DYNAMICAL SYSTEMS AND ERGODIC THEORY

Rays to renormalizations

by

Genadi LEVIN

Presented by Feliks PRZYTYCKI

Summary. Let K_P be the filled Julia set of a polynomial P, and K_f the filled Julia set of a renormalization f of P. We show, loosely speaking, that there is a finite-to-one function λ from the set of P-external rays having limit points in K_f onto the set of f-external rays to K_f such that R and $\lambda(R)$ share the same limit set. In particular, if a point of the Julia set $J_f = \partial K_f$ of a renormalization is accessible from $\mathbb{C} \setminus K_f$ then it is accessible through an external ray of P (the converse is obvious). Another interesting corollary is that a component of $K_P \setminus K_f$ can meet K_f only in a single (pre-)periodic point. We also study a correspondence induced by λ on arguments of rays. These results are generalizations to all polynomials (covering notably the case of connected Julia set K_P) of some results of Levin and Przytycki (1996), Blokh et al. (2016) and Petersen and Zakeri (2019) where it is assumed that K_P is disconnected and K_f is a periodic component of K_P .

1. Introduction

1.1. Polynomial external rays. Let $Q : \mathbb{C} \to \mathbb{C}$ be a non-linear polynomial considered as a dynamical system. Conjugating Q if necessary by a linear transformation, one can assume without loss of generality that Q is monic centered, i.e., $Q(z) = z^{\deg(Q)} + az^{\deg(Q)-2} + \cdots$.

We briefly recall the necessary definitions (see e.g. [DH1], [CG], [Mil0], [LS91] for details). The filled Julia set K_Q of Q is the complement $\mathbb{C} \setminus A_Q$ to the basin of infinity $A_Q = \{z : Q^n(z) \to \infty \text{ as } n \to \infty\}$, and $J_Q = \partial A_Q = \partial K_Q$ is the Julia set (here and below $Q^n(z)$ is the image of z by the *n*-iterate Q^n of Q for n non-negative and the full preimage of z by $Q^{|n|}$ for n negative).

Let $u_Q : A_Q \to \mathbb{R}_+$ be Green's function in A_Q such that $u_Q(z) \sim \log |z| + o(1)$ as $z \to \infty$. For all z in some neighborhood W of ∞ , $u_Q(z) = \log |B_Q(z)|$

Received 29 January 2021; revised 17 February 2021.

Published online 9 March 2021.

²⁰²⁰ Mathematics Subject Classification: 37F10, 37F20, 37F25.

Key words and phrases: Julia set, renormalization, external rays.

where B_Q is the *Böttcher coordinate* of Q at ∞ , i.e., a univalent function from W onto $\{w : |w| > R\}$, for some R > 1, such that $B_Q(Q(z)) = B_Q(z)^{\deg Q}$ for $z \in W$ and $B_Q(z)/z \to 1$ as $z \to \infty$.

An equipotential of Q of level b > 0 is the level set $\{z : u_Q(z) = b\}$. Alternatively, the equipotential containing a point $z \in A_Q$ is the closure of the union $\bigcup_{n>0} Q^{-n}(Q^n(z))$ and $u_Q(z) = \lim_{n\to\infty} (\deg(Q))^{-n} \log |Q^n(z)|$ is the level of this equipotential where $b = u_Q(z)$ is called the *Q*-level of $z \in A_Q$. Note that $u_Q(Q(z)) = (\deg Q)u_Q(z)$ for all $z \in A_Q$.

The gradient flow for Green's function (potential) u_Q equipped with direction from ∞ to J_Q defines Q-external rays. More specifically, the gradient flow has singularities precisely at the critical points of u_Q which are preimages by Q^n , $n = 0, 1, \ldots$, of critical points of Q that lie in the basin of infinity A_Q . If a trajectory R of the flow that starts at ∞ does not meet a critical point of u_Q , it extends as a smooth (analytic) curve, external ray R, up to J_Q . If R does meet a critical point of u_Q , one should consider instead two corresponding (non-smooth) left and right external rays as left and right limits of smooth external rays tending to R (for a visualization of such rays, see e.g., Figures 1(a-b) of [LP96] or images in [PZ19]–[PZ20]; to get an impression about the geometry of the Julia set of renormalizable polynomials, see e.g. the computer images of [Pict]). Each external ray R is parameterized by the level of equipotential $b \in (+\infty, 0)$.

The argument $\tau \in \mathbb{T} := \mathbb{R}/\mathbb{Z}$ of an external ray R is the argument of the curve R asymptotically at ∞ . Informally, τ is the argument at which R crosses the "circle at infinity". The correspondence between external rays and their arguments is one-to-one on smooth rays and two-to-one on nonsmooth ones. If R is a Q-external ray of argument τ then Q(R) is also a ray of argument $\sigma_{\deg(Q)}(\tau)$ where $\sigma_k(t) = tk \pmod{1}$. Note that, for any b large enough, B_Q maps the equiponential of level b onto the round circle $\{|w| = e^b\}$ and arcs of external rays from this equipotential to ∞ onto standard rays that are orthogonal to this circle. Finally, K_Q is connected if and only if B_Q extends as a univalent function to the basin of infinity A_Q , if and only if all external rays of Q are smooth.

Let $\mathbb{S} = \{|z| = 1\}$ be the unit circle which we identify—when this is not confusing—with \mathbb{T} via the exponential $\mathbb{T} \ni t \mapsto \exp(2\pi i t) \in \mathbb{S}$.

1.2. Polynomial-like maps and renormalization. Let us recall [DH2] that a triple (W, W_1, f) is a polynomial-like map if W, W_1 are topological discs, $\overline{W_1} \subset W$ and $f: W_1 \to W$ is a proper holomorphic map of some degree $m \geq 2$. The set of non-escaping points $K_f = \bigcap_{n=1}^{\infty} f^{-n}(W)$ is called the *filled Julia set* of (W, W_1, f) . By the Straightening Theorem [DH2], there exists a monic centered polynomial G of degree m which is hybrid equivalent to f, i.e., there is a quasiconformal homeomorphism $h: \mathbb{C} \to \mathbb{C}$ which is

conformal a.e. on K_f , such that $G \circ h = h \circ f$ near K_f . The map h is called a *straightening*. This implies in particular that K_f is the set of limit points of $\bigcup_{n>0} f^{-n}(z)$ for any $z \in W$ with, perhaps, at most one exception.

We say that another polynomial-like map $(\tilde{W}, \tilde{W}_1, \tilde{f})$ of the same degree *m* is equivalent to (W, W_1, f) if there is a component *E* of $W \cap \tilde{W}$ such that $K_f \subset E$ and $f = \tilde{f}$ in a neighborhood of K_f . Taking a point *z* as above close to $J_f = \partial K_f$, it follows (cf. [McM, Theorem 5.11]) that $K_f = K_{\tilde{f}}$ and that this is indeed an equivalence relation for polynomial-like maps. Denote by **f** the equivalence class of the polynomial-like map (W, W_1, f) , by K_f , J_f the corresponding filled Julia set and Julia set of (any representative of) **f**, and by *f* the restriction to a neighborhood of K_f of an **f**-representative (i.e., for any two representatives $(W^{(i)}, W_1^{(i)}, f_i), i = 1, 2$, we have $f_1 = f_2 = f$ in a neighborhood of K_f).

