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Summary. Let KP be the filled Julia set of a polynomial P , and Kf the filled Julia set of
a renormalization f of P . We show, loosely speaking, that there is a finite-to-one function
λ from the set of P -external rays having limit points in Kf onto the set of f -external rays
to Kf such that R and λ(R) share the same limit set. In particular, if a point of the Julia
set Jf = ∂Kf of a renormalization is accessible from C \Kf then it is accessible through
an external ray of P (the converse is obvious). Another interesting corollary is that a
component of KP \Kf can meet Kf only in a single (pre-)periodic point. We also study
a correspondence induced by λ on arguments of rays. These results are generalizations to
all polynomials (covering notably the case of connected Julia set KP ) of some results of
Levin and Przytycki (1996), Blokh et al. (2016) and Petersen and Zakeri (2019) where it
is assumed that KP is disconnected and Kf is a periodic component of KP .

1. Introduction

1.1. Polynomial external rays. Let Q : C→ C be a non-linear poly-
nomial considered as a dynamical system. Conjugating Q if necessary by a
linear transformation, one can assume without loss of generality that Q is
monic centered, i.e., Q(z) = zdeg(Q) + azdeg(Q)−2 + · · · .

We briefly recall the necessary definitions (see e.g. [DH1], [CG], [Mil0],
[LS91] for details). The filled Julia set KQ of Q is the complement C\AQ to
the basin of infinity AQ = {z : Qn(z) → ∞ as n → ∞}, and JQ = ∂AQ =
∂KQ is the Julia set (here and below Qn(z) is the image of z by the n-iterate
Qn of Q for n non-negative and the full preimage of z by Q|n| for n negative).

Let uQ : AQ → R+ be Green’s function in AQ such that uQ(z) ∼ log |z|+
o(1) as z →∞. For all z in some neighborhoodW of∞, uQ(z) = log |BQ(z)|
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where BQ is the Böttcher coordinate ofQ at∞, i.e., a univalent function from
W onto {w : |w| > R}, for some R > 1, such that BQ(Q(z)) = BQ(z)degQ

for z ∈W and BQ(z)/z → 1 as z →∞.
An equipotential of Q of level b > 0 is the level set {z : uQ(z) = b}.

Alternatively, the equipotential containing a point z ∈ AQ is the closure
of the union

⋃
n>0Q

−n(Qn(z)) and uQ(z) = limn→∞(deg(Q))−n log |Qn(z)|
is the level of this equipotential where b = uQ(z) is called the Q-level of
z ∈ AQ. Note that uQ(Q(z)) = (degQ)uQ(z) for all z ∈ AQ.

The gradient flow for Green’s function (potential) uQ equipped with di-
rection from∞ to JQ defines Q-external rays. More specifically, the gradient
flow has singularities precisely at the critical points of uQ which are preim-
ages by Qn, n = 0, 1, . . . , of critical points of Q that lie in the basin of
infinity AQ. If a trajectory R of the flow that starts at ∞ does not meet a
critical point of uQ, it extends as a smooth (analytic) curve, external ray R,
up to JQ. If R does meet a critical point of uQ, one should consider instead
two corresponding (non-smooth) left and right external rays as left and right
limits of smooth external rays tending to R (for a visualization of such rays,
see e.g., Figures 1(a-b) of [LP96] or images in [PZ19]–[PZ20]; to get an im-
pression about the geometry of the Julia set of renormalizable polynomials,
see e.g. the computer images of [Pict]). Each external ray R is parameterized
by the level of equipotential b ∈ (+∞, 0).

The argument τ ∈ T := R/Z of an external ray R is the argument of
the curve R asymptotically at ∞. Informally, τ is the argument at which
R crosses the “circle at infinity”. The correspondence between external rays
and their arguments is one-to-one on smooth rays and two-to-one on non-
smooth ones. If R is a Q-external ray of argument τ then Q(R) is also a ray
of argument σdeg(Q)(τ) where σk(t) = tk (mod 1). Note that, for any b large
enough, BQ maps the equiponential of level b onto the round circle {|w| = eb}
and arcs of external rays from this equipotential to ∞ onto standard rays
that are orthogonal to this circle. Finally, KQ is connected if and only if BQ
extends as a univalent function to the basin of infinity AQ, if and only if all
external rays of Q are smooth.

Let S = {|z| = 1} be the unit circle which we identify—when this is not
confusing—with T via the exponential T 3 t 7→ exp(2πit) ∈ S.

1.2. Polynomial-like maps and renormalization. Let us recall [DH2]
that a triple (W,W1, f) is a polynomial-like map if W,W1 are topological
discs, W1 ⊂ W and f : W1 → W is a proper holomorphic map of some
degree m ≥ 2. The set of non-escaping points Kf =

⋂∞
n=1 f

−n(W ) is called
the filled Julia set of (W,W1, f). By the Straightening Theorem [DH2], there
exists a monic centered polynomial G of degree m which is hybrid equivalent
to f , i.e., there is a quasiconformal homeomorphism h : C → C which is
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conformal a.e. on Kf , such that G ◦ h = h ◦ f near Kf . The map h is called
a straightening. This implies in particular that Kf is the set of limit points
of
⋃
n≥0 f

−n(z) for any z ∈W with, perhaps, at most one exception.
We say that another polynomial-like map (W̃ , W̃1, f̃) of the same de-

gree m is equivalent to (W,W1, f) if there is a component E of W ∩ W̃ such
that Kf ⊂ E and f = f̃ in a neighborhood of Kf . Taking a point z as above
close to Jf = ∂Kf , it follows (cf. [McM, Theorem 5.11]) that Kf = Kf̃ and
that this is indeed an equivalence relation for polynomial-like maps. Denote
by f the equivalence class of the polynomial-like map (W,W1, f), by Kf , Jf
the corresponding filled Julia set and Julia set of (any representative of) f ,
and by f the restriction to a neighborhood of Kf of an f -representative (i.e.,
for any two representatives (W (i),W

(i)
1 , fi), i = 1, 2, we have f1 = f2 = f in

a neighborhood of Kf ).
From now on, let us fix a monic centered polynomial P : C→ C of degree

d > 1.
We say that f is a renormalization of P (cf. [McM], [Inou]) if f is an

equivalence class of polynomial-like maps such that Kf is a connected proper
subset of KP and, for some r ≥ 1, f = P r in a neighborhood of Kf .

