per-impulse c(x, ξ) satisfy

f : E × R+ → R+, bounded and continuous,
c : E × E → [c0,+∞[, c0 > 0, bounded and continuous,

(15)
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Moreover, for any x ∈ E, the possible impulses must be in Γ(x) = {ξ ∈ E : (x, ξ) ∈ Γ},
where Γ is a given analytic set in E×E. Actually, for every x in E the following properties
are assumed to hold

∅ 6= Γ(x) is compact, ∀ ξ ∈ Γ(x), Γ(ξ) ⊂ Γ(x),
c(x, ξ) + c(ξ, ξ′) ≥ c(x, ξ′), ∀ ξ ∈ Γ(x), ∀ ξ′ ∈ Γ(ξ) ⊂ Γ(x).

(16)

Finally, by defining the operator M

Mv(x) = inf
ξ∈Γ(x)

{
c(x, ξ) + v(ξ)

}
, (17)

it is assumed that

M maps Cb(E) into Cb(E), and there exists a measurable selector

ξ̂(x) = ξ̂(x, v) realizing the infimum in Mv(x), ∀x, v. (18)

Remark 3.1.
(a) The last condition in (16) is to ensure that simultaneous impulses are never optimal.
(b) (18) requires some regularity property of Γ(x), e.g., see Davis [4].
(c) It is possible (but not necessary) that x belongs to Γ(x), actually, even Γ(x) = E

whenever E is compact, satisfies the assumptions. However, an impulse occurs when the
system moves from a state x to another state ξ 6= x, i.e., it suffices to avoid (or not to
allow) impulses that moves x to itself, since they have a higher cost.

The transition probability of the Markov chain Xn as in Definition 2.1 is P (x,B) =
Ex01B(xτ ), with τ defined by (7), for any Borel subset B ⊂ E. Also, define the operator

Pv(x) = Ex0{v(xτ )}, ∀x ∈ E, (19)

for every bounded and measurable function v, i.e., P1B(x) = P (x,B), for every x ∈ E
and B ∈ B(E), the Borel σ-algebra on E.

We assume the following conditions:

there exists a continuous function V : E → [1,∞[ (20)

and there exist a closed set C and an open set D in E such that C ⊂ D, a probability m
on E satisfying

0 < m(C) < 1 = m(D) and sup{V (x) : x ∈ C} <∞,
PV (x) ≤ β1V (x) + β21C(x), ∀x ∈ E,
P (x,B) ≥ β0m(B), ∀x ∈ D, ∀B ⊂ D, B ∈ B(E),

(21)

for a suitable constants β0, β1 in ]0, 1[, and β2 > 0. As shown in the next section, the
function PV is necessarily continuous.

Let us now give some preliminary properties.

Lemma 3.1. The operator P defined by (19) maps Cb(E) into itself.

Proof. In view of the equality

Pv(x) = Ex
{∫ ∞

0
λ(xt, t) exp

(
−
∫ t

0
λ(xs, s) ds

)
v(xt) dt

}
,
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for any g in Cb(E × R+), define the semigroup

Φ̃(t)g(x, y) = Ex
{

exp
(
−
∫ t

0
λ(xs, y + s) ds

)
g(xt, y + t)

}
,

which satisfies

Pv(x) =
∫ ∞

0
Φ̃(t)g(x, 0) dt, with g(x, y) = λ(x, y)v(x).

Since λ(x, y) ≥ k0, the bound ‖Φ̃(t)g(x, 0)‖ ≤ e−k0t‖g‖ enables the use of Lebesgue
Theorem to show that if {Φ̃(t) : t ≥ 0} is Feller then Pv(x) is continuous, and moreover,
since also λ is bounded, the operator P maps Cb(E) into itself.

Therefore, it suffices to prove that {Φ̃(t) : t ≥ 0} is a C0-semigroup. To this purpose,
note that by assumption, Φ0(t)g(x, y) = Ex{g(xt, y+t)} is a C0-semigroup with infinites-
imal generator A0 = Ax + ∂y. Accordingly to Dynkin [5, Theorem 9.7, pp. 298–299], the
infinitesimal generator of {Φ̃(t) : t ≥ 0} is Ã = A0 − λI and D(Ã) = D(A0). Thus,
{Φ̃(t) : t ≥ 0} is a C0-semigroup as a consequence of Dynkin [5, Theorems 2.9 and 2.10,
pp. 74–77]. Note that there is no need of Φ̃(t) when λ(x, y) = λ(y).

Let us comment on condition (20).

Lemma 3.2. Under Assumption 2.1 and (20), the function PV is continuous.