From now on, let us fix a monic centered polynomial $P : \mathbb{C} \to \mathbb{C}$ of degree d > 1.

We say that **f** is a renormalization of P (cf. [McM], [Inou]) if **f** is an equivalence class of polynomial-like maps such that $K_{\mathbf{f}}$ is a connected proper subset of K_P and, for some $r \geq 1$, $f = P^r$ in a neighborhood of $K_{\mathbf{f}}$.

1.3. Assumptions. Suppose that

(p1) **f** is a renormalization of P.

To avoid a situation when an external ray of P can have a limit point in $J_{\mathbf{f}}$ as well as a limit point off $J_{\mathbf{f}}$, we introduce another condition:

(p2) There exists a representative (W^*, W_1^*, f) of the renormalization \mathbf{f} of Pand some $b_* > 0$ as follows. If $z \in \partial W_1^*$ belongs to an external ray of Pwhich has a limit point in $K_{\mathbf{f}}$ then the P-level of z is at least b_* , i.e., $u_P(z) \ge b_*$.

Let us stress that external rays of P as in (p2) can cross the boundaries of W^* , W_1^* many times (or e.g. have joint arcs with the boundaries).

This condition holds if W^* is obtained by the following frequently used construction that we only indicate here; see [Mil1], [McM], [Inou] for details. In the first step, a simply connected domain W_0 is built using an appropriate Yoccoz puzzle so that $\partial W_0 = L_{hor} \cup L_{vert} \cup F$ where L_{hor} is a union of finitely many arcs of a fixed equipotential of P, L_{vert} is a union of finitely many arcs of external rays of P between ends of arcs of L_{hor} , and F is a finite set of repelling periodic points of J_P or/and their preimages such that $K_{\mathbf{f}} \subset W_0 \cup F$ and $f : f^{-1}(W_0) \to W_0$ is a branched covering. By the construction, every external ray of P to $J_{\mathbf{f}} \setminus F$ must cross the "horizontal" part L_{hor} so that (p2) is obviously satisfied for the set of those rays. If either $L_{vert} = F = \emptyset$ (as in Example 1 that follows) or $F \cap K_{\mathbf{f}} = \emptyset$, one can take $W^* = W_0$ so that (p2) holds for $W_1^* = f^{-1}(W^*)$. If $F \subset J_{\mathbf{f}}$, then $W_0 \setminus f^{-1}(W_0)$ is a degenerate annulus. Then, in the second step, W^* is modified from W_0 by "thickening" [Mil1, p. 12] around points of the set F, which adds only finitely many rays (tending to F). Then (p2) holds for $W_1^* = f^{-1}(W^*)$ as well.

EXAMPLE 1. Assume that the Julia set of the polynomial P is disconnected and K is a component of K_P different from a point. In this case $K = K_{\mathbf{f}}$ for some renormalization \mathbf{f} of P and conditions (p1)–(p2) are fulfilled. The boundary of W^* (hence of W_1^* , too) can be chosen to be merely a component of an equipotential that encloses K. With such a choice, each intersection point of an external ray of P with ∂W^* has a fixed level so every external ray can cross the boundaries of W^* and W_1^* at most once.

Our goal is to study a correspondence between external rays of P that have limit points in $J_{\mathbf{f}}$, on the one hand, and external, or polynomial-like rays of the renormalization \mathbf{f} , on the other (up to a change of straightening, see below). In the case of disconnected Julia set J_P and the renormalization \mathbf{f} as in Example 1 this has been done in [LP96], [ABC16, Sect. 6], and [PZ19].

1.4. Polynomial-like rays. For a curve $\alpha : [0,1) \to \overline{\mathbb{C}}$, the *limit* (or *principal*, or *accumulation*) set of α is $Pr(\alpha) = \overline{\alpha} \setminus \alpha$.

Let us define external rays of the renormalization \mathbf{f} . By [DH2], since $K_{\mathbf{f}}$ is connected, the monic centered polynomial G of degree m which is hybrid equivalent to any representative of \mathbf{f} is uniquely defined by \mathbf{f} . Let h be a *straightening* of \mathbf{f} . By this we mean a quasiconformal homeomorphism $\mathbb{C} \to \mathbb{C}$ which is conformal a.e. on $K_{\mathbf{f}}$ and satisfies $G \circ h = h \circ f$ on some neighborhood of $K_{\mathbf{f}}$. One can also assume that h is conformal at ∞ such that $h'(\infty) \neq 0$.

As the filled Julia set K_G is connected, given $t \in \mathbb{T}$ there is a unique external ray of G of argument t, denoted by $R_{t,G}$. Its h^{-1} -image $l_t^h := h^{-1}(R_{t,G})$ is called the *polynomial-like ray to* $K_{\mathbf{f}}$ of argument t. As $h : \mathbb{C} \to \mathbb{C}$ is a homeomorphism, $\Pr(l_t^h) = h^{-1}(\Pr(R_{t,G}))$. Note that the straightening his not unique. However, the polynomial G is unique, and if \tilde{h} is another straightening, although \tilde{h} defines another system of polynomial-like rays, the homeomorphism $\tilde{h}^{-1} \circ h : \mathbb{C} \to \mathbb{C}$ maps l_t^h onto $l_t^{\tilde{h}}$ and $\Pr(l_t^h)$ onto $\Pr(l_t^{\tilde{h}})$).

In what follows we fix a straightening map $h : \mathbb{C} \to \mathbb{C}$ (see Theorem 3(e) and its proof though). Then the set $\{l_t\}$ of polynomial-like rays is fixed, too (where we omit h in l_t^h as h is fixed). For brevity, P-external rays are called P-rays, or just rays, and polynomial-like rays to $K_{\mathbf{f}}$ are f-rays, or polynomial-like rays.

1.5. Main results. Given a connected compact set $K \subset \mathbb{C}$ which is different from a point, we say that a curve $\gamma : [0,1) \to \Omega := \mathbb{C} \setminus K$ converges to a prime end \hat{P} of K if, for a conformal homeomorphism $\psi : \mathbb{C} \setminus K \to \{|z| > 1\}$,

the curve $\psi \circ \gamma : [0,1) \to \{|z| > 1\}$ converges to a single point $P \in \mathbb{S}$; we say that γ converges to the prime end \hat{P} non-tangentially if moreover $\psi \circ \gamma$ converges to the point P non-tangentially, i.e., the set $\psi \circ \gamma((1-\epsilon,1))$ lies inside a sector (Stolz angle) $\{z : |\arg(z-P) - \arg P| \leq \alpha\}$ for some $\epsilon > 0$ and $\alpha \in (0, \pi/2)$. Furthermore, we say that two curves $\gamma_1, \gamma_2 : [0,1) \to \Omega$ are *K*-equivalent if they both converge to the same prime end and moreover have the same limit sets $\Pr(\gamma_1) = \Pr(\gamma_2)$ in ∂K (¹). By Lindelöf's theorem (see e.g. [Pom, Theorem 2.16]), if two curves converge to the same prime end non-tangentially, they share the same limit set. Therefore, if γ_1, γ_2 converge to the same prime end of K non-tangentially, then γ_1, γ_2 are also K-equivalent.

The following statement was proved in [ABC16] (²) in the set up of Example 1.