1.3. Assumptions. Suppose that

(p1) f is a renormalization of P .

To avoid a situation when an external ray of P can have a limit point in Jf
as well as a limit point off Jf , we introduce another condition:

(p2) There exists a representative (W ∗,W ∗1 , f) of the renormalization f of P
and some b∗ > 0 as follows. If z ∈ ∂W ∗1 belongs to an external ray of P
which has a limit point in Kf then the P -level of z is at least b∗, i.e.,
uP (z) ≥ b∗.

Let us stress that external rays of P as in (p2) can cross the boundaries
of W ∗, W ∗1 many times (or e.g. have joint arcs with the boundaries).

This condition holds if W ∗ is obtained by the following frequently used
construction that we only indicate here; see [Mil1], [McM], [Inou] for details.
In the first step, a simply connected domainW0 is built using an appropriate
Yoccoz puzzle so that ∂W0 = Lhor∪Lvert∪F where Lhor is a union of finitely
many arcs of a fixed equipotential of P , Lvert is a union of finitely many arcs
of external rays of P between ends of arcs of Lhor, and F is a finite set of
repelling periodic points of JP or/and their preimages such thatKf ⊂W0∪F
and f : f−1(W0) → W0 is a branched covering. By the construction, every
external ray of P to Jf \F must cross the “horizontal” part Lhor so that (p2)
is obviously satisfied for the set of those rays. If either Lvert = F = ∅ (as
in Example 1 that follows) or F ∩Kf = ∅, one can take W ∗ = W0 so that



136 G. Levin

(p2) holds forW ∗1 = f−1(W ∗). If F ⊂ Jf , thenW0 \f−1(W0) is a degenerate
annulus. Then, in the second step, W ∗ is modified from W0 by “thickening”
[Mil1, p. 12] around points of the set F , which adds only finitely many rays
(tending to F ). Then (p2) holds for W ∗1 = f−1(W ∗) as well.

Example 1. Assume that the Julia set of the polynomial P is discon-
nected and K is a component of KP different from a point. In this case
K = Kf for some renormalization f of P and conditions (p1)–(p2) are ful-
filled. The boundary of W ∗ (hence of W ∗1 , too) can be chosen to be merely
a component of an equipotential that encloses K. With such a choice, each
intersection point of an external ray of P with ∂W ∗ has a fixed level so every
external ray can cross the boundaries of W ∗ and W ∗1 at most once.

Our goal is to study a correspondence between external rays of P that
have limit points in Jf , on the one hand, and external, or polynomial-like
rays of the renormalization f , on the other (up to a change of straightening,
see below). In the case of disconnected Julia set JP and the renormalization f
as in Example 1 this has been done in [LP96], [ABC16, Sect. 6], and [PZ19].

1.4. Polynomial-like rays. For a curve α : [0, 1) → C̄, the limit (or
principal, or accumulation) set of α is Pr(α) = α \ α.

Let us define external rays of the renormalization f . By [DH2], since
Kf is connected, the monic centered polynomial G of degree m which is
hybrid equivalent to any representative of f is uniquely defined by f . Let h
be a straightening of f . By this we mean a quasiconformal homeomorphism
C → C which is conformal a.e. on Kf and satisfies G ◦ h = h ◦ f on some
neighborhood of Kf . One can also assume that h is conformal at ∞ such
that h′(∞) 6= 0.

As the filled Julia setKG is connected, given t ∈ T there is a unique exter-
nal ray of G of argument t, denoted by Rt,G. Its h−1-image lht := h−1(Rt,G)
is called the polynomial-like ray to Kf of argument t. As h : C → C is
a homeomorphism, Pr(lht ) = h−1(Pr(Rt,G)). Note that the straightening h
is not unique. However, the polynomial G is unique, and if h̃ is another
straightening, although h̃ defines another system of polynomial-like rays, the
homeomorphism h̃−1 ◦ h : C→ C maps lht onto lh̃t and Pr(lht ) onto Pr(lh̃t )).

In what follows we fix a straightening map h : C→ C (see Theorem 3(e)
and its proof though). Then the set {lt} of polynomial-like rays is fixed,
too (where we omit h in lht as h is fixed). For brevity, P -external rays are
called P -rays, or just rays, and polynomial-like rays to Kf are f -rays, or
polynomial-like rays.

1.5. Main results. Given a connected compact set K ⊂ C which is dif-
ferent from a point, we say that a curve γ : [0, 1)→ Ω := C\K converges to a
prime end P̂ of K if, for a conformal homeomorphism ψ : C\K → {|z| > 1},
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the curve ψ ◦ γ : [0, 1) → {|z| > 1} converges to a single point P ∈ S; we
say that γ converges to the prime end P̂ non-tangentially if moreover ψ ◦ γ
converges to the point P non-tangentially, i.e., the set ψ ◦ γ((1 − ε, 1)) lies
inside a sector (Stolz angle) {z : |arg(z − P ) − argP | ≤ α} for some ε > 0
and α ∈ (0, π/2). Furthermore, we say that two curves γ1, γ2 : [0, 1) → Ω
are K-equivalent if they both converge to the same prime end and moreover
have the same limit sets Pr(γ1) = Pr(γ2) in ∂K (1). By Lindelöf’s theorem
(see e.g. [Pom, Theorem 2.16]), if two curves converge to the same prime end
non-tangentially, they share the same limit set. Therefore, if γ1, γ2 converge to
the same prime end of K non-tangentially, then γ1, γ2 are also K-equivalent.