Proof. Since V is a continuous and positive function (a priori unbounded) there exists
an increasing sequence {Vk} ⊂ Cb(E) such that Vk(x) ↑ V (x) for every x ∈ E, e.g.,
Vk(x) = min{V (x), k}, k = 1, 2, . . . . Also note that if v− u ≥ 0 are measurable functions
then Pv − Pu ≥ 0. Hence, the monotone convergence ensures that PVk(x) ↑ PV (x) and
Dini’s Theorem implies that PVk → PV uniformly on compact sets of E. Therefore, if
xn → x then PVk(xn) ↑ PV (xn) uniformly in n. Also, because Vk belongs to Cb(E) it
follows, that for every k fixed, PVk(xn)→ PVk(x) as n→∞. Hence, the inequality

|PV (xn)− PV (x)| ≤ |PV (xn)− PVk(xn)|+ |PVk(xn)− PVk(x)|
+ |PVk(x)− PV (x)|, ∀n, k,

shows that PV (xn)→ PV (x) as desired.

For the reasons which will appear later, we introduce a functionW = W (x) to replace
V (x). The following Lemma is shown in Jaśkiewicz [8, Lemma 3.1, and pp. 2572–73].

Lemma 3.3. Under the ergodic assumption (20) and (21) and with the same β0, β1, β2,
C and D, the function W (x) = V (x) + β2/β0 satisfies

PW (x) ≤ β′W (x) + 1C(x)β2, ∀x ∈ E,

PW (x) ≤ β′W (x) + β0γ(x)
∫
D

W (z)m(dz), ∀x ∈ E,

P (x,B) ≥ β0γ(x)m(B), ∀x ∈ D, ∀B ⊂ D, B ∈ B(E),

where γ is a continuous functions on E such that 0 ≤ γ ≤ 1, γ = 1 in C, γ = 0 on E \D,
and β′ = (β0β1 + β2)/(β0 + β2) is a constant in ]0, 1[.
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In is convenient to denote by BW (E) [and CW (E)] the space of real-valued measurable
[continuous] functions with finite W -weighted norm

‖v‖W = sup
{
|v(x)|/W (x) : x ∈ E

}
.

Lemma 3.4. The operator P defined by (19) maps CW (E) into itself.

Proof. One checks that

|Pv(x)| ≤ ‖v(x)‖WPW (x), ∀ v ∈ BW (E),

and the inequality PW (x) ≤ β′W (x) + k (Lemma 3.3) yields

‖Pv(x)‖W ≤ k′‖v(x)‖W , ∀ v ∈ BW (E),

and some constant k′ > 0.
To prove that Pv is continuous for any v in CW (E), consider the continuous and

positive functions v± = ‖v(x)‖WW ± v. Since the space E is σ-compact (i.e., E is the
union of a sequence of compacts), there exists an increasing sequence {v±k : k ≥ 1} in
Cb(E) such that v±k (x) ↑ v±(x) for every x in E. Now, if xn → x then, as n→∞,

Pv±k (x) = lim inf
n

Pv±k (xn) ≤ lim inf
n

Pv±(xn)

and as k → ∞, we deduce that x 7→ Pv±(x) is lower semi-continuous. Because x 7→
PW (x) is continuous, this implies that x 7→ ±Pv(x) is also lower semi-continuous, which
means that x 7→ Pv(x) is continuous.

In the following sections, we need to assume that

M maps CW (E) into itself. (22)

A simple situation is

Lemma 3.5. If Γ(x) ⊂ K0, a fixed compact set in E, for any x in E; thenMv is bounded,
for any real-valued continuous function v on E, and therefore, ‖Mv‖W (E) <∞.

Proof. Indeed, from the inequality

|Mv(x)| ≤ sup
{
c(x, ξ) : ξ ∈ Γ(x), x ∈ E

}
+ sup

{
|v(ξ)| : ξ ∈ K0

}
,

the result follows.

Lemma 3.6. If the operator M maps Cb(E) into itself, Γ(x) is pre-compact for every x
in E, the multivalued-function x 7→ Γ(x) is continuous in the Hausdorff metric of sets,
and that the Polish space E is locally compact, then v continuous implies Mv continuous.

Proof. Indeed, if d denotes the metric on E then, for every ε > 0 the set Kε(x) =
{
ξ′ :

d(ξ, ξ′) ≤ ε, ξ ∈ Γ(x)
}
is a compact set. The convergence in the Hausdorff metric implies

that given any ε > 0 there exists r > 0 such that d(x, x′) < r implies dH(Γ(x),Γ(x′)) < ε,
and therefore Γ(x′) ⊂ Kε(x), for any x′ satisfying d(x, x′) < r. Thus, if v = ṽ on Kε(x)
then Mv(x′) = Mṽ(x′), for any x′ in Br(x) = {x′ : d(x, x′) ≤ r}. Since continuous
functions are bounded on compact sets, there exists vb in Cb(E) such that v = vb on
Kε(x). Hence, because Mv(x′) = Mvb(x′) for every x′ in Br and Mvb belongs to Cb(E),
we deduce that Mv is continuous on Br, i.e., the operator M maps continuous functions
into continuous functions, as desired.