THEOREM 1 (cf. [ABC16, Theorem 6.9]). Assume (p1)–(p2) hold. For each P-ray R that has an accumulation point in $K_{\mathbf{f}}$ we have $\Pr(R) \subset J_{\mathbf{f}}$ and there is a unique polynomial-like ray $l = \lambda(R)$ such that the curves l, R are $K_{\mathbf{f}}$ -equivalent. Moreover, l, R converge to a single prime end of $K_{\mathbf{f}}$ non-tangentially. Furthermore, $\lambda : R \mapsto l$ maps the set of P-rays to $K_{\mathbf{f}}$ onto the set of polynomial-like rays, and is "almost injective": λ is one-to-one except when one and only one of the following (i)–(ii) holds. Suppose that $\lambda^{-1}(\ell) = \{R_1, \ldots, R_k\}$ with k > 1.

- (i) k = 2 and both rays R_1, R_2 are non-smooth and share a common arc starting at a critical point of Green's function u_P to $J_{\mathbf{f}}$, or
- (ii) there is z ∈ J_f such that Pr(R_i) = {z}, i = 1,...,k, at least two of the rays R₁,..., R_k are disjoint, and, for some n ≥ 0, P^{rn}(z) ∈ Y where Y ⊂ J_f is a finite collection of repelling or parabolic periodic points of P that depends merely on K_f.

If K_P is connected then (i) is not possible.

Note that in case (ii) any two disjoint *P*-rays completed by the joint limit point z split the plane into two domains such that one of them contains $K_{\mathbf{f}} \setminus \{z\}$, and the other one, points from $K_P \setminus K_{\mathbf{f}}$. In particular, if K_P is connected, the second domain must contain a component of $K_P \setminus K_{\mathbf{f}}$ that goes all the way to a pre-periodic point $z \in J_{\mathbf{f}}$. In fact, this is "if and only if": see Theorem 2(b) below.

For an illustration, see e.g. pictures in [McM, p. 116, explained in Example IV, p. 115] of a "dragon" filled Julia set of a quadratic polynomial Padmitting three renormalizations; the maps λ corresponding to these renormalizations are one-to-one except at countably many polynomial-like rays

^{(&}lt;sup>1</sup>) One can show that if γ_1 converges to a single point $a \in \partial K$, then γ_2 is K-equivalent to γ_1 if and only if γ_1 , γ_2 are homotopic through a family of curves in Ω converging to a.

 $^(^2)$ In [ABC16], a different terminology is used.

where λ is 6-to-1 in the top picture, 2-to-1 in the left bottom and 3-to-1 in the right bottom. In all three cases, the landing points of rays where λ is not one-to-one are (pre-)periodic to a fixed point of P where six P-rays land.

The next two theorems are consequences of the proof of Theorem 1.

THEOREM 2. Assume (p1)-(p2).

- (a) If a point $a \in J_{\mathbf{f}}$ is accessible along a curve s in $\mathbb{C} \setminus K_{\mathbf{f}}$, then a is the landing point of a P-ray R; moreover the curves s, R are $K_{\mathbf{f}}$ -equivalent.
- (b) There exists a finite set Y ⊂ J_f of repelling or parabolic periodic points of f, as follows. Let S be a component of K_P \ K_f such that (S \ S) ∩ J_f ≠ Ø. Then S \ S is a single point b ∈ J_f, and moreover fⁿ(b) ∈ Y for some n ≥ 0.

Note that part (a) is in fact an easy corollary of Lemma 2.1 similar to a result of [LP96]. Part (b) is void if (and only if) $K_{\mathbf{f}}$ is itself a component of K_P .

For the next statement, we introduce the following notations. Let $\Lambda \subset \mathbb{T}$ be the set of arguments of all *P*-rays that have their limit points in $J_{\mathbf{f}}$. Observe that by Theorem 1 the whole limit sets of such rays are in $J_{\mathbf{f}}$ and, given $\tau \in \Lambda$, there is a unique *P*-ray, denoted by $R_{\tau,P}$, which has its limit set in $J_{\mathbf{f}}$. Indeed, this is obvious if the *P*-ray of argument τ is smooth. On the other hand, if there are two *P*-rays, left and right, of argument τ , only one of them can have its limit point in $J_{\mathbf{f}}$ because the other one must go to another component of K_P . Now, the map λ of Theorem 1 induces a map $p: \Lambda \to \mathbb{T}$ such that for all $\tau \in \Lambda$,

$$\lambda(R_{\tau,P}) = l_{p(\tau)}.$$

By Theorem 1, $\Pr(l_{p(\tau)}) = \Pr(R_{\tau,P})$, and moreover $R_{\tau,P}$, $l_{p(\tau)}$ are $K_{\mathbf{f}}$ -equivalent.

Given a positive integer k, let $\sigma_k : \mathbb{T} \to \mathbb{T}$, $\sigma_k(t) = kt \pmod{1}$. Recall that $\deg(f) = m$. Let $D := \deg(P^r) = d^r$.

THEOREM 3 (cf. [PZ19]).

(a) Λ is a compact nowhere dense subset of \mathbb{T} which is invariant under σ_D .

- (b) $\sigma_m \circ p = p \circ \sigma_D$ on Λ .
- (c) The map p : Λ → T is surjective and finite-to-one, and moreover "almost injective" as defined in Theorem 1.
- (d) $p: \Lambda \to \mathbb{T}$ extends to a continuous monotone degree one map $\tilde{p}: \mathbb{T} \to \mathbb{T}$.
- (e) The map p is unique in the following sense: if $\tilde{p} : \Lambda \to \mathbb{T}$ corresponds to another straightening \tilde{h} , then $\tilde{p}(t) = p(t) + k/(m-1) \pmod{1}$ for some $k = 0, 1, \ldots, m-1$.

In the set up of Example 1, i.e., when K_P is disconnected and K_f is a periodic component of K_P , Theorem 3 was proved in [PZ19] (by a different

method), with part (c) replaced by an explicit bound for the cardinality of fibers of the map p as well as with an extra statement about the Hausdorff dimension of the set Λ .

A detailed proof of the main Theorem 1 is given in Sect. 2 and the proofs of Theorems 2–3 are in Sect. 3. The proof of Theorem 1 follows rather closely the proofs of [LP96, Lemma 2.1] and [ABC16, Theorems 6.8–6.9]. An essential difference is that we have to adapt the proofs to the situation that external rays of P can cross the boundary of W_1^* as in (p2) many times.

2. Proof of Theorem 1. Let $f: W_1^* \to W^*$ be a representative of \mathbf{f} as in (p2). As K_f is connected, all the critical points of f are in K_f . Hence, for each $k, f^k: f^{-k}(W_1^* \setminus K_f) \to W_1^* \setminus K_f$ is an unbranched (degree m^k) map. Therefore, $L_k := f^{-k}(\partial W_1^*)$ is the boundary of a simply connected domain $f^{-k}(W_1^*)$.