The following statement was proved in [ABC16] (2) in the set up of
Example 1.

Theorem 1 (cf. [ABC16, Theorem 6.9]). Assume (p1)–(p2) hold. For
each P -ray R that has an accumulation point in Kf we have Pr(R) ⊂ Jf
and there is a unique polynomial-like ray l = λ(R) such that the curves l,
R are Kf -equivalent. Moreover, l, R converge to a single prime end of Kf

non-tangentially. Furthermore, λ : R 7→ l maps the set of P-rays to Kf onto
the set of polynomial-like rays, and is “almost injective”: λ is one-to-one
except when one and only one of the following (i)–(ii) holds. Suppose that
λ−1(`) = {R1, . . . , Rk} with k > 1.

(i) k = 2 and both rays R1, R2 are non-smooth and share a common arc
starting at a critical point of Green’s function uP to Jf , or

(ii) there is z ∈ Jf such that Pr(Ri) = {z}, i = 1, . . . , k, at least two of the
rays R1, . . . , Rk are disjoint, and, for some n ≥ 0, P rn(z) ∈ Y where
Y ⊂ Jf is a finite collection of repelling or parabolic periodic points of
P that depends merely on Kf .

If KP is connected then (i) is not possible.

Note that in case (ii) any two disjoint P -rays completed by the joint limit
point z split the plane into two domains such that one of them contains
Kf \ {z}, and the other one, points from KP \ Kf . In particular, if KP is
connected, the second domain must contain a component of KP \ Kf that
goes all the way to a pre-periodic point z ∈ Jf . In fact, this is “if and only
if”: see Theorem 2(b) below.

For an illustration, see e.g. pictures in [McM, p. 116, explained in Ex-
ample IV, p. 115] of a “dragon” filled Julia set of a quadratic polynomial P
admitting three renormalizations; the maps λ corresponding to theses renor-
malizations are one-to-one except at countably many polynomial-like rays

(1) One can show that if γ1 converges to a single point a ∈ ∂K, then γ2 isK-equivalent
to γ1 if and only if γ1, γ2 are homotopic through a family of curves in Ω converging to a.

(2) In [ABC16], a different terminology is used.
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where λ is 6-to-1 in the top picture, 2-to-1 in the left bottom and 3-to-1 in
the right bottom. In all three cases, the landing points of rays where λ is not
one-to-one are (pre-)periodic to a fixed point of P where six P -rays land.

The next two theorems are consequences of the proof of Theorem 1.

Theorem 2. Assume (p1)–(p2).

(a) If a point a ∈ Jf is accessible along a curve s in C \Kf , then a is the
landing point of a P -ray R; moreover the curves s, R are Kf -equivalent.

(b) There exists a finite set Y ⊂ Jf of repelling or parabolic periodic points
of f , as follows. Let S be a component of KP \Kf such that (S \S)∩Jf
6= ∅. Then S \ S is a single point b ∈ Jf , and moreover fn(b) ∈ Y for
some n ≥ 0.

Note that part (a) is in fact an easy corollary of Lemma 2.1 similar to
a result of [LP96]. Part (b) is void if (and only if) Kf is itself a component
of KP .

For the next statement, we introduce the following notations. Let Λ ⊂ T
be the set of arguments of all P -rays that have their limit points in Jf .
Observe that by Theorem 1 the whole limit sets of such rays are in Jf and,
given τ ∈ Λ, there is a unique P -ray, denoted by Rτ,P , which has its limit
set in Jf . Indeed, this is obvious if the P -ray of argument τ is smooth. On
the other hand, if there are two P -rays, left and right, of argument τ , only
one of them can have its limit point in Jf because the other one must go
to another component of KP . Now, the map λ of Theorem 1 induces a map
p : Λ→ T such that for all τ ∈ Λ,

λ(Rτ,P ) = lp(τ).

By Theorem 1, Pr(lp(τ)) = Pr(Rτ,P ), and moreover Rτ,P , lp(τ) are Kf -equiv-
alent.

Given a positive integer k, let σk : T → T, σk(t) = kt (mod 1). Recall
that deg(f) = m. Let D := deg(P r) = dr.

Theorem 3 (cf. [PZ19]).

(a) Λ is a compact nowhere dense subset of T which is invariant under σD.
(b) σm ◦ p = p ◦ σD on Λ.
(c) The map p : Λ→ T is surjective and finite-to-one, and moreover “almost

injective” as defined in Theorem 1.
(d) p : Λ→ T extends to a continuous monotone degree one map p̃ : T→ T.
(e) The map p is unique in the following sense: if p̃ : Λ→ T corresponds to

another straightening h̃, then p̃(t) = p(t) + k/(m− 1) (mod 1) for some
k = 0, 1, . . . ,m− 1.

In the set up of Example 1, i.e., when KP is disconnected and Kf is a
periodic component of KP , Theorem 3 was proved in [PZ19] (by a different
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method), with part (c) replaced by an explicit bound for the cardinality of
fibers of the map p as well as with an extra statement about the Hausdorff
dimension of the set Λ.