196 J. L. MENALDI AND M. ROBIN

Lemma 3.7. If

∃K > 0 such that sup
ξ∈Γ(x)

W (ξ) ≤ KW (x), ∀x ∈ E,

then the operator M satisfies

‖Mv‖W ≤ K ′(1 + ‖v‖W ), v ∈ BW (E),

for some constant K ′ > 0.

Proof. From |v(x)| ≤ ‖v‖WW (x) follows

Mv(x) ≥ inf
ξ∈Γ(x)

v(ξ) ≥ −‖v‖W sup
ξ∈Γ(x)

W (ξ) ≥ −‖v‖WKW (x)

and
Mv(x) ≤ Kc + ‖v‖W inf

ξ∈Γ(x)
W (ξ) ≤ Kc + ‖v‖WKW (x),

with Kc = sup{|c(x, ξ)| : ξ ∈ Γ(x), x ∈ E}. Hence the desired estimate holds with
K ′ = max{Kc,K}.

Remark 3.2. Note that if W (x) has at most a polynomial growth with E = Rd and
Γ(x)− x is contained in a fixed bounded set, then the assumption of Lemma 3.7 is true.
However, the assumption of Lemma 3.7 may hold even when Γ(x)− x is not bounded.

4. HJB equation. The Dynamic Programming Principle shows (heuristically, see [15,
Section 3] that, with w0(x) = w0(x, 0), and for every x in E,

w0(x) = min
{
Ex0

{∫ τ

0
[f(xt, yt)− µ0] dt+ w0(xτ )

}
,Mw0(x)

}
, (23)

is the corresponding Hamilton–Jacobi–Bellman (HJB) equations in a weak form with two
unknowns µ0 and w0. Also, both problems are related (logically) by the condition

w(x, y) = Exy
{∫ τ

0
[f(xt, yt)− µ0] dt+ w0(xτ )

}
, ∀x ∈ E, y ≥ 0,

w(x, y) = w0(x, y), ∀x ∈ E, y > 0,
(24)

and so, if w0(x) is known then the last two equality yield w(x, y) and w0(x, y). Recall
that τ is defined by (7) and that since w(x, y) = w0(x, y) for any x ∈ E and y > 0, it
may be convenient to write w0(x) = w0(x, 0) as long as no confusion arises. Note that
the functions w(x, y) and w0(x) may be called potentials, and a priori, they are not costs,
but they are used to determine an optimal control.

Remark 4.1. Note that conditions (24) do not look like a HJB equation, however, we
will check later the relation w0(x) = min{w(x, 0),Mw(x, 0)}, and so, conditions (24) are
indeed equivalent to the HJB equation

w(x, y) = Ex0

{∫ τ

0
[f(xt, yt)− µ0] dt+ min

{
w(x, 0),Mw(x, 0)

}}
,

for (w, µ0).

Let us remark that the HJB equation (23) is equivalent to

w0(x) = min
{
Mw0(x), `(x)− µ0τ(x) + Pw0(x)

}
, (25)
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where
`(x) = Ex0

{∫ τ

0
f(xs, ys) ds

}
, τ(x) = Ex0{τ}, (26)

with τ as in (7), and in view of Assumption 2.1 (b) (see also Remark 2.2), the operator

Ph(x) = Ex0{h(xτ )} (27)

has been defined in (19), initially from Cb(E) into itself, but Lemma 3.4 shows that also
it maps CW (E) into itself. Note that (10) yields

0 ≤ `(x) ≤ a2‖f‖. (28)

Moreover, from the Feller property of xt and the law of τ it follows that `(x) is continuous.

Theorem 4.1. Under Assumption 2.1 and (15), (16), and (18) which is complemented
with (20), (21) and (22), there exists a solution (µ0, w0) in R+ × CW (E) of (25), and
therefore, of (23).

Proof. As in [15], the HJB (25) can be written as

w0(x) = inf
ξ∈Γ(x)∪{x}

{
L(x, ξ)− µ0τ(ξ) + Pw0(ξ)

}
(29)

with L(x, ξ) = `(ξ)+1ξ 6=xc(x, ξ), which is a particular case of the average cost optimality
equation studied in Jaśkiewicz [8] (among others). In our case, however, the function L
and the set-function x 7→ Γ(x) ∪ {x} are not continuous, so that a slight adaptation is
necessary as follows. Indeed, define P ′(· | x) = P (· | x) − β0γ(x)m(·) and consider the
operator

Tv(x) = inf
{
L(x, ξ)− gτ(ξ) + P ′v(ξ) : ξ ∈ Γ(x) ∪ {x}

}
,

where the constant g is given by

g = inf
ν∈S

{
lim inf
n→∞

1
Eνx0{τn}

Eνx0

{n−1∑
k=0

L(Xk, ξk)
}}

,

and S is the set of all stationary policies. Now, due to the continuity of γ, the function
P ′v(x) is continuous if v is so. Even if not all assumptions in Jaśkiewicz [8] are satisfied
in our case, the alternative expression of T as

Tv(x) = min
{

inf
ξ∈Γ(x)

