Symplectic structure on colorings, Lagrangian tangles and Tits buildings

by

Jan DYMARA, Tadeusz JANUSZKIEWICZ and Józef H. PRZYTYCKI

Presented by the Editors

Summary. We define a symplectic form $\widehat{\varphi}$ on a free R-module $R^{2 n-2}$ associated to $2 n$ points on a circle. Using this form, we establish a relation between submodules of $R^{2 n-2}$ induced by Fox R-colorings of an n-tangle and Lagrangians or virtual Lagrangians in the symplectic structure ($R^{2 n-2}, \widehat{\varphi}$) depending on whether R is a field or a PID. We prove that when $R=\mathbb{Z}_{p}, p>2$, all Lagrangians are induced by Fox R-colorings of some n-tangles and note that for $p=2$ and $n>3$ this is no longer true. For any ring, every $2 \pi / n$ rotation of an n-tangle yields an isometry of the symplectic space $R^{2 n-2}$. We analyze invariant Lagrangian subspaces of this rotation and we partially answer the question whether an operation of rotation (generalized mutation) defined in $A-P-R$ preserves the first homology group of the double branched cover of S^{3} along a given link.

1. Alternating form on the space of boundary points colorings.

 Importance of symplectic structures in knot theory was probably first realized by R. H. Fox in his review of A. Plans's 1953 paper Pla. In the present paper we construct a symplectic structure on the space of $2 n$-boundary points colorings of an n-tangle. We note that our symplectic structure is naturally related to the symplectic structure on the first homology group of a surface $\left[{ }^{1}\right)$. Using our symplectic structure, we are able to draw several far-reaching conclusions. In particular, we partially answer the question[^0]whether a rotation operation (generalized mutation) as defined in A-P-R preserves the first homology group of the double branched cover of S^{3} along a given link; and we address the problem of "imprisoned colorings".

Let R be a commutative ring with identity and $p_{1}, \ldots, p_{2 n}$ be points on a circle (or a square) as in Figure 1 .

Fig. 1. R-coloring of $2 n$ points $p_{1}, \ldots, p_{2 n}$ by $a_{1}, \ldots, a_{2 n} \in R$. Different shapes of a tangle are useful for different applications.

Regarding R as a set of colors allows us to identify the set of all R colorings of $2 n$ points with the elements of the free R-module $R^{2 n}$ with basis $e_{1}, \ldots, e_{2 n}$, where $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ with $1 \in R$ in the i th position.

Let

$$
W_{2 n-1}=\left\{\sum_{i=1}^{2 n} a_{i} e_{i} \in R^{2 n}: \sum_{i=1}^{2 n}(-1)^{i} a_{i}=0\right\} \cong R^{2 n-1}
$$

$f_{i}=e_{i}+e_{i+1}, i=1, \ldots, 2 n-1$, and $f_{2 n}=e_{2 n}+e_{1}$. Clearly $f_{1}, \ldots, f_{2 n-1}$ are in $W_{2 n-1}$ and form a basis $\left({ }^{2}\right)$. Notice that for any $w \in R^{2 n}$ we have

$$
\begin{aligned}
w= & \sum_{i=1}^{2 n} a_{i} e_{i} \\
= & a_{1} f_{1}+\left(a_{2}-a_{1}\right) f_{2} \\
& +\cdots+\left(a_{2 n}-a_{2 n-1}+\cdots-a_{1}\right) f_{2 n-1}+\left(\sum_{i=1}^{2 n}(-1)^{i} a_{i}\right) e_{2 n}
\end{aligned}
$$

Let W denote an R-module. Recall that an R-bilinear form $\varphi: W \times W$ $\rightarrow R$ is called alternating (or skew-symmetric) if for all $u, v \in W$,

$$
\varphi(u, v)=-\varphi(v, u)
$$

Note that if 2 is invertible in R, then φ is skew-symmetric if and only if $\varphi(u, u)=0$ for all $u \in W$.
$\left({ }^{2}\right)$ We note that $f_{2 n}=e_{2 n}+e_{1}=\sum_{i=1}^{n} f_{2 i-1}-\sum_{i=1}^{n-1} f_{2 i}$.