A detailed proof of the main Theorem 1 is given in Sect. 2 and the
proofs of Theorems 2–3 are in Sect. 3. The proof of Theorem 1 follows rather
closely the proofs of [LP96, Lemma 2.1] and [ABC16, Theorems 6.8–6.9]. An
essential difference is that we have to adapt the proofs to the situation that
external rays of P can cross the boundary of W ∗1 as in (p2) many times.

2. Proof of Theorem 1. Let f : W ∗1 →W ∗ be a representative of f as
in (p2). As Kf is connected, all the critical points of f are in Kf . Hence, for
each k, fk : f−k(W ∗1 \Kf )→ W ∗1 \Kf is an unbranched (degree mk) map.
Therefore, Lk := f−k(∂W ∗1 ) is the boundary of a simply connected domain
f−k(W ∗1 ).

Let R denote the set of all P -rays R such that R has a limit point in Jf .
First, we show that all limit points of R ∈ R are in Jf , introducing some
notations along the way. Let

b∗,k = inf{uP (z) : z ∈ R ∩ Lk, R ∈ R}.

By (p2), b∗,0 > 0. As R ∈ R implies P r(R) ∈ R, we have b∗,k ≥ b∗,0/D
k,

hence b∗,k > 0, for all k. Let R ∈ R and k ≥ 0. Since R ∩ Lk is a closed
set and b∗,k > 0, there exists a unique point zk(R) ∈ R ∩ Lk such that
uP (zk(R)) = inf{uP (z) : z ∈ R ∩ Lk}. Observe that the arc Γk,R of R from
zk(R) down to JP lies entirely in f−k(W ∗1 ). As

⋂
k≥0 f

−k(W ∗1 ) = Kf , we see
immediately that the limit set of R, which is

⋂
k≥0 Γk,R, is a subset of Jf .

Before proceeding with more notations and the main lemma, let us note
that b∗,k = b∗,0/D

k, k = 1, 2, . . . . Indeed, as fk : f−k(W ∗1 \Kf )→W ∗1 \Kf

is an unbranched covering, each component of f−k(R) is an arc of some ray
from R. This implies that b∗,k ≤ b∗,0/D

k. The opposite inequality was seen
before.

Now, choose a conformal isomorphism ψ fromC\Kf ontoD∗ = {|z| > 1}
such that ψ(z)/z → e as z → ∞, for some e > 0. A curve R̃ in D∗ with
limit set in S = {|z| = 1} is called a K-related ray if its preimage ψ−1(R̃) is
a P -ray R ∈ R, i.e., R has its limit set in Kf . The argument of R̃ is said to
be the argument of the ray ψ−1(R̃). Let AK = ψ(W ∗ \Kf ) be an “annulus”
with boundary curves ψ(∂W ∗) and S. Denote z̃k(R̃) = ψ(zk(R). Note that
z̃k(R̃) ∈ ψ(Lk) ∩ R̃ and the arc of the R-related ray R̃ from z̃k(R̃) to S is
contained in the “annulus” between ψ(Lk) and S. An arc of a K-related ray
R̃ = ψ(R) from the point z̃0(R̃) = ψ(z0(R)) ∈ ψ(L0) to S is called aK-related
arc. Its argument is the argument of the corresponding ray. The followingmain
lemma and its proof are minor adaptations of the ones of [LP96, Lemma 2.1].
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Lemma 2.1.

1o Every K-related arc has a finite length, and hence converges to a unique
point of S.

2o For every closed arc I ⊂ S (in particular a point), the set K(I) of ar-
guments of all K-related arcs converging to a point of I is a non-empty
compact set.

3o The set of all K-related arcs in {z : 1 < |z| < 1+ ε} converging to a point
z0 lies in a Stolz angle

{z : |arg(z − z0)− arg z0| ≤ α},

where α ∈ (0, π/2) and ε do not depend on z0 ∈ S.

Proof. 1o Let B∗,k = sup{uP (z) : z ∈ Lk}. For every k ≥ 0 there is a
number Ck such that, for every ray R ∈ R, the length of the arc Rk of R
between the points zk(R) and zk+1(R) is bounded by Ck. This is because
the latter arc is an arc of a P -ray that joins two equipotentials of positive
levels B∗,k, b∗,k. Denote L̃k = ψ(Lk). Then L̃k is a compact subset of AK
which surrounds S. By the above, every K-related arc R̃ splits into arcs
R̃k = ψ(Rk), k ≥ 0, i.e., R̃k is the arc of R̃ joining z̃k(R̃) and z̃k+1(R̃).
For every k, the supremum of the lengths over all arcs R̃k of the K-related
rays R̃ is bounded by

C̃k = Ck sup{|ψ′(z)| : z ∈W ∗1 \ f−k−2(W ∗1 )}.

Let A1,K = ψ(W ∗1 \ Kf ) and g = ψ ◦ f ◦ ψ−1 : A1,K → AK . Then z
tends to S if and only if g(z) tends to S. It is well-known (see e.g. [P86])
that g extends to an expanding holomorphic map in an annulus U0 = {z :
1 − ρ0 < |z| < 1 + ρ0} for some ρ0 > 0. This means that after passing if
necessary to an iterate of g (which we also denote g) we have

(1) |(g−1)′(z)| < c < 1

for every z ∈ U0 and for every branch g−1 such that g−1(z) ∈ U0.
Fix a set L̃m ⊂ U = AK ∩ U0 for some m large enough. Then, for each

n = 1, 2, . . . , L̃n+m = {z ∈ U : gn(z) ∈ L̃n+m}. Denote by ln the supremum
of the lengths of R̃n+m over all R ∈ R. Note that each ln is finite, because
ln ≤ C̃m+n. In fact, much more is true: as gn(R̃n+m) is S̃m for some ray
S ∈ R, (1) yields ln < cnl0. Given a K-related ray R̃, the length of its arc
from the point z̃m(R̃) to S, which is in the component of C\ γ̃0 containing S,
is bounded from above by