{
`(ξ) + c(x, ξ)− gτ(ξ) + P ′v(ξ)

}
, `(x)− gτ(x) + P ′v(x)

}
,

shows, after using assumption (22), that T maps CW (E) into itself. Thus, as in Jaśkie-
wicz [8], the definition of P ′(· | x) and assumptions (21) yield∣∣Tv1(x)− Tv2(x)

∣∣ ≤ sup
ξ∈Γ(x)∪{x}

∣∣P ′v1(ξ)− P ′v2(ξ)
∣∣,

which implies∣∣Tv1(x)− Tv2(x)
∣∣ ≤ ‖v1 − v2‖W sup

ξ∈Γ(x)∪{x}
P ′W (ξ) ≤ ‖v1 − v2‖Wβ′W (x)

with β′ as in Lemma 3.3, i.e., T is a contraction in CW (E). Therefore, there is a fixed
point w0 in CW (E), i.e.,

w0(x) = inf
ξ∈Γ(x)∪{x}

{
L(x, ξ)− gτ(ξ) + Pw0(ξ)− δγ(ξ)

∫
D

w0(z)m(dz)
}
.
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Hence, the rest of the proof in Jaśkiewicz [8] shows that∫
D

w0(z)m(dz) = 0

and that (g, w0) is a solution to (29). Moreover, we deduce

lim
n→∞

Eνx{w0(Xn)}
n

= 0,

similarly to Luque-Vásquez and Hernández-Lerma [11, Lemma 4.3(c)].

5. Existence of an optimal control. To obtain an optimal control of the same type
as in the [15] (i.e., based on the exit times of {x ∈ E : w0(x) < Mw0(x)}), we will use
the following additional assumption:

Knowing that the equation h(x) = `(x) − jτ(x) + Ph(x), as a particular case of Theo-
rem 4.1, has a solution (j, h) in R+×CW (E) and j = J̃(x, 0, 0) (since Γ(x) = {x} means
‘no control’, denoted by ν = 0), we assume that

h is also bounded above, (30)

see Remark 5.1 below for a discussion on this assumption.

Theorem 5.1. Under Assumption 2.1 and (15), (16), (18) and (22), which is also com-
plemented with

Mw0 is bounded below, (31)

as well as (20), (21), (30), the constant µ0 obtained in Theorem 4.1 satisfies

µ0 = inf
{
J̃(x, 0, ν) : ν ∈ V0

}
and there exists an optimal feedback control based on the exit times of the continuation
region [w0 < Mw0].

Proof. First consider the case µ0 = j. Exactly as in the proof of [15, inequality (5.6)],
it is shown that µ0 ≤ J̃(x, 0, ν) for any ν in V0, i.e., µ0 ≤ j. Thus, if µ0 = j then
µ0 = inf{J̃(x, 0, ν) : ν ∈ V0} = j = J̃(x, 0, 0), and ν = 0 is optimal.

Now let us consider the case µ0 < j. Note that assumption (30) implies that there
exists a constant K such that h(x) ≤ K, for any x. Thus, we can define the function
h̃(x) = h(x) −K ≤ 0 to make the translation by h̃ in the equation of w0. Indeed, since
we have `(x) = h̃(x)− Ph̃(x) + jτ(x), we obtain

w̃(x) = min
{
ψ̃, (j − µ0)τ(x) + Pw̃(x)

}
,

with w̃(x) = w0(x) − h̃(x) and ψ̃(x) = Mw0(x) − h̃(x) = Mw0(x) − h(x) + K, and in
view of (31), we can choose K sufficiently large to have ψ̃ ≥ 0.

Hence, we have an equation corresponding to an (ergodic) stopping time with a strictly
positive running cost and a positive stopping cost ψ̃, a priori unbounded.

In order to solve this problem as in [15, Theorem 5.1], for µ0 < j, we need to extend
the results of Bensoussan [1, Section 7.4, pp. 74–77] on discrete-time (ergodic) optimal
stopping time as follows: if Φ is a continuous linear operator from CW (E) into itself, and

ψ ∈ CW (E), ψ ≥ 0, ` ∈ Cb(E), `(x) ≥ `0 > 0,
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then the equation
u(x) = min

{
ψ(x), `(x) + Φu(x)

}
has a unique positive solution in CW (E) and the optimal stopping time η̂ satisfies E{η̂} ≤
kW (x), with k = ‖ψ‖W /`0.

We will skip the details, since this is a slight adaption of the bounded case.
Next, the remaining of the proof is similar to [15, Theorem 5.1], with the same optimal

control η̂i+1 = inf{n ≥ η̂i : w0(Xn) = Mw0(Xn)}, where Ex{η̂i} <∞, for any x.