If a skew-symmetric form φ is non-degenerate we call it a symplectic form $\left(^{3}\right)$.

Consider an alternating form φ on $W_{2 n-1}$ of nullity 1 given by

$$
\varphi\left(f_{i}, f_{j}\right)= \begin{cases}j-i & \text { if }|i-j|=1 \\ 0 & \text { if }|i-j| \neq 1\end{cases}
$$

and let

$$
v_{0}=\sum_{i=1}^{2 n} e_{i}=\sum_{i=1}^{n} f_{2 i-1}=\sum_{i=1}^{n} f_{2 i}
$$

Then $\varphi\left(v_{0}, v\right)=0$ for all $v \in W_{2 n-1}$, i.e. v_{0} is an isotropic vector. We will write $v_{0} \perp W_{2 n-1}$ as v_{0} is φ-orthogonal to $W_{2 n-1}$. It is useful to introduce the free R-module $W_{2 n}$ with the basis $f_{1}, \ldots, f_{2 n-1}, f_{2 n}$. We can extend φ to a symplectic form φ^{\prime} on $W_{2 n}$ by setting $\varphi^{\prime}\left(f_{2 n}, f_{j}\right)=0, j=2, \ldots, 2 n-2$, $\varphi^{\prime}\left(f_{2 n}, f_{2 n-1}\right)=1$, and $\varphi^{\prime}\left(f_{2 n}, f_{1}\right)=-1$.

Let $w_{0}=\sum_{i=1}^{n}\left(f_{2 i-1}-f_{2 i}\right)$ and let

$$
R w_{0}=\left\{r w_{0}: r \in R\right\}
$$

be the R-submodule of $W_{2 n}$ generated by w_{0}. We have

$$
W_{2 n-1} \cong W_{2 n} / R w_{0}
$$

and if $R v_{0}$ denotes the R-submodule of $W_{2 n-1}$ consisting of all monochromatic R-colorings of $2 n$ points on the circle, then

$$
W_{2 n-2}=W_{2 n-1} / R v_{0}
$$

As one verifies, φ descends to a symplectic form $\widehat{\varphi}$ on the free R-module $W_{2 n-2}$.

Let $r: W_{2 n} \rightarrow W_{2 n}$ be defined by $r\left(f_{i}\right)=f_{i+1}$ for $i=1, \ldots, 2 n-1$ and $r\left(f_{2 n}\right)=f_{1}$. It is easy to see that r is induced by a counterclockwise π / n-rotation of the circle with $2 n$ points and clearly r is a φ^{\prime}-isometry of $W_{2 n}$, i.e.

$$
\varphi^{\prime}\left(r\left(f_{i}\right), r\left(f_{j}\right)\right)=\varphi^{\prime}\left(f_{i}, f_{j}\right)
$$

for all $i, j \in\{1, \ldots, 2 n\}$.
Lemma 1.1. Let $r: W_{2 n} \rightarrow W_{2 n}$ be the φ^{\prime}-isometry of $W_{2 n}$ defined above.
(i) r descends to a φ-isometry of $W_{2 n-1}$ and a $\widehat{\varphi}$-isometry of $W_{2 n-2}$.
(ii) The map $m_{y z}: W_{2 n} \rightarrow W_{2 n}, m_{y z}\left(f_{i}\right)=f_{2 n-i}$, induced by the reflection of the circle with $2 n$ points in the $y z$ plane in \mathbb{R}^{3} is an anti-isometry, i.e. $\varphi^{\prime}\left(m_{y z}(u), m_{y z}(v)\right)=-\varphi^{\prime}(u, v)$ for all $u, v \in W_{2 n}$.

[^1]Proof. Since for $w_{0}=\sum_{i=1}^{n}\left(f_{2 i-1}-f_{2 i}\right)$,

$$
r\left(w_{0}\right)=-w_{0},
$$

we see that -1 and w_{0} is an eigenpair for φ^{\prime}. Also $R v_{0} \subset W_{2 n-1}$ is an invariant R-submodule of r. Thus (i) follows (recall that $R v_{0}$ is the null R-submodule for φ).