Let \mathcal{R} denote the set of all *P*-rays *R* such that *R* has a limit point in J_f . First, we show that all limit points of $R \in \mathcal{R}$ are in J_f , introducing some notations along the way. Let

$$b_{*,k} = \inf\{u_P(z) : z \in R \cap L_k, R \in \mathcal{R}\}.$$

By (p2), $b_{*,0} > 0$. As $R \in \mathcal{R}$ implies $P^r(R) \in \mathcal{R}$, we have $b_{*,k} \geq b_{*,0}/D^k$, hence $b_{*,k} > 0$, for all k. Let $R \in \mathcal{R}$ and $k \geq 0$. Since $R \cap L_k$ is a closed set and $b_{*,k} > 0$, there exists a unique point $z_k(R) \in R \cap L_k$ such that $u_P(z_k(R)) = \inf\{u_P(z) : z \in R \cap L_k\}$. Observe that the arc $\Gamma_{k,R}$ of R from $z_k(R)$ down to J_P lies entirely in $\overline{f^{-k}(W_1^*)}$. As $\bigcap_{k\geq 0} \overline{f^{-k}(W_1^*)} = K_f$, we see immediately that the limit set of R, which is $\bigcap_{k\geq 0} \overline{\Gamma_{k,R}}$, is a subset of J_f .

Before proceeding with more notations and the main lemma, let us note that $b_{*,k} = b_{*,0}/D^k$, k = 1, 2, ... Indeed, as $f^k : f^{-k}(W_1^* \setminus K_f) \to W_1^* \setminus K_f$ is an unbranched covering, each component of $f^{-k}(R)$ is an arc of some ray from \mathcal{R} . This implies that $b_{*,k} \leq b_{*,0}/D^k$. The opposite inequality was seen before.

Now, choose a conformal isomorphism ψ from $\mathbb{C} \setminus K_f$ onto $\mathbb{D}^* = \{|z| > 1\}$ such that $\psi(z)/z \to e$ as $z \to \infty$, for some e > 0. A curve \tilde{R} in \mathbb{D}^* with limit set in $\mathbb{S} = \{|z| = 1\}$ is called a *K*-related ray if its preimage $\psi^{-1}(\tilde{R})$ is a *P*-ray $R \in \mathcal{R}$, i.e., *R* has its limit set in K_f . The argument of \tilde{R} is said to be the argument of the ray $\psi^{-1}(\tilde{R})$. Let $A_K = \psi(W^* \setminus K_f)$ be an "annulus" with boundary curves $\psi(\partial W^*)$ and \mathbb{S} . Denote $\tilde{z}_k(\tilde{R}) = \psi(z_k(R))$. Note that $\tilde{z}_k(\tilde{R}) \in \psi(L_k) \cap \tilde{R}$ and the arc of the *R*-related ray \tilde{R} from $\tilde{z}_k(\tilde{R})$ to \mathbb{S} is contained in the "annulus" between $\psi(L_k)$ and \mathbb{S} . An arc of a *K*-related ray $\tilde{R} = \psi(R)$ from the point $\tilde{z}_0(\tilde{R}) = \psi(z_0(R)) \in \psi(L_0)$ to \mathbb{S} is called a *K*-related arc. Its argument is the argument of the corresponding ray. The following main lemma and its proof are minor adaptations of the ones of [LP96, Lemma 2.1]. Lemma 2.1.

- 1° Every K-related arc has a finite length, and hence converges to a unique point of S.
- 2° For every closed arc $I \subset S$ (in particular a point), the set K(I) of arguments of all K-related arcs converging to a point of I is a non-empty compact set.
- 3° The set of all K-related arcs in $\{z : 1 < |z| < 1 + \epsilon\}$ converging to a point z_0 lies in a Stolz angle

$$\{z: |\arg(z-z_0) - \arg z_0| \le \alpha\},\$$

where $\alpha \in (0, \pi/2)$ and ϵ do not depend on $z_0 \in \mathbb{S}$.

Proof. 1° Let $B_{*,k} = \sup\{u_P(z) : z \in L_k\}$. For every $k \ge 0$ there is a number C_k such that, for every ray $R \in \mathcal{R}$, the length of the arc R_k of Rbetween the points $z_k(R)$ and $z_{k+1}(R)$ is bounded by C_k . This is because the latter arc is an arc of a P-ray that joins two equipotentials of positive levels $B_{*,k}$, $b_{*,k}$. Denote $\tilde{L}_k = \psi(L_k)$. Then \tilde{L}_k is a compact subset of A_K which surrounds S. By the above, every K-related arc \tilde{R} splits into arcs $\tilde{R}_k = \psi(R_k), k \ge 0$, i.e., \tilde{R}_k is the arc of \tilde{R} joining $\tilde{z}_k(\tilde{R})$ and $\tilde{z}_{k+1}(\tilde{R})$. For every k, the supremum of the lengths over all arcs \tilde{R}_k of the K-related rays \tilde{R} is bounded by

$$\tilde{C}_k = C_k \sup\{|\psi'(z)| : z \in \overline{W}_1^* \setminus f^{-k-2}(W_1^*)\}.$$

Let $A_{1,K} = \psi(W_1^* \setminus K_f)$ and $g = \psi \circ f \circ \psi^{-1} : A_{1,K} \to A_K$. Then z tends to S if and only if g(z) tends to S. It is well-known (see e.g. [P86]) that g extends to an expanding holomorphic map in an annulus $U_0 = \{z : 1 - \rho_0 < |z| < 1 + \rho_0\}$ for some $\rho_0 > 0$. This means that after passing if necessary to an iterate of g (which we also denote g) we have

(1)
$$|(g^{-1})'(z)| < c < 1$$

for every $z \in U_0$ and for every branch g^{-1} such that $g^{-1}(z) \in U_0$.

Fix a set $L_m \subset U = A_K \cap U_0$ for some *m* large enough. Then, for each $n = 1, 2, \ldots, \tilde{L}_{n+m} = \{z \in U : g^n(z) \in \tilde{L}_{n+m}\}$. Denote by l_n the supremum of the lengths of \tilde{R}_{n+m} over all $R \in \mathcal{R}$. Note that each l_n is finite, because $l_n \leq \tilde{C}_{m+n}$. In fact, much more is true: as $g^n(\tilde{R}_{n+m})$ is \tilde{S}_m for some ray $S \in \mathcal{R}$, (1) yields $l_n < c^n l_0$. Given a K-related ray \tilde{R} , the length of its arc from the point $\tilde{z}_m(\tilde{R})$ to \mathbb{S} , which is in the component of $\mathbb{C} \setminus \tilde{\gamma}_0$ containing \mathbb{S} , is bounded from above by $\sum_{n=0}^{\infty} c^n l_0 < \infty$. Moreover, the same argument shows the following

CLAIM 1. The lengths of the arcs of K-related rays \tilde{R} between $\tilde{z}_k(\tilde{R})$ and \mathbb{S} tend uniformly to zero (exponentially in k).

2° Fix a closed non-degenerate arc $I \subset S$. There exists a K-related ray converging to a point of I. Indeed, otherwise no K-related ray ends in the arc $g^n(I)$, for any n. This is impossible because $g^n(I) = S$ for large n and the set of K-related rays is non-empty (for example, it contains images by ψ of P-rays landing at repelling periodic points of the polynomial-like map $f: W_1^* \to W^*$; for the existence of such P-rays, see [Mil0], [EL89], [LP96]). We need to show that the set K(I) of arguments of all K-related rays ending in I is closed.