Remark 5.1. If f(x, y) = f(x) does not depend on y and xt has a unique invariant
probability measure ζ, and the zero-potential

x 7→ h(x) = Ex
{∫ ∞

0
[f(xt)− f̄ ] ds

}
, with f̄ = ζ(f) > 0,

is continuous and satisfies

Ex{h(xθ)} = h(x)− Ex
{∫ θ

0
[f(xt)− f̄ ] ds

}
, ∀x,

and for any bounded stopping time θ, then j = f̄ and the condition “{x : f(x) ≥ f̄} is
compact” ensures that (30) is satisfied (see Palczewski and Stettner [20]). If f depends
also on y then one can find a similar condition with f̄ = ζ(f), where ζ(dx, dy) is supposed
to be a unique invariant probability measure of (xt, yt) and there is a continuous zero-
potential h(x, y).

Now, we would like to obtain that µ0 is also the optimal cost given by (13). To proceed
along the lines of the case E compact, we first obtain another form of the HJB equation
for w(x, y).

Theorem 5.2. If the assumptions of Theorem 5.1 and the following condition on the
weight function W : there exists a positive constant 0 < k < k0 ≤ λ(x, y) ≤ k1 such that

Ex{e−ktW (xt)} ≤W (x), ∀ t ≥ 0, ∀x ∈ E, (32)

are fulfilled, then the function w(x, y) defined by (24) satisfies

−Axyw(x, y) + λ(x, y)[w(x, 0)−Mw(x, 0)]+ = f(x, y)− µ0. (33)

Proof. Recall that w(x, y) is defined by

w(x, y) = Exy
{∫ τ

0
[f(xt, yt)− µ0] dt+ w0(xτ )

}
,

and use the precise space where w(x, y) is actually defined. First, the inequalities

Exy
{∫ τ

0
|f(xt, yt)− µ0|dt

}
≤
(
sup
x,y
|f(x, y)− µ0|

)(
sup
x

Ex0{τ}
)

and (10) show that the first term of w(x, y) is bounded. Next, from the law of τ , we have

Exy{w0(xτ )} = Ex
{∫ ∞

0
λ(xt, y + t) exp

(
−
∫ t

0
λ(xs, y + s) ds

)
w0(xt) dt

}
.
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Since w0 belongs to CW (E) we have |w0(xt)| ≤ ‖w0‖WW (xt), and the bound on the
density λ yields

Exy{w0(xτ )} ≤
∫ ∞

0
k1e−k0tEx{w0(xt)}dt ≤ k1‖w0‖W

∫ ∞
0

e−(k0−k)tEx
{

e−ktW (xt)
}

dt,

and together with the hypothesis (32), it follows that∣∣Exy{w0(xτ )}
∣∣ ≤ k1

k0 − k
‖w0‖WW (x), ∀ (x, y) ∈ E × R+.

This leads us to introduce CW (E×R+), similarly to CW (E), as the space of all real-valued
continuous functions v on E × R+ such that

‖v‖W = sup
{
|v(x, y)|/W (x) : (x, y) ∈ E × R+} <∞,

and to affirm that w(x, y) belongs to CW (E × R+).
Now, w(x, y) can be written as

w(x, y) = Ex
{∫ ∞

0
exp
(
−
∫ t

0
λ(xs, y + s) ds

)
×
[
f(xt, y + t)− µ0 + λ(xt, y + t)w0(xt)

]
dt
}
.

and the expression (see also Lemma 3.1)

Φ̃(t)v(x, y) = Ex
{

exp
(
−
∫ t

0
λ(xs, y + s) ds

)
v(xt, y + t)

}
defines a contraction semigroup on CW (E × R+). Indeed, use assumption (32) to check
the contraction property

|Φ̃(t)v(x, y)| ≤ Ex
{

exp
(
−
∫ t

0
λ(xs, y + s) ds

)
|v(xt)|

}
≤ e−k0t‖v‖WEx{W (xt)} ≤ ‖v‖WW (x).

Thus, if R is the potential corresponding to {Φ̃(t) : t ≥ 0} then the function w(x, y)
becomes

w(x, y) = Rϕ(x, y), with ϕ(x, y) = f(x, y)− µ0 + λ(x, y)w0(x),
and again, if view of assumption (32), R is a (linear) bounded operator on CW (E×R+).
Therefore, by means of Dynkin [5, Theorem 1.7’, pp. 41–42], the function w is the solution
of the equation

−(Ax + ∂y)w + λw = f − µ0 + λw0,

where Ax + ∂y − λ is the weak generator of {Φ̃(t) : t ≥ 0}.
Since [15, Lemma 5.6] is still valid under the current assumptions, we obtain

w0(x) = min
{
w(x, 0),Mw(x, 0)

}
= w(x, 0)−

[
w(x, 0)−Mw(x, 0)

]+;
and rearranging the terms in the previous equation for w(x, y), we deduce

−Axyw + λ[w(x, 0)−Mw(x, 0)]+ = f − µ0

as desired.

Remark 5.2. As seen in the next section, condition (32) is not very restrictive.
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Lemma 5.1. Define Vw+ ⊂ V, the class of controls satisfying
1
T

Eνxy
{
w+(xT , yT )

}
→ 0 as T →∞.