∑∞
n=0 c

nl0 < ∞. Moreover, the same argument
shows the following

Claim 1. The lengths of the arcs of K-related rays R̃ between z̃k(R̃) and
S tend uniformly to zero (exponentially in k).
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2o Fix a closed non-degenerate arc I ⊂ S. There exists a K-related ray
converging to a point of I. Indeed, otherwise no K-related ray ends in the
arc gn(I), for any n. This is impossible because gn(I) = S for large n and
the set of K-related rays is non-empty (for example, it contains images by ψ
of P -rays landing at repelling periodic points of the polynomial-like map
f : W ∗1 → W ∗; for the existence of such P -rays, see [Mil0], [EL89], [LP96]).
We need to show that the set K(I) of arguments of all K-related rays ending
in I is closed.

This is an immediate consequence of the next claim which follows, basi-
cally, from Claim 1 and will also be useful later on. Given a K-related ray R̃t
of argument t (i.e., t ∈ Λ) consider its arc r̂t between L̃0 and S, parameter-
ized as a curve r̃t : [b∗,0, 0]→ AK ∪ S as follows. For any b ∈ [b∗,0, 0), define
the point rt(x) ∈ AK to be such that ψ−1(rt(x)) is a point of a P -ray of
argument t and equipotential level b. Finally, let r̃t(0) = limb→0 r̃t(x) ∈ S
where the limit exists by 1o.

Claim 2. The family R̃ = {r̃t}t∈Λ is a compact subset of C[b∗,0, 0].

Let us first show that this family is equicontinuous. In view of Claim 1,
this will follow from the equicontinuity of the restricted family R̃m = {r̂t :
[b∗,0, b∗,0/D

m] → AK} for each integer m > 1. Fix m and consider two
objects: a compact set Em ⊂ C bounded by the equipotential of levels b∗,0
and b∗,0/D

m of P and a family Rm of (closed) arcs in Em of all P -rays
that join the equipotential levels b∗,0, b∗,0/Dm and are parameterized by the
equipotential level b ∈ [b∗,0, b∗,0/D

m]. It is easy to see that this is a compact
subset of C[b∗,0, b∗,0/D

m] (indeed, map this family by a fixed high iterate
of P to a family of smooth arcs of P -rays which are preimages of segments
of standard rays by the Böttcher coordinate BP at infinity; hence, this new
family is compact; then pull it back). As Rm ⊂ C[b∗,0, b∗,0/D

m] is compact,
it is equicontinuous. In turn, since ψ−1 is a homeomorphism on Em (onto
its image) and each ψ−1(r̃t) is in Rm, the family R̃m is equicontinuous too.
Thus R̃ is an equicontinuous family.

It remains to prove that it is closed. So suppose a sequence r̂tn converges
uniformly in [b∗,0, 0]. In particular, r̂tn crosses L̃k for each k large enough.
One can assume that tn tends to some t. Then the sequence of arcs of P -rays
ψ−1 ◦ r̃tn , on the one hand, tends, uniformly on each interval [b∗,0, b∗,0/D

m],
to an arc r of a P -ray of argument t, on the other hand, crosses each Lk
with k large. Hence, r has a limit point in Kf . Applying ψ we find that the
limit of r̃tn is a K-related arc, which ends the proof of the claim.

This proves 2o when I is not a single point. By the intersection of com-
pacta, 2o also holds if I is a point.

3o Every branch of g−n is a well defined univalent function in every disc
contained in U0. Hence, by the Koebe distortion theorem (see e.g. [Gol]), one
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can choose 0 < ρ′ < ρ0 such that for every

z ∈ U ′ = {z : 1− ρ′ < |z| < 1 + ρ′},

every n = 1, 2, . . . and every branch g−n,

(2)
∣∣∣∣(g−n)′(x)

(g−n)′(y)

∣∣∣∣ < 2

whenever |z − x| < ρ′ and |z − y| < ρ′.
We reduce U ′ further as follows. By Claim 1, fix m0 > m such that the

length of the arc of anyK-related ray R̃ between z̃m0(R̃) and S is less than ρ′.
On the other hand, if z lies in an unbounded component of R\zm0(R), i.e., in
the arc of R between zm0(R) and∞, then uP (z) ≥ b∗,m0 , in particular, there
is r > 0 independent of z and R as above such that the distance between z
and JP is at least r. Therefore, there exists some ρ1 ∈ (0, ρ′) such that for
every z ∈ {z : 1 < |z| < 1 + ρ1}, if z belongs to a K-related ray R̃ then z
lies in an arc of R̃ between z̃m0(R̃) and S. Let

U1 = {z : 1− ρ1 < |z| < 1 + ρ1}.

We introduce the following notations:
Given x ∈ U1, denote by lx the part of theK-related ray passing through x

between x and S (if such a ray exists). This notation is correct: as already
noted before, if another K-related ray passes through x and next ramifies
from lx, it goes to a component of ψ(J(f)), not to S. So it is not K-related.

Denote by hx the interval which joins x and S, orthogonal to S. Denote
by l(x) and h(x) the corresponding Euclidean lengths. Find a large enough
N such that γ̃0 := L̃N in U1. By the choice of U1,

(3) l(x) < ρ′ for all x between γ̃0 and S.