This is an immediate consequence of the next claim which follows, basically, from Claim 1 and will also be useful later on. Given a K-related ray \tilde{R}_t of argument t (i.e., $t \in \Lambda$) consider its arc \hat{r}_t between \tilde{L}_0 and \mathbb{S} , parameterized as a curve $\tilde{r}_t : [b_{*,0}, 0] \to A_K \cup \mathbb{S}$ as follows. For any $b \in [b_{*,0}, 0)$, define the point $r_t(x) \in A_K$ to be such that $\psi^{-1}(r_t(x))$ is a point of a *P*-ray of argument t and equipotential level b. Finally, let $\tilde{r}_t(0) = \lim_{b\to 0} \tilde{r}_t(x) \in \mathbb{S}$ where the limit exists by 1°.

CLAIM 2. The family $\tilde{\mathcal{R}} = {\tilde{r}_t}_{t \in \Lambda}$ is a compact subset of $C[b_{*,0}, 0]$.

Let us first show that this family is equicontinuous. In view of Claim 1, this will follow from the equicontinuity of the restricted family $\tilde{\mathcal{R}}_m = \{\hat{r}_t : [b_{*,0}, b_{*,0}/D^m] \to A_K\}$ for each integer m > 1. Fix m and consider two objects: a compact set $E_m \subset \mathbb{C}$ bounded by the equipotential of levels $b_{*,0}$ and $b_{*,0}/D^m$ of P and a family \mathcal{R}_m of (closed) arcs in E_m of all P-rays that join the equipotential levels $b_{*,0}, b_{*,0}/D^m$ and are parameterized by the equipotential level $b \in [b_{*,0}, b_{*,0}/D^m]$. It is easy to see that this is a compact subset of $C[b_{*,0}, b_{*,0}/D^m]$ (indeed, map this family by a fixed high iterate of P to a family of smooth arcs of P-rays which are preimages of segments of standard rays by the Böttcher coordinate B_P at infinity; hence, this new family is compact; then pull it back). As $\mathcal{R}_m \subset C[b_{*,0}, b_{*,0}/D^m]$ is compact, it is equicontinuous. In turn, since ψ^{-1} is a homeomorphism on E_m (onto its image) and each $\psi^{-1}(\tilde{r}_t)$ is in \mathcal{R}_m , the family $\tilde{\mathcal{R}}_m$ is equicontinuous too. Thus $\tilde{\mathcal{R}}$ is an equicontinuous family.

It remains to prove that it is closed. So suppose a sequence \hat{r}_{t_n} converges uniformly in $[b_{*,0}, 0]$. In particular, \hat{r}_{t_n} crosses \tilde{L}_k for each k large enough. One can assume that t_n tends to some t. Then the sequence of arcs of P-rays $\psi^{-1} \circ \tilde{r}_{t_n}$, on the one hand, tends, uniformly on each interval $[b_{*,0}, b_{*,0}/D^m]$, to an arc r of a P-ray of argument t, on the other hand, crosses each L_k with k large. Hence, r has a limit point in K_f . Applying ψ we find that the limit of \tilde{r}_{t_n} is a K-related arc, which ends the proof of the claim.

This proves 2° when I is not a single point. By the intersection of compacta, 2° also holds if I is a point.

3° Every branch of g^{-n} is a well defined univalent function in every disc contained in U_0 . Hence, by the Koebe distortion theorem (see e.g. [Gol]), one

can choose $0 < \rho' < \rho_0$ such that for every

$$z \in U' = \{z : 1 - \rho' < |z| < 1 + \rho'\},\$$

every $n = 1, 2, \ldots$ and every branch g^{-n} ,

(2)
$$\left|\frac{(g^{-n})'(x)}{(g^{-n})'(y)}\right| < 2$$

whenever $|z - x| < \rho'$ and $|z - y| < \rho'$.

We reduce U' further as follows. By Claim 1, fix $m_0 > m$ such that the length of the arc of any K-related ray \tilde{R} between $\tilde{z}_{m_0}(\tilde{R})$ and S is less than ρ' . On the other hand, if z lies in an unbounded component of $R \setminus z_{m_0}(R)$, i.e., in the arc of R between $z_{m_0}(R)$ and ∞ , then $u_P(z) \ge b_{*,m_0}$, in particular, there is r > 0 independent of z and R as above such that the distance between z and J_P is at least r. Therefore, there exists some $\rho_1 \in (0, \rho')$ such that for every $z \in \{z : 1 < |z| < 1 + \rho_1\}$, if z belongs to a K-related ray \tilde{R} then z lies in an arc of \tilde{R} between $\tilde{z}_{m_0}(\tilde{R})$ and S. Let

$$U_1 = \{ z : 1 - \rho_1 < |z| < 1 + \rho_1 \}.$$

We introduce the following notations:

Given $x \in U_1$, denote by l_x the part of the K-related ray passing through x between x and S (if such a ray exists). This notation is correct: as already noted before, if another K-related ray passes through x and next ramifies from l_x , it goes to a component of $\psi(J(f))$, not to S. So it is not K-related.

Denote by h_x the interval which joins x and \mathbb{S} , orthogonal to \mathbb{S} . Denote by l(x) and h(x) the corresponding Euclidean lengths. Find a large enough N such that $\tilde{\gamma}_0 := \tilde{L}_N$ in U_1 . By the choice of U_1 ,

(3)
$$l(x) < \rho'$$
 for all x between $\tilde{\gamma}_0$ and S.

Let $\tilde{\gamma}_1 = g^{-1}(\tilde{\gamma}_0)$. There exists a positive β_0 less than 1 such that

(4)
$$\frac{h(x)}{l(x)} > \beta_0$$

for all points x in the annulus V between $\tilde{\gamma}_0$ and $\tilde{\gamma}_1$.

Fix the maximal $\epsilon_0 > 0$ such that

$$U_2 = \{z : 1 - \epsilon_0 < |z| < 1 + \epsilon_0\}$$

does not intersect $\tilde{\gamma}_1$. We intend to prove assertion 3° of our lemma with

$$\alpha = \arccos\left(\frac{\beta_0}{8L}\right)$$

where $L = \sup\{|g'(z)| : z \in U_0\}$ and with ϵ between 0 and ϵ_0 so small that $1 < |z| < 1 + \epsilon$ and $h(z)/|z - z_0| \ge 2 \cos \alpha$ implies $|\arg(z - z_0) - \arg z_0| \le \alpha$.

It is enough to prove that

(5)
$$\frac{h(x)}{l(x)} > \beta = \frac{\beta_0}{4L}$$

for all $x \in U_2$. Assume the contrary: there exists $x_* \in U_2$ that belongs to some K-related ray \tilde{R} with

(6)
$$h(x_*)/l(x_*) \le \beta.$$

Choose the minimal $n \ge 1$ such that $g^n(x_*) \in V$.