Under the assumptions of Theorem 5.2 we have

µ0 ≤ J(x, y, ν), ∀ ν ∈ Vw+ ,

provided Vw+ 6= ∅.

Proof. Since assumption (32) yields, for every t ≥ 0, x, y,

Exy|w(xt, yt)| ≤ ‖w‖WE{W (xt)} ≤ ek0tW (x) <∞,

the HJB equation (33) implies that

Mt =
∫ t

0
[f(xs, ys)− µ0] ds+ w(xt, yt)

is a Pxy-submartingale. As in [15, Theorem 5.8], since2

w(xi−1
θi

, 0) ≤ c(xi−1
θi

, ξi) + w(ξi, 0), ∀ i ≥ 1,

we deduce that

w(x, y) ≤ Eνxy
{∫ T

0
[f(xt, yt)− µ0] dt+

∞∑
i=1

c(xi−1
θi

, ξi)1θi<T + w(xT , yT )
}
.

Hence, dividing by T and letting T → ∞ we deduce that µ0 ≤ J(x, y, ν), as long as ν
belongs to Vw+ .

Lemma 5.2. Define Vw− ⊂ V similarly to the class Vw+ with w− replacing w+. Under
the assumptions of Theorem 5.2 and ν̂ ∈ Vw− we have µ0 ≤ J(x, y, ν̂).

Proof. Let (θ, ξ) be the first impulse of an arbitrary admissible impulse control ν in V,
and T be a finite stopping time. We are going to show that

Eνxy
{∫ θ

0
[f(xt, yt)− µ0] dt+ c(x0

θ, ξ) + w(ξ, 0)
}

≥ Eνxy
{∫ T∧θ

0
[f(xt, yt)− µ0] dt+ 1θ<T

[
c(x0

θ, ξ) + w(ξ, 0)
]

+ 1θ≥Tw(xT , yT )
}
. (34)

Indeed, it was seen that Mt is a Pxy submartingale, and thus Exy{Mθ | FT∧θ} ≥ MT∧θ,
i.e.,

Eνxy
{∫ θ

0
[f(xt, yt)−µ0] dt+w(x0

θ, yθ)
∣∣ FT∧θ} ≥ ∫ T∧θ

0
[f(xt, yt)−µ0] dt+w(x0

T∧θ, yT∧θ).

This yields

Eνxy
{∫ θ

0
[f(xt, yt)− µ0] dt+ 1θ≥Tw(x0

T , yT ) + 1θ<Tw(x0
θ, yθ)

∣∣ FT∧θ}
≥
∫ T∧θ

0
[f(xt, yt)− µ0] dt+ 1θ≥Tw(x0

T , yT ) + 1θ<Tw(x0
θ, yθ),

2this inequality holds at impulse times, even if in general we do not have w ≤Mw.
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and, after remarking that 1θ<Tw(x0
θ, yθ) is FT∧θ measurable, adding 1θ<T [c(x0

θ, yθ) +
w(ξ, 0)] on both sides, and taking expectation, we have

Eνxy
{∫ θ

0
[f(xt, yt)− µ0] dt+ 1θ≥Tw(x0

T , yT ) + 1θ<T [c(x0
θ, yθ) + w(ξ, 0)]

}
≥ Eνxy

{∫ T∧θ

0
[f(xt, yt)− µ0] dt+ 1θ≥Tw(x0

T , yT ) + 1θ<T [c(x0
θ, yθ) + w(ξ, 0)]

}
.

Now, we have seen that, at impulse times,
w(x0

θ, yθ) ≤ c(x0
θ, ξ) + w(ξ, 0)

and hence, using this on the left hand side, we obtain (34).
Let us verify that if ν̂ belongs to Vw− (which is defined similarly to Vw+), then

µ0 ≥ J(ν̂).
Indeed, from the explicit optimal stopping time representation (as in [15])

w(x, y) = inf
θ
Exy

{∫ θ

0
[f(xt, yt)− µ0] dt+Mw(xθ, 0)

}
,

for any admissible stopping time θ, and using the optimal stopping time θ̂1 and optimal
impulse ξ̂1 (corresponding to a minimizer of Mw), we obtain

w(x, y) ≥ Eν̂xy
{∫ T∧θ̂1

0
[f(xt, yt)− µ0] dt+ 1θ̂1<T

[
c(x0

θ̂1
, ξ̂1) + w(ξ̂1, 0)

]
+ 1θ̂1≥Tw(xT , yT )

}
.

By iterating this argument with T constant, it follows that

w(x, 0) + µ0T ≥ Eν̂x0

{∫ T∧θ̂n

0
f(xt, yt) dt+

n−1∑
i=1

1θ̂i<T

[
c(xi−1

θ̂i
, ξ̂i)

]
+ 1θ̂i≥T

[
w(xT∧θ̂n , yT∧θ̂n)

]}
.