Since $\varphi^{\prime}\left(m_{y z}\left(f_{i}\right), m_{y z}\left(f_{j}\right)\right)=-\varphi^{\prime}\left(f_{i}, f_{j}\right)$ for all $i, j=1, \ldots, 2 n$, the statement (ii) also follows.

Let V be a free R - module and φ be a symplectic form on V. We say that W is an isotropic R-submodule of V if $\varphi\left(w_{1}, w_{2}\right)=0$ for all $w_{1}, w_{2} \in W$. A maximal isotropic R-submodule W of V is called a Lagrangian submodule. If R is a field, as we will see it later, the isotropic subspaces W of $W_{2 n-2}$ form a flag structure in ($W_{2 n-2}, \widehat{\varphi}$), hence a Tits building. An $(n-1)$-dimensional isotropic subspace of $\left(W_{2 n-2}, \widehat{\varphi}\right)$ is called a Lagrangian subspace and when $R=\mathbb{Z}_{p}\left(p\right.$ prime) there are $\prod_{i=1}^{n-1}\left(p^{i}+1\right)$ of them (see [⿴囗).

The above lemma will be used in Section 4 to analyze Fox R-colorings of rotors (see Section 2 and $\mathrm{Pr}-1$ for introduction to Fox 3 -colorings).
2. Tangles as Lagrangians. For every n-tangle $T=\mathbf{T}$ define the R-module $\operatorname{Col}_{R}(T)$ of its Fox R-colorings $\left(^{4}\right)$ as follows. Let x_{1}, \ldots, x_{m} be arcs of T (parts of the tangle diagram from tunnel to tunnel) and c_{1}, \ldots, c_{t} be its crossings. Then $\operatorname{Col}_{R}(T)$ is a quotient of the free R-module R^{m} with basis $\left\{x_{1}, \ldots, x_{m}\right\}$ modulo its submodule generated by $2 x_{i}-x_{j}-x_{k}$ for each crossing $c_{s}, 1 \leq s \leq t$ (see Figure 2) An element $c \in \operatorname{Col}_{R}(T)$ is called

Fig. 2. Fox R-coloring relation $2 x_{i}=x_{j}+x_{k}$
a Fox R-coloring of T and it can be regarded as a mapping from the arcs of T to R. Every R-coloring of T induces a coloring of its $2 n$ boundary points $p_{1}, \ldots, p_{2 n}$. Therefore, there is a homomorphism of R-modules ψ : $\operatorname{Col}_{R}(T) \rightarrow R^{2 n}$ with $\psi\left(\operatorname{Col}_{R}(T)\right) \subseteq W_{2 n-1}$ (see Proposition 2.2), i.e. ψ : $\mathrm{Col}_{R}(T) \rightarrow W_{2 n-1}$. Moreover, since $R v_{0} \subseteq \operatorname{Col}_{R}(T)$, the homomorphism ψ descends to a homomorphism of the quotient R-modules

$$
\hat{\psi}: \operatorname{Col}_{R}(T) / R v_{0} \rightarrow W_{2 n-1} / R v_{0} .
$$

It is natural to ask which subspaces of $W_{2 n-2} \simeq W_{2 n-1} / R v_{0}$ are induced by n-tangles. We answer this question partially when R is a field.
$\left({ }^{4}\right)$ If $R=\mathbb{Z}_{p}$ we write $\operatorname{Col}_{p}(T)$ instead $\operatorname{Col}_{\mathbb{Z}_{p}}(T)$.

Theorem 2.1. Let $\hat{\psi}: \operatorname{Col}_{R}(T) / R v_{0} \rightarrow W_{2 n-2}$ be the homomorphism of R-modules defined above.
(i) If R is a field then $\hat{\psi}\left(\operatorname{Col}_{R}(T) / R v_{0}\right)$ is a Lagrangian subspace of $\left(W_{2 n-2}, \hat{\varphi}\right)$.
(ii) If R is a commutative ring with identity and T is a rational n-tangle then $\hat{\psi}\left(\operatorname{Col}_{R}(T) / R v_{0}\right)$ is a Lagrangian submodule of $\left(W_{2 n-2}, \hat{\varphi}\right)$.