The lengths $h^{(i)}$ and $l^{(i)}$ of the curves $g^i(h_{x_*})$ and $g^i(l_{x_*})$ cannot exceed ρ' for all $i = 0, 1, \ldots, n$. This holds for $l^{(i)}$ by (3), because $g^i(x_*)$ is between $\tilde{\gamma}_0$ and S. We cope with $h^{(i)}$'s by induction: Length $(h^{(0)}) < \rho$ by the definition of U_1 . If it holds for all $i \leq j - 1$ then by (2),

$$\frac{h^{(j-1)}}{l^{(j-1)}} \le 4\beta = \beta_0/L.$$

Then

$$h^{(j)} \le Lh^{(j-1)} \le \beta_0 \cdot l^{(j-1)} < l^{(j-1)} < \rho'.$$

Now we use the assumption (6) and again apply (2) to obtain, for $z_* = g^n(x_*) \in \tilde{S}_N$,

$$\frac{h(z_*)}{l(z_*)} \le \frac{h^{(n)}}{l^{(n)}} \le 4\beta = \beta_0/L < \beta_0.$$

This contradicts (4). \blacksquare

COMMENT. The key bound (5) can also be seen directly from (4) (with, for instance, $\beta = \beta_0/10$) by applying, besides the Koebe distortion bound (2), another distortion bound: there is a function $\epsilon : (0,1) \to (0,+\infty)$, with $\epsilon(r) \to 0$ as $r \to 0$, such that for any univalent function φ on the unit disc, if $\varphi(0) = 0$ and $\varphi'(0) = 1$, then

$$\left|\log\frac{\varphi(z)}{z}\right| < \epsilon(|z|)$$

(see e.g. [Gol]). This bound is applied to the function

$$\varphi(z) = \frac{g^{-n}(w + \rho_0 z) - g^{-n}(w)}{(g^{-n})'(w)\rho_0}$$

where n is minimal such that $g^n(x) \in V$, and $w \in S$ is the projection of $g^n(x)$ to S and reducing ρ' . Note that $(g^{-n})'(w) > 0$ because g preserves S.

We continue as follows (cf. [ABC16, proof of Theorem 6.9]). Recall that a straightening $h : \mathbb{C} \to \mathbb{C}$ is a quasiconformal homeomorphism which is holomorphic at ∞ and $h'(\infty) \neq 0$. It conjugates the polynomial-like map f to the polynomial G near their filled Julia sets K_f and K_G . Let $B_G : A_G \to \mathbb{D}^*$ be the Böttcher coordinate of G such that $B_G(z)/z \to 1$ as $z \to \infty$, which is well defined in the basin of infinity $A_G = \mathbb{C} \setminus K_G$ as K_G is connected. We have the following picture:

(7)
$$\mathbb{D}^* \xrightarrow{\psi^{-1}} \mathbb{C} \setminus K_f \xrightarrow{h} \mathbb{C} \setminus K_G \xrightarrow{B_G} \mathbb{D}^*.$$

Consider the map $\Psi := \psi \circ h^{-1} \circ B_G^{-1} : \mathbb{D}^* \to \mathbb{D}^*$ from the uniformization plane of the polynomial G to the g-plane of K-related rays. It is a quasiconformal homeomorphism which is holomorphic at ∞ . For $u \in \mathbb{S}$, let $L_u = \Psi(r_u \cap \mathbb{D}^*)$ where $r_u = \{tu : t > 0\}$ is a standard ray in the uniformization plane of G (³).

LEMMA 2.2. The curve L_u converges non-tangentially to a unique point $z_0 = z_0(u)$ of the unit circle S. Moreover, there is $\beta \in (0, \pi/2)$ such that, for any $u \in S$ and all $z \in L_u$ close enough to S,

(8)
$$|\arg(z-z_0) - \arg z_0| \le \beta.$$

Here β depends only on the quasiconformal deformation of the straightening map h. Furthermore, for every $z_0 \in \mathbb{S}$ there exists a unique u such that L_u lands at z_0 .

Proof of Lemma 2.2 (cf. [ABC16, Section 6]). The map $\Psi : \mathbb{D}^* \to \mathbb{D}^*$ extends to a homeomorphism of the closures and then to a quasiconformal homeomorphism Ψ^* of \mathbb{C} by $\overline{\Psi^*(z)} = 1/\Psi^*(1/\overline{z})$ (see [Ahl]). Note that the quasiconformal deformations of Ψ and Ψ^* are the same, equal to the quasiconformal deformation M of the straightening map h. Consider the curve $L_u^* = \Psi^*(r_u)$. It is an extension of the curve L_u , which crosses \mathbb{S} at a point $z_0 = \Psi^*(u)$. As a quasiconformal image of a straight line, the curve L_u^* has the following property [Ahl]: there exists C = C(M) > 0 such that

$$|z - z_0|/|z - 1/\overline{z}| < C$$
 for every $z \in L_u^*$.

Therefore, L_u^* tends to z_0 non-tangentially; moreover, (8) holds for some $\beta = \beta(C(M))$. The last claim follows from the fact that Ψ^* is a homeomorphism.

Now, define the correspondence λ as follows (having in mind (7)). Let R be a P-ray to K_f . By Lemma 2.1, the K-related ray $\tilde{R} = \psi(R)$ tends to a point $z_0 \in \mathbb{S}$. By Lemma 2.2, there exists a unique L_u which tends to z_0 . The curve $\psi^{-1}(L_u) = h^{-1} \circ B_G^{-1}(\{tu : t > 1\})$ is a polynomial-like ray l_τ where $u = e^{2\pi i \tau}$. Let

$$\lambda(R) := \psi^{-1}(L_u).$$

The correspondence λ is "onto" by the first claim of Lemma 2.2 along with Lemma 2.1(2°).

Now, both curves \hat{R} , L_u in \mathbb{D}^* tend to the point $z_0 \in \mathbb{S}$ non-tangentially, by Lemmas 2.1 and 2.2 respectively. Then, by definition, the *P*-ray *R* and the

^{(&}lt;sup>3</sup>) Note that the curve L_u lies in the left-hand disc \mathbb{D}^* of (7) while the point u is at the boundary of the right-hand disc there.

polynomial-like ray $\lambda(R)$ converge to a single prime end of $K_{\mathbf{f}}$ non-tangentially, hence R and $\lambda(R)$ are also $K_{\mathbf{f}}$ -equivalent. Finally, the condition that R and $\lambda(R)$ are $K_{\mathbf{f}}$ -equivalent uniquely determines the polynomial-like ray $\lambda(R)$.

It remains to prove the "almost injectivity" of λ . This is a direct consequence of the one-to-one correspondence between K-related rays and curves L_u established above and the following claim whose proof is identical to the one of [ABC16, Theorem 6.8] (for completeness, we reproduce it below with obvious changes in notation). While passing from K-related rays to P-rays we use the fact that if a K-related ray is periodic, the corresponding P-ray converges to a periodic point of P which is either repelling or parabolic (by the Snail Lemma [Mil0], it cannot be irrationally indifferent).

LEMMA 2.3. Any point $w \in S$ is the landing point of precisely one K-related ray, except when one and only one of the following holds:

- (i) w is the landing point of exactly two K-related rays which are non-smooth and have a common smooth arc that goes to w;
- (ii) w is a landing point of at least two disjoint K-related rays, in which case w is a (pre)periodic point of g and some iterate gⁿ(w) belongs to a finite set Ŷ (depending only on K) of g|_S-periodic points each of which is the landing point of finitely many, but at least two, K-related rays, which are periodic of the same period depending merely on the landing point w (⁴).

Moreover, if w is periodic then (i) cannot hold.

Proof. Assume that there are two K-related rays landing at a point $w \in S$ and that (i) does not hold. We need to prove that then (ii) holds. Since (i) does not hold, there exist disjoint K-related rays landing at w. Let us study this case in detail.