Let γ̃1 = g−1(γ̃0). There exists a positive β0 less than 1 such that

(4)
h(x)

l(x)
> β0

for all points x in the annulus V between γ̃0 and γ̃1.
Fix the maximal ε0 > 0 such that

U2 = {z : 1− ε0 < |z| < 1 + ε0}

does not intersect γ̃1. We intend to prove assertion 3o of our lemma with

α = arccos

(
β0
8L

)
where L = sup{|g′(z)| : z ∈ U0} and with ε between 0 and ε0 so small that
1 < |z| < 1 + ε and h(z)/|z− z0| ≥ 2 cosα implies |arg(z− z0)− arg z0| ≤ α.
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It is enough to prove that

(5)
h(x)

l(x)
> β =

β0
4L

for all x ∈ U2. Assume the contrary: there exists x∗ ∈ U2 that belongs to
some K-related ray R̃ with
(6) h(x∗)/l(x∗) ≤ β.
Choose the minimal n ≥ 1 such that gn(x∗) ∈ V .

The lengths h(i) and l(i) of the curves gi(hx∗) and gi(lx∗) cannot exceed ρ′
for all i = 0, 1, . . . , n. This holds for l(i) by (3), because gi(x∗) is between γ̃0
and S. We cope with h(i)’s by induction: Length(h(0)) < ρ by the definition
of U1. If it holds for all i ≤ j − 1 then by (2),

h(j−1)

l(j−1)
≤ 4β = β0/L.

Then
h(j) ≤ Lh(j−1) ≤ β0 · l(j−1) < l(j−1) < ρ′.

Now we use the assumption (6) and again apply (2) to obtain, for z∗ =
gn(x∗) ∈ S̃N ,

h(z∗)

l(z∗)
≤ h(n)

l(n)
≤ 4β = β0/L < β0.

This contradicts (4).
Comment. The key bound (5) can also be seen directly from (4) (with,

for instance, β = β0/10) by applying, besides the Koebe distortion bound (2),
another distortion bound: there is a function ε : (0, 1) → (0,+∞), with
ε(r) → 0 as r → 0, such that for any univalent function ϕ on the unit disc,
if ϕ(0) = 0 and ϕ′(0) = 1, then∣∣∣∣log

ϕ(z)

z

∣∣∣∣ < ε(|z|)

(see e.g. [Gol]). This bound is applied to the function

ϕ(z) =
g−n(w + ρ0z)− g−n(w)

(g−n)′(w)ρ0

where n is minimal such that gn(x) ∈ V , and w ∈ S is the projection of
gn(x) to S and reducing ρ′. Note that (g−n)′(w) > 0 because g preserves S.

We continue as follows (cf. [ABC16, proof of Theorem 6.9]). Recall that
a straightening h : C → C is a quasiconformal homeomorphism which is
holomorphic at∞ and h′(∞) 6= 0. It conjugates the polynomial-like map f to
the polynomial G near their filled Julia sets Kf and KG. Let BG : AG → D∗
be the Böttcher coordinate of G such that BG(z)/z → 1 as z → ∞, which
is well defined in the basin of infinity AG = C \KG as KG is connected.
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We have the following picture:

(7) D∗ ψ−1

−−→ C \Kf
h−→ C \KG

BG−−→ D∗.
Consider the map Ψ := ψ ◦ h−1 ◦ B−1G : D∗ → D∗ from the uniformiza-
tion plane of the polynomial G to the g-plane of K-related rays. It is a
quasiconformal homeomorphism which is holomorphic at ∞. For u ∈ S, let
Lu = Ψ(ru∩D∗) where ru = {tu : t > 0} is a standard ray in the uniformiza-
tion plane of G (3).

Lemma 2.2. The curve Lu converges non-tangentially to a unique point
z0 = z0(u) of the unit circle S. Moreover, there is β ∈ (0, π/2) such that, for
any u ∈ S and all z ∈ Lu close enough to S,
(8) |arg(z − z0)− arg z0| ≤ β.
Here β depends only on the quasiconformal deformation of the straightening
map h. Furthermore, for every z0 ∈ S there exists a unique u such that
Lu lands at z0.

Proof of Lemma 2.2 (cf. [ABC16, Section 6]). The map Ψ : D∗ → D∗
extends to a homeomorphism of the closures and then to a quasiconformal
homeomorphism Ψ∗ of C by Ψ∗(z) = 1/Ψ∗(1/z̄) (see [Ahl]). Note that the
quasiconformal deformations of Ψ and Ψ∗ are the same, equal to the qua-
siconformal deformation M of the straightening map h. Consider the curve
L∗u = Ψ∗(ru). It is an extension of the curve Lu, which crosses S at a point
z0 = Ψ∗(u). As a quasiconformal image of a straight line, the curve L∗u has
the following property [Ahl]: there exists C = C(M) > 0 such that

|z − z0|/|z − 1/z| < C for every z ∈ L∗u.
Therefore, L∗u tends to z0 non-tangentially; moreover, (8) holds for some
β = β(C(M)). The last claim follows from the fact that Ψ∗ is a homeomor-
phism.

Now, define the correspondence λ as follows (having in mind (7)). Let
R be a P -ray to Kf . By Lemma 2.1, the K-related ray R̃ = ψ(R) tends to
a point z0 ∈ S. By Lemma 2.2, there exists a unique Lu which tends to z0.
The curve ψ−1(Lu) = h−1 ◦ B−1G ({tu : t > 1}) is a polynomial-like ray lτ
where u = e2πiτ . Let

λ(R) := ψ−1(Lu).

The correspondence λ is “onto” by the first claim of Lemma 2.2 along with
Lemma 2.1(2o).

Now, both curves R̃, Lu in D∗ tend to the point z0 ∈ S non-tangentially,
by Lemmas 2.1 and 2.2 respectively. Then, by definition, the P -ray R and the

(3) Note that the curve Lu lies in the left-hand disc D∗ of (7) while the point u is at
the boundary of the right-hand disc there.
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polynomial-like rayλ(R) converge to a single prime end ofKf non-tangentially,
hence R and λ(R) are also Kf -equivalent. Finally, the condition that R and
λ(R) are Kf -equivalent uniquely determines the polynomial-like ray λ(R).