Before we give the proof of Theorem 2.1, let us recall some standard terminology concerning tangles and sketch a rather general inductive procedure which will be used later.

Define an (n, k)-tangle as a tangle with n inputs (on the left) and k outputs (on the right). Tangles can be composed if the number of outputs of the first one equals the number of inputs of the second $\left({ }^{5}\right)$. Let σ_{i} be a crossing between the i th and $(i+1)$ th strands, U_{i}^{m} be a "local minimum" and U_{i}^{M} be a "local maximum" (while moving in the direction of the x-axis) that involve i and $i+1$ strands $\left({ }^{6}\right)$ respectively.

We say that an n-tangle is rational if it is obtained from an n-tangle with no crossings and trivial components $\left({ }^{7}\right)$ by adding a finite number of crossings $\sigma_{i}^{ \pm 1}(i=1, \ldots, 2 n)$. We see that the generators σ_{i}, U_{i}^{m} and U_{i}^{M} (for $n<i<2 n$) yield maps

$$
\begin{aligned}
& \sigma_{i}: \mathcal{T}_{2 n} \rightarrow \mathcal{T}_{2 n}
\end{aligned}
$$

$$
\begin{aligned}
& U_{i}^{m}: \mathcal{T}_{2 n} \rightarrow \mathcal{T}_{2 n+2}
\end{aligned}
$$

and

$$
\begin{aligned}
& U_{i}^{M}: \mathcal{T}_{2 n} \rightarrow \mathcal{T}_{2 n-2} \\
& \binom{\overrightarrow{=}=\sqrt{=}}{=\sim}
\end{aligned}
$$

where $\mathcal{T}_{2 k}$ denotes the set of all tangles with k inputs and k outputs. We

[^2]observe that each n-tangle T is a composition ${ }^{8}$) of crossings σ_{i}, maxima U_{i}^{m}, and minima U_{i}^{M} (for $n<i<2 n$). Thus, to prove a property P for all tangles, it is sufficient to argue that P holds for "basic" tangles and then show by induction if a tangle T has property P, then so do the tangles $T \sigma_{i}^{ \pm 1}, T U_{i}^{m}$, and $T U_{i}^{M}$. This idea will be used several times (including the proof of our main theorem) and, in particular, we use it below to show that an R-Fox coloring of a tangle T induces an R-coloring of its $2 n$ boundary points that satisfies the "alternating" condition ${ }^{9}$).

Proposition 2.2. Let T be an n-tangle and $\psi: \operatorname{Col}_{R}(T) \rightarrow R^{2 n}$ be the homomorphism of R-modules which assigns to an R-Fox coloring of arcs of T the corresponding R-coloring of their $2 n$ boundary points. If $c=$ $\sum_{i=1}^{2 n} a_{i} e_{i}$ and $c \in \psi\left(\operatorname{Col}_{R}(T)\right)$ then c satisfies the alternating condition, i.e. $\sum_{i=1}^{2 n}(-1)^{i} a_{i}=0$.

Fig. 3. Tangles Id and B_{0}
Proof. Consider an n-tangle ${ }^{(10)} B_{0}$ shown in Figure 3. Since each Fox R-coloring a_{1}, \ldots, a_{n} of the n arcs of B_{0} that join x_{1} and x_{2}, x_{3} and x_{4}, \ldots, $x_{2 n-1}$ and $x_{2 n}$ gives the corresponding R-coloring

$$
c=a_{1} e_{1}+a_{1} e_{2}+\cdots+a_{n} e_{2 n-1}+a_{n} e_{2 n} \in \psi\left(\operatorname{Col}_{R}(T)\right)
$$

of the boundary points of B_{0}, clearly the alternating condition holds for B_{0}. Assume that the alternating condition holds for a tangle T, and consider tangles $T \sigma_{i}, T \sigma_{i}^{-1}, T U_{i}^{m}$ and $T U_{i}^{M}$. The local modification of T shown in Figure 4 yields $a-b=d-c$ for the first two tangles and $a-b=0$ for the last two. Hence the alternating condition holds for $T \sigma_{i}, T \sigma_{i}^{-1}, T U_{i}^{m}$ and $T U_{i}^{M}$. Therefore, it must also be true for an arbitrary tangle T^{\prime}, which completes the proof.