Associate to any such pair of rays \hat{R}_t , $\hat{R}_{t'}$ an open arc $(\hat{R}_t, \hat{R}_{t'})$ of \mathbb{S} as follows. Two points of \mathbb{S}^1 with the arguments t, t' split \mathbb{S} into two arcs. Let $(\hat{R}_t, \hat{R}_{t'})$ be the one that contains no arguments of K-related rays except possibly for those that land at w. Geometrically, this means the following. The K-related rays $\hat{R}_t, \hat{R}_{t'}$ together with $w \in \mathbb{S}$ split the plane into two domains. The arc $(\hat{R}_t, \hat{R}_{t'})$ corresponds to one of them, disjoint from \mathbb{S} . Let $L(\hat{R}_t, \hat{R}_{t'}) = \delta$ be the angular length of $(\hat{R}_t, \hat{R}_{t'})$. Clearly, $0 < \delta < 1$. Now we make a few observations.

(1) If K-related disjoint rays of arguments t_1, t'_1 land at a common point w_1 while K-related disjoint rays of arguments t_2, t'_2 land at a point $w_2 \neq w_1$, then the arcs $(\hat{R}_{t_1}, \hat{R}_{t'_1}), (\hat{R}_{t_2}, \hat{R}_{t'_2})$ are disjoint.

 $^(^4)$ In [ABC16, Theorem 6.8(ii)], it is claimed erroneously that all K-related rays to the point w are smooth (cf. [PZ20]). Note that this claim is not relevant to the rest of [ABC16].

The above follows from the definition of the arc (\hat{R}_t, \hat{R}_t) .

(2) If disjoint K-related rays \hat{R}_t , $\hat{R}_{t'}$ of arguments t, t' land at a common point w, then the K-related rays $g(\hat{R}_t), g(\hat{R}_{t'})$ are also disjoint and land at the common point g(w). Moreover,

$$L(g(\hat{R}_t), g(\hat{R}_{t'})) \ge \min\{D\delta \pmod{1}, 1 - D\delta \pmod{1}\} > 0$$

Indeed, the images $g(\hat{R}_t), g(\hat{R}_{t'})$ are disjoint near g(w), because g is locally one-to-one. Hence, $g(\hat{R}_t) \cap g(\hat{R}_{t'}) = \emptyset$, because otherwise the corresponding P-rays would have their limit sets in different components of K_P , a contradiction since both rays $g(\hat{R}_t), g(\hat{R}_{t'})$ are K-related. Since the argument of $g(\hat{R}_t)$ is represented by the point $Dt \pmod{1} \in (0,1)$, we get the inequality of (2).

Let us consider the following set $\hat{Z}(K)$ of points in \mathbb{S} : $w \in \hat{Z}(K)$ if and only if there is a pair of disjoint K-related rays \hat{R}, \hat{R}' which both land at wand satisfy $L(\hat{R}, \hat{R}') \geq 1/(2D)$. Denote by $\hat{Y}(K)$ the set of periodic points which are in forward images of the points of $\hat{Z}(K)$.

(3) If the set $\hat{Z}(K)$ is non-empty, then it is finite, and consists of (pre)periodic points.

Indeed, $\hat{Z}(K)$ is finite by (1). Assume $w \in \hat{Z}(K)$. Then by (2) some iterate $g^n(w)$ must hit $\hat{Z}(K)$ again.

To complete the proof, choose disjoint K-related rays $\hat{R}_t, \hat{R}_{t'}$ landing at $w \in \mathbb{S}$ and use this to prove that all claims of (ii) hold.

We show that the orbit $w, g(w), \ldots$ cannot be infinite. Indeed, otherwise by (1)-(2), we have a sequence of non-degenerate pairwise disjoint arcs $(g^n(\hat{R}_t), g^n(\hat{R}_{t'})) \subset \mathbb{S}, n = 0, 1, \ldots$ By (2), some iterates of w must hit the finite set $\hat{Z}(K)$ and hence $\hat{Y}(K)$ (which are therefore non-empty), a contradiction.

Hence for some $0 \leq n < l$, $g^n(w) = g^l(w)$; let us verify that the other claims of (ii) hold. Replacing w by $g^n(w)$, we may assume that w is a (repelling) periodic point of g of period k = l - n. By (2), $w \in \hat{Y}(K)$. By [LP96, Theorem 1], the set of K-related rays landing at w is finite, and each K-related ray landing at w is periodic with the same period. Hence, (ii) holds. Finally, the last claim of the lemma follows because a periodic non-smooth ray must have infinitely many broken points, hence, no other ray can have a common arc with it that goes up to the Julia set; see [ABC16, Lemma 6.1] for details.

3. Proofs of Theorems 2–3

3.1. Theorem 2. Part (a) is an immediate corollary of Lemma 2.1 and Lindelöf's theorem, as in [LP96]. Indeed, since a curve $s \subset W \setminus K_{\mathbf{f}}$ converges

to a point $a \in K_{\mathbf{f}}$, the curve $\tilde{s} = \psi(s)$ converges to a point $z_0 \in \mathbb{S}$, and the limit of the function ψ^{-1} along the curve \tilde{s} exists and equals a. By Lemma 2.1, there is a K-related ray \tilde{R} that tends to z_0 , and it tends non-tangentially. Then, by [Pom, Corollary 2.17], the P-ray R converges to the same point a. By definition, the curves s, R are $K_{\mathbf{f}}$ -equivalent.

Let us prove part (b). The closed set $S \cup K_f$ is connected and so too is its complement (by the Maximum Principle). Consider the set $\hat{S} = \psi(S) \subset \mathbb{D}^*$. Let $I = \overline{\hat{S}} \setminus \hat{S}$. Then I is a connected closed subset of the unit circle \mathbb{S} .

Let us prove I is a single point. Otherwise there is an interior point $x \in I$ which is g-periodic. Let β be a K-related ray that lands at x. Notice that since x is an interior point of I, β must cross \hat{S} . Now, since x is g-periodic, $R = \psi^{-1}(\beta)$ is a periodic P-ray, hence it converges to a periodic point $a \in \overline{S} \setminus S$ of P and crosses S, a contradiction since $S \subset K_P$. This proves that I is a single point; denote it by z_0 .

Choose two sequences z'_n, z''_n of S tending to z_0 from the left and from the right respectively, and two sequences of K-related rays l'_n, l''_n so that l'_n lands at z'_n and l''_n lands at z''_n . Then, passing perhaps to subsequences, by Claim 2 in the proof of Lemma 2.1, the sequence l'_n tends to a K-related ray l' and l''_n tends to a K-related ray l'', where l' and l'' land at the same z_0 . By the above, l', l'' are disjoint.

Now we apply Lemma 2.3 to conclude that z_0 is g-(pre-)periodic, and some iterate of z_0 lies in a finite set $\hat{Y} \subset S$ of periodic points, which is independent of z_0 . Hence, the point a is P-(pre-)periodic, and some iterate of a lies in a finite set $Y \subset J_f$ of periodic points, which is independent of a. As every point of Y is a landing point of a periodic ray, it can be either repelling or parabolic.

3.2. Theorem 3. Proof of (b), (c): It follows from the definition of Λ that $\sigma_D(\Lambda) = \Lambda$ and $\sigma_m \circ p = p \circ \sigma_D$ on Λ . By invariance and since $\Lambda \neq \mathbb{T}$, the set Λ contains no intervals; (c) is a reformulation of a part of the statement of Theorem 1.