It remains to prove the “almost injectivity” of λ. This is a direct conse-
quence of the one-to-one correspondence between K-related rays and
curves Lu established above and the following claim whose proof is iden-
tical to the one of [ABC16, Theorem 6.8] (for completeness, we reproduce
it below with obvious changes in notation). While passing from K-related
rays to P -rays we use the fact that if a K-related ray is periodic, the corre-
sponding P -ray converges to a periodic point of P which is either repelling or
parabolic (by the Snail Lemma [Mil0], it cannot be irrationally indifferent).

Lemma 2.3. Any point w ∈ S is the landing point of precisely one K-
related ray, except when one and only one of the following holds:
(i) w is the landing point of exactly two K-related rays which are non-smooth

and have a common smooth arc that goes to w;
(ii) w is a landing point of at least two disjoint K-related rays, in which

case w is a (pre)periodic point of g and some iterate gn(w) belongs to a
finite set Ŷ (depending only on K) of g|S-periodic points each of which
is the landing point of finitely many, but at least two, K-related rays,
which are periodic of the same period depending merely on the landing
point w (4).

Moreover, if w is periodic then (i) cannot hold.
Proof. Assume that there are twoK-related rays landing at a point w ∈ S

and that (i) does not hold. We need to prove that then (ii) holds. Since (i)
does not hold, there exist disjoint K-related rays landing at w. Let us study
this case in detail.

Associate to any such pair of rays R̂t, R̂t′ an open arc (R̂t, R̂t′) of S as
follows. Two points of S1 with the arguments t, t′ split S into two arcs. Let
(R̂t, R̂t′) be the one that contains no arguments of K-related rays except
possibly for those that land at w. Geometrically, this means the following.
The K-related rays R̂t, R̂t′ together with w ∈ S split the plane into two
domains. The arc (R̂t, R̂t′) corresponds to one of them, disjoint from S. Let
L(R̂t, R̂t′) = δ be the angular length of (R̂t, R̂t′). Clearly, 0 < δ < 1. Now
we make a few observations.
(1) If K-related disjoint rays of arguments t1, t′1 land at a common point w1

while K-related disjoint rays of arguments t2, t′2 land at a point w2 6= w1,
then the arcs (R̂t1 , R̂t′1), (R̂t2 , R̂t′2) are disjoint.

(4) In [ABC16, Theorem 6.8(ii)], it is claimed erroneously that all K-related rays to
the point w are smooth (cf. [PZ20]). Note that this claim is not relevant to the rest of
[ABC16].
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The above follows from the definition of the arc (R̂t, R̂t).

(2) If disjoint K-related rays R̂t, R̂t′ of arguments t, t′ land at a common
point w, then the K-related rays g(R̂t), g(R̂t′) are also disjoint and land
at the common point g(w). Moreover,

L(g(R̂t), g(R̂t′)) ≥ min{Dδ (mod 1), 1−Dδ (mod 1)} > 0.

Indeed, the images g(R̂t), g(R̂t′) are disjoint near g(w), because g is locally
one-to-one. Hence, g(R̂t) ∩ g(R̂t′) = ∅, because otherwise the corresponding
P -rays would have their limit sets in different components of KP , a contra-
diction since both rays g(R̂t), g(R̂t′) are K-related. Since the argument of
g(R̂t) is represented by the point Dt (mod 1) ∈ (0, 1), we get the inequality
of (2).

Let us consider the following set Ẑ(K) of points in S: w ∈ Ẑ(K) if and
only if there is a pair of disjoint K-related rays R̂, R̂′ which both land at w
and satisfy L(R̂, R̂′) ≥ 1/(2D). Denote by Ŷ (K) the set of periodic points
which are in forward images of the points of Ẑ(K).

(3) If the set Ẑ(K) is non-empty, then it is finite, and consists of (pre)-
periodic points.

Indeed, Ẑ(K) is finite by (1). Assume w ∈ Ẑ(K). Then by (2) some iterate
gn(w) must hit Ẑ(K) again.

To complete the proof, choose disjoint K-related rays R̂t, R̂t′ landing at
w ∈ S and use this to prove that all claims of (ii) hold.

We show that the orbit w, g(w), . . . cannot be infinite. Indeed, other-
wise by (1)–(2), we have a sequence of non-degenerate pairwise disjoint arcs
(gn(R̂t), g

n(R̂t′)) ⊂ S, n = 0, 1, . . . . By (2), some iterates of w must hit
the finite set Ẑ(K) and hence Ŷ (K) (which are therefore non-empty), a
contradiction.

Hence for some 0 ≤ n < l, gn(w) = gl(w); let us verify that the other
claims of (ii) hold. Replacing w by gn(w), we may assume that w is a (re-
pelling) periodic point of g of period k = l − n. By (2), w ∈ Ŷ (K). By
[LP96, Theorem 1], the set of K-related rays landing at w is finite, and
each K-related ray landing at w is periodic with the same period. Hence,
(ii) holds. Finally, the last claim of the lemma follows because a periodic
non-smooth ray must have infinitely many broken points, hence, no other
ray can have a common arc with it that goes up to the Julia set; see [ABC16,
Lemma 6.1] for details.