Dividing by T , letting T → ∞ and using w = w+ − w−, the previous inequality yields
µ0 ≥ J(ν̂) as desired.
Theorem 5.3. Under the assumptions as in Theorem 5.2, and assuming that ν̂ belongs
to Vw+ ∩ Vw− , i.e.,

1
T

Eνxy{|w(xT , yT )|} → 0 as T →∞. (35)

we have
µ0 = inf

{
J(x, y, ν) : ν ∈ Vw+

}
= J(x, y, ν̂), (36)

where the constant µ0 and the optimal feedback control ν̂ are as in Theorem 5.1, translated
by τ , see (7).
Proof. From Lemmas 5.1 and 5.2, µ0 ≤ J(ν), for every ν ∈ Vw+ and µ0 ≥ J(ν̂), and
since ν̂ ∈ Vw+ , we deduce (36).
Remark 5.3.
(a) If w is bounded then, obviously, Vw+ = Vw− = V and assumption (35) of Theorem 5.3
is satisfied.
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(b) Also, based on the inequality∣∣Eνxy{w(xT , yT )}
∣∣ ≤ ‖w‖WEνx{W (xT )},

if we assume that
AxW (x) ≤ −βW (x) + b, β > 0,

then one can show that for ν = 0 (no control), we have

lim
T→∞

1
T

E0
x{W (xT )} = 0,

i.e., ν = 0 belongs to Vw+ and Vw− , which are therefore nonempty subset of admissible
impulse controls.

Now, let us mention some cases (examples and comments) where our assumptions are
satisfied.

6. About the ergodicity condition. If we assume that there exists a norm-like (or
Lyapunov type) function V (x) ≥ 1, for every x in E (i.e., also V (x) → ∞ as |x| → ∞,
and in the domain of the extended generator) and constant β > 0 and γ ≥ 0 such that
AxV (x) ≤ −βV (x) + γ, where A is the infinitesimal generator of xt; then PV (x) ≤
β′V (x) + γ′ for some constants 0 < β′ < 1 and γ′ ≥ 0, where P is the operator given
by (27). Indeed, to check this assertion, use Dynkin’s formula and the assumptions on V
to get

PV (x) = Ex0{V (xτ )} ≤ V (x)− βEx0

{∫ τ

0
V (xt) dt

}
+ γEx0{τ}.

Moreover, one checks that

Ex0

{∫ τ

0
V (xt) dt

}
= Ex

{∫ ∞
0

exp
(
−
∫ t

0
λ(xs, s) ds

)
V (xt) dt

}
≥ εEx

{∫ ∞
0

exp
(
−
∫ t

0
λ(xs, s) ds

)
V (xt)λ(xt, t) dt

}
= εPV (x),

with ε = 1/ sup{λ(x, y) : x, y} (i.e., ≥ 1/k1). Hence PV (x) ≤ V (x)−βεPV (x) + γ′, with
γ′ = γ supx∈E Ex0{τ} = γa2 (see Remark 2.3) and finally the desired inequality with
β′ = 1/(1 + βε) follows.

Now, for instance, if for any compact set C ⊂ E there exist a constant 0 < α < 1 and
a probability ν such that

P1B(x) ≥ α1C(x)ν(B), ∀B ∈ B(E),
then the condition PV (x) ≤ β′V (x) + γ′ for every x in E is equivalent to PV (x) ≤
β1V (x) + β21C(x) for every x in E, for some constants 0 < β1 < 1 and β2 ≥ 0 and
a compact C (this is a particular case of Meyn and Tweedie [18, Lemma 15.2.8, pp.
379–380]).

Another point is that under the same assumption AxV (x) ≤ −βV (x) + γ for every x
in E, we deduce that for any constant k > 0 the function Vk(x) = V (x) + γ/k satisfies
AxVk(x) ≤ kVk(x) for every x in E. (Indeed, AxVk(x) = AxV (x) ≤ kV (x) + γ = kVk(x))
Since Vk ≥ V ≥ 1 we have Ex{e−ktVk(xt)} ≤ Vk(x) for every x in E and t ≥ 0. This
means that the condition AxV (x) ≤ −βV (x) + γ for every x in E implies that the
property (32) on the weight function W required in Theorem 5.1 is satisfied.
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Remark 6.1. Note that in Meyn and Tweedie [17, Theorem 6.1, pp. 536–537] it is proved
that the condition AxV (x) ≤ −βV (x) + γ for every x in E implies (in particular) the
exponential ergodicity of xt. It should be observed that this condition is to be written
with truncation of the process xt, i.e.„ first get an increasing sequence {On} of open sets
with compact closure and such that On ↑ E, and then consider the first entrance time
Tn of E \ On. Thus, define xnt = xt for any t < Tn and xnt = x∗n for any t ≥ Tn, with a
fixed state x∗n in E \ On (e.g., x∗n = xnTn) and A

n
x the extended generator of xnt , so that

the condition becomes AnxV (x) ≤ −βV (x) + γ for every x in On.