Proof of (a), (d): Considering Λ as a subset of $\mathbb{S} = \{|z| = 1\}$ define a new map $p_K : \Lambda \to \mathbb{S}$ as follows: for $\tau \in \Lambda$, let $p_K(\tau) \in \mathbb{S}$ be the landing point of a K-related ray of argument τ . Recall the map $\Psi = \psi \circ h^{-1} \circ B_G^{-1} : \mathbb{D}^* \to \mathbb{D}^*$ introduced in the proof of Theorem 1, and its quasi-conformal extension $\Psi^* : \mathbb{C} \to \mathbb{C}$. By Lemma 2.2 and the definition of the maps λ and p, we have

$$(9) p_K = \Psi^*|_{\mathbb{S}} \circ p$$

Since $\Psi^* : \mathbb{S} \to \mathbb{S}$ is an orientation preserving homeomorphism, it is enough to prove (a), (d) with p replaced by p_K . By Lemma 2(2°), $p_K^{-1}(I)$ is closed in \mathbb{S} for any closed arc $I \subset \mathbb{S}$. Therefore, $\Lambda = p_K^{-1}(\mathbb{S})$ is closed and the map $p_K : \Lambda \to \mathbb{S}$ is continuous. To show (d), define an extension $\tilde{p}_K : \mathbb{S} \to \mathbb{S}$ of $p_K: \Lambda \to \mathbb{S}$ in an obvious way as follows. Let $J := (t_1, t_2)$ be a component of $\mathbb{S} \setminus \Lambda$. Then $p_K(t_1) = p_K(t_2) =: w_J$ because otherwise there would be a point of \mathbb{S} with no K-related rays landing at it. Let $\tilde{p}_K(\tau) = w_J$ for all $\tau \in J$. Then $\tilde{p}_K: \mathbb{S} \to \mathbb{S}$ is continuous. Now, given $t \in \mathbb{S}$, the set $\tilde{p}_K^{-1}(\{t\})$ is either a singleton or a non-trivial closed arc. This follows from the definition of \tilde{p}_K and because K-related rays with different arguments do not intersect unless case (i) of Theorem 2.3 takes place. Therefore, $\tilde{p}_K: \mathbb{S} \to \mathbb{S}$ is monotone and of degree one.

Proof of (e): Let \tilde{h} be another straightening, $\tilde{\Psi} : \mathbb{D}^* \to \mathbb{D}^*$ the corresponding quasiconformal map and $\tilde{\Psi}^* : \mathbb{C} \to \mathbb{C}$ its quasiconformal extension. As $p_K : \mathbb{S} \to \mathbb{S}$ is independent of the straightening, by (9) we have $\tilde{p} = T|_{\mathbb{S}} \circ p$ where $T = (\tilde{\Psi}^*)^{-1} \circ \Psi^*$. On the other hand, on \mathbb{D}^* , $T = (B_G \circ \tilde{h}) \circ (B_G \circ h)^{-1}$, hence T commutes with $z \mapsto z^m$ for |z| > 1 near \mathbb{S} , by definitions of h, B_G . Therefore, the homeomorphism $\nu := T|_{\mathbb{S}} : \mathbb{S} \to \mathbb{S}$ commutes with $z \mapsto z^m$ on \mathbb{S} , too. It is then well known that $\nu(z) = vz$ for some $v \in \mathbb{C}$ with modulus 1 such that $v^m = v$ (proof: as $\nu(1)^m = \nu(1)$ let $v = \nu(1)$, so that a homeomorphism $\nu_0 = v^{-1}\nu : \mathbb{S} \to \mathbb{S}$ commutes with $z \mapsto z^m$ too and $\nu_0(1) = 1$; then there is a lift $\tilde{\nu}_0 : \mathbb{R} \to \mathbb{R}$ of ν_0 such that $\tilde{\nu}_0(0) = 0$, $\tilde{\nu}_0 - 1$ is 1-periodic and $\tilde{\nu}_0(mx) = m\tilde{\nu}_0(x)$ for all $x \in \mathbb{R}$, which in turn implies $\tilde{\nu}_0(n/m^k) = n/m^k$ for all $n, k \in \mathbb{Z}_{>0}$; by continuity, $\tilde{\nu}_0(x) = x$ for all x).

Acknowledgments. In [Le12], we answered, under an extra assumption, a question posed by Alexander Blokh to the author whether an accessible point of the filled Julia set K_f of a renormalization f of P by some curve outside of K_f is always accessible by an external ray of P (i.e., by a curve outside of the filled Julia set K_P). Theorem 2(a) strengthens this result of [Le12], under a weaker assumption (p2). Theorem 3 was added following a recent work [PZ19] which also served as an inspiration for writing up this paper. Finally, we would like to thank Feliks Przytycki for a helpful discussion and the referee for comments that helped to improve the exposition.

References

- [Ahl] L. Ahlfors, *Lectures on Quasiconformal Mappings*, Van Nostrand, Princeton, 1966.
- [ABC16] A. Blokh, D. Childers, G. Levin, L. Oversteegen and D. Schleicher, An extended Fatou-Shishikura inequality and wandering branch continua for polynomials, Adv. Math. 228 (2016) 1121–1174.
- [CG] L. Carleson and Th. W. Gamelin, *Complex Dynamics*, Springer, 1993.
- [DH1] A. Douady and J. H. Hubbard, Exploring the Mandelbrot Set. The Orsay Notes, 1983–1984, preprint.
- [DH2] A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), 287–343.

- [EL89] A. Eremenko and G. Levin, Periodic points of polynomials, Ukrainian Math. J. 41 (1989), 1258–1262.
- [Gol] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable., Transl. Math. Monogr. 26, Amer. Math. Soc., 1969.
- [Inou] H. Inou, Renormalization and rigidity of polynomials of higher degree, J. Math. Kyoto Univ. 42 (2002), 351–392.
- [LS91] G. Levin and M. L. Sodin, Polynomials with disconnected Julia sets and Green maps, preprint 23/1990-91, Landau Center for Research in Mathematical Analysis, Inst. Math., The Hebrew Univ. of Jerusalem, 1991; https://www.researchgate.net/publication/317411781.
- [Le12] G. Levin, *Rays to renormalizations*, manuscript, 2012.
- [LP96] G. Levin and F. Przytycki, External rays to periodic points, Israel J. Math. 94 (1996), 29–57.
- [McM] C. McMullen, Complex Dynamics and Renormalization, Ann. of Math. Stud. 135, Princeton Univ. Press, 1994.
- [Mil0] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, Springer, 2000.
- [Mil1] J. Milnor, Local connectivity of Julia sets: expository lectures, arXiv:math/9207220 (1992).
- [PZ19] C. Petersen and S. Zakeri, On the correspondence of external rays under renormalization, arXiv:1903.00800 (2019).
- [PZ20] C. Petersen and S. Zakeri, Periodic points and smooth rays, arXiv:2009.02788 (2020).
- [Pict] http://people.math.harvard.edu/~ctm/gallery/julia/feig.html.
- [Pom] Ch. Pommerenke, Boundary Behavior of Conformal Maps, Springer, 1992.
- [P86] F. Przytycki, Riemann map and holomorphic dynamics, Invent. Math. 85 (1986), 439–455.

Genadi Levin

Institute of Mathematics

The Hebrew University of Jerusalem

Givat Ram, Jerusalem, 91904, Israel

ORCID: 0000-0003-0763-4711

E-mail: genady.levin@mail.huji.ac.il