3. Proofs of Theorems 2–3

3.1. Theorem 2. Part (a) is an immediate corollary of Lemma 2.1 and
Lindelöf’s theorem, as in [LP96]. Indeed, since a curve s ⊂W \Kf converges
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to a point a ∈ Kf , the curve s̃ = ψ(s) converges to a point z0 ∈ S, and the
limit of the function ψ−1 along the curve s̃ exists and equals a. By Lemma 2.1,
there is a K-related ray R̃ that tends to z0, and it tends non-tangentially.
Then, by [Pom, Corollary 2.17], the P -ray R converges to the same point a.
By definition, the curves s, R are Kf -equivalent.

Let us prove part (b). The closed set S∪Kf is connected and so too is its
complement (by the Maximum Principle). Consider the set Ŝ = ψ(S) ⊂ D∗.
Let I = Ŝ \ Ŝ. Then I is a connected closed subset of the unit circle S.

Let us prove I is a single point. Otherwise there is an interior point x ∈ I
which is g-periodic. Let β be a K-related ray that lands at x. Notice that
since x is an interior point of I, β must cross Ŝ. Now, since x is g-periodic,
R = ψ−1(β) is a periodic P -ray, hence it converges to a periodic point
a ∈ S \ S of P and crosses S, a contradiction since S ⊂ KP . This proves
that I is a single point; denote it by z0.

Choose two sequences z′n, z′′n of S tending to z0 from the left and from
the right respectively, and two sequences of K-related rays l′n, l′′n so that l′n
lands at z′n and l′′n lands at z′′n. Then, passing perhaps to subsequences, by
Claim 2 in the proof of Lemma 2.1, the sequence l′n tends to a K-related ray
l′ and l′′n tends to a K-related ray l′′, where l′ and l′′ land at the same z0.
By the above, l′, l′′ are disjoint.

Now we apply Lemma 2.3 to conclude that z0 is g-(pre-)periodic, and
some iterate of z0 lies in a finite set Ŷ ⊂ S of periodic points, which is
independent of z0. Hence, the point a is P -(pre-)periodic, and some iterate
of a lies in a finite set Y ⊂ Jf of periodic points, which is independent of a.
As every point of Y is a landing point of a periodic ray, it can be either
repelling or parabolic.

3.2. Theorem 3. Proof of (b), (c): It follows from the definition of Λ
that σD(Λ) = Λ and σm◦p = p◦σD on Λ. By invariance and since Λ 6= T, the
set Λ contains no intervals; (c) is a reformulation of a part of the statement
of Theorem 1.

Proof of (a), (d): Considering Λ as a subset of S = {|z| = 1} define a new
map pK : Λ→ S as follows: for τ ∈ Λ, let pK(τ) ∈ S be the landing point of
a K-related ray of argument τ . Recall the map Ψ = ψ ◦h−1 ◦B−1G : D∗ → D∗
introduced in the proof of Theorem 1, and its quasi-conformal extension
Ψ∗ : C→ C. By Lemma 2.2 and the definition of the maps λ and p, we have

(9) pK = Ψ∗|S ◦ p.
Since Ψ∗ : S→ S is an orientation preserving homeomorphism, it is enough
to prove (a), (d) with p replaced by pK . By Lemma 2(2o), p−1K (I) is closed
in S for any closed arc I ⊂ S. Therefore, Λ = p−1K (S) is closed and the map
pK : Λ → S is continuous. To show (d), define an extension p̃K : S → S of
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pK : Λ → S in an obvious way as follows. Let J := (t1, t2) be a component
of S \ Λ. Then pK(t1) = pK(t2) =: wJ because otherwise there would be a
point of S with no K-related rays landing at it. Let p̃K(τ) = wJ for all τ ∈ J .
Then p̃K : S→ S is continuous. Now, given t ∈ S, the set p̃−1K ({t}) is either
a singleton or a non-trivial closed arc. This follows from the definition of p̃K
and because K-related rays with different arguments do not intersect unless
case (i) of Theorem 2.3 takes place. Therefore, p̃K : S→ S is monotone and
of degree one.

Proof of (e): Let h̃ be another straightening, Ψ̃ : D∗ → D∗ the corre-
sponding quasiconformal map and Ψ̃∗ : C→ C its quasiconformal extension.
As pK : S→ S is independent of the straightening, by (9) we have p̃ = T |S◦p
where T = (Ψ̃∗)−1 ◦Ψ∗. On the other hand, on D∗, T = (BG ◦ h̃)◦(BG ◦h)−1,
hence T commutes with z 7→ zm for |z| > 1 near S, by definitions of h,BG.
Therefore, the homeomorphism ν := T |S : S → S commutes with z 7→ zm

on S, too. It is then well known that ν(z) = vz for some v ∈ C with modulus 1
such that vm = v (proof: as ν(1)m = ν(1) let v = ν(1), so that a homeomor-
phism ν0 = v−1ν : S → S commutes with z 7→ zm too and ν0(1) = 1; then
there is a lift ν̃0 : R→ R of ν0 such that ν̃0(0) = 0, ν̃0 − 1 is 1-periodic and
ν̃0(mx) = mν̃0(x) for all x ∈ R, which in turn implies ν̃0(n/mk) = n/mk for
all n, k ∈ Z>0; by continuity, ν̃0(x) = x for all x).

Acknowledgments. In [Le12], we answered, under an extra assump-
tion, a question posed by Alexander Blokh to the author whether an acces-
sible point of the filled Julia set Kf of a renormalization f of P by some
curve outside of Kf is always accessible by an external ray of P (i.e., by a
curve outside of the filled Julia setKP ). Theorem 2(a) strengthens this result
of [Le12], under a weaker assumption (p2). Theorem 3 was added following a
recent work [PZ19] which also served as an inspiration for writing up this pa-
per. Finally, we would like to thank Feliks Przytycki for a helpful discussion
and the referee for comments that helped to improve the exposition.
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