Proposition 6.1. If, besides the assumptions of Theorem 5.1, we assume also that
(i) Γ(x) ⊂ K, for every x and some fixed compact set K;
(ii) for some Y > 0 the stopping time TKY = inf{t > 0 : (xt, yt) ∈ K × [0, Y ]} satisfies
E{TKY } <∞, for every x, y;
(iii) L = {(x, y) : f(x, y) ≤ µ0} is compact and TL = inf{t > 0 : (xt, yt) ∈ L} satisfies
Exy{TL} <∞, for every x, y;
then the function w is bounded and therefore the conditions of Theorem 5.3 are satisfied
(actually, Vw+ = Vw− = V).

Proof. First we show that w is bounded above and next below. Indeed, for any function v
locally bounded in E (in particular continuous), assumption (15) on the switching cost c
yields

c0 + inf
ξ∈K

v(ξ) ≤Mv(x) ≤ ‖c‖+ sup
ξ∈K

v(ξ),

and therefore, w0 ≤Mw0 implies w0 ≤ ‖c‖+ supξ∈K w0(ξ) = b1. Hence, from

w(x, y) = Exy
{∫ τ1

0

[
f(xs, ys)− µ0

]
ds+ w0(xτ1)

}
it follows that w(x, y) = ϕ(x, y)+Exy{w0(xτ1)} with ϕ bounded, i.e., w+(x, y) ≤ ‖ϕ‖+b1,
and b1 can be assumed nonnegative. Thus w+ is bounded.

Next, using inequality (34) with T = TKY ∧ TL, and observing that f − µ0 ≥ 0 for
any 0 ≤ t ≤ T , we have

w(x, y) ≥ Eνxy
{
1θ<T

[
c(x0

θ, ξ) + w(ξ, 0)
]

+ 1θ≥Tw(xT , yT )
}

≥ Exy{1θ<T }
[
inf
x,ξ

c(x, ξ) + inf
ξ∈K

w(ξ, 0)
]

+ Exy{1θ≥T } inf
{
w(x, y) : (x, y) ∈ (K×[0, Y ]) ∪ L

}
,

i.e., w(x, y) is necessarily bounded below.

7. Diffusion processes. Consider a diffusion in E = Rd given by dxt = b(xt) +
σ(xt) dBt with b and σ are continuously differentiable functions, b having linear growth,
σ being bounded, and σσ∗ is strictly elliptic (uniformly in x). Classic results on the
diffusion processes (e.g., Friedman [7, Sections 1.6 and 2.4, pp. 22–25 and pp. 42–48],
Ladyženskaja et al. [9, Section IV.11, pp. 356–364], and references therein) show that xt
admits a transition density function p(x, t, x′), which is strictly positive and continuous in
x, x′. As a consequence, given any t∗ > 0 and any compact C ⊂ Rd there exist a constant



ERGODIC IMPULSE CONTROL WITH CONSTRAINT 205

0 < α < 1 and a probability ν such that

P (x, t∗, B) =
∫
B

p(x, t∗, x′) dx′ ≥ α1C(x)ν(B), ∀B ∈ B(Rd), ∀x ∈ Rd.

Equivalently, for any k > 0, a similar property holds for the resolvent chain corresponding
to the kernel

Rk(x,B) =
∫ ∞

0
ke−kt(Φ(t)1B)(x) dt,

i.e., for any compact C ⊂ Rd there exist a constant 0 < α < 1 and a probability ν such
that

Rk(x,B) ≥ α1C(x)ν(B), ∀B ∈ B(Rd), ∀x ∈ Rd.

As a consequence, since

P (x,B) = Ex
{∫ ∞

0
exp
(
−
∫ t

0
λ(xs, s) ds

)
λ(xt, t)1B(xt) dt

}
≥ k0

k1
Rk1(x,B) ≥ k0

k1
α1C(x)ν(B),

we deduce that
P (x,B) ≥ β01C(x)ν(B), ∀B ∈ B(Rd), ∀x ∈ Rd,

as assumed in (21).
Now in view of Section 6 we see that if there exists a Lyapunov function such that

AxV (x) ≤ −βV (x)+γ for every x in Rd then the whole hypothesis (21) is satisfied as well
as the additional condition of Theorem 5.1. Also, the Markov process xt is exponentially
ergodic and one can show that when the function f(x, y) = f(x) depend only on x, there
exists a function h(x) satisfying the additional assumption of Section 5.

Finally, if we are in the case of Γ(x) ⊂ K0, a fixed compact, for every x in Rd, then that
all the results of Section 5 are valid. Moreover, as a simple example with the Lyapunov
function V (x) = x2 + 1 is the diffusion xt in R defined by dxt = −xt dt+σ(xt) dBt, with
σ continuous and bounded, and such that σ2(x) ≥ α0 > 0. Certainly, more complicate
examples can be found in Meyn and Tweedie [17, Section 8, pp. 537–539].

Some classes of diffusion processes with jumps give examples satisfying our ergodic
assumptions, e.g., Masuda [12].
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