[^3]

Fig. 4. The tangles $\sigma^{ \pm 1}, U^{M}$, and U^{m}
Proof. To prove Theorem 2.1, we use an inductive argument similar to that above.
(0) We easily verify that the R-submodule induced by the Fox R-colorings of B_{0} is a Lagrangian. In fact $\hat{\psi}\left(B_{0}\right) \subseteq W_{2 n-2}$ is a free R-module with basis $f_{1}, f_{3}, \ldots, f_{2 n-3}$.
(1) If a tangle T yields a Lagrangian then T^{\prime} obtained from T by adding one crossing is also a Lagrangian. In fact, we can view adding a crossing as a transvection in $\left(W_{2 n-2}, \hat{\varphi}\right)$. More precisely, a crossing between the i th and $(i+1)$ th strands $(1 \leq i \leq 2 n$ and indices are $\bmod 2 n)$ yields a transvection on $W_{2 n-2}$ defined by

$$
t_{i}(v)=v \pm \hat{\varphi}\left(v, f_{i}\right) f_{i}
$$

where the sign \pm depends on the type of the crossing. It is well-known (see [O] for example) that transvections are isometries of a symplectic space, thus in particular they map Lagrangians in $W_{2 n-2}$ into Lagrangians in $W_{2 n-2}$.
(2) Minima as "expansions". The symplectic space $R^{2 n}$ is obtained from the symplectic space $R^{2 n-2}$ by adding a 2 -dimensional symplectic space (with the symplectic form given by a standard 2×2 "hyperbolic" matrix). Lagrangians in $R^{2 n}$ are built from Lagrangians in $R^{2 n-2}$ by adding a vector from the 2-dimensional subspace that was added.
(3) Maxima as "contractions". Adding a "maximum" to T results in connecting the i th and $(i+1)$ th strands. As a result an n-tangle T reduces to an $(n-1)$-tangle T_{i}^{M}. Consider the projection p_{i} from $R^{2 n}$ to $R^{2 n-2}$ defined by

$$
p_{i}\left(\sum_{j=1}^{2 n} x_{i} e_{i}\right)=\sum_{j=1, j \neq i,(i+1)}^{2 n} x_{i} e_{i}
$$

One can verify that p_{i} restricted to the subspace spanned by

$$
\left\{f_{1}, \ldots, f_{i-2}, f_{i-1}-f_{i}+f_{i+1}, f_{i+2}, \ldots, f_{2 n-1}\right\}
$$

is a symplectic isometry. If R is a field then by a simple dimension counting argument $\left({ }^{11}\right)$, the $(n-1)$-tangle T^{M} also induces a Lagrangian in $R^{2 n-2}$.

[^4]This completes the proof of Theorem 2.1(i). Theorem 2.1(ii) also follows, because we note that step (1) also holds for an arbitrary ring.

It is also important to note that Theorem 2.1(i) is no longer true if R is a ring rather than a field (not even for $R=\mathbb{Z}$).

Example 2.3. Let $R=\mathbb{Z}$ and T be the 2-tangle $U_{2}^{m} \sigma_{1}^{2} \sigma_{3}^{-2} U_{2}^{M}$ shown in Figure 5. Then $\hat{\psi}(T) \subset W_{2}$ is generated by $2 f_{1}$.

Fig. 5. Tangle $T=U_{2}^{m} \sigma_{1}^{2} \sigma_{3}^{-2} U_{2}^{M}$
Using our previous considerations we obtain the following:
Theorem 2.4. If R is a PID then $\hat{\psi}\left(\operatorname{Col}_{R}(T) / R v_{0}\right)$ is a virtual Lagrangian of $\left(W_{2 n-2}, \hat{\varphi}\right)$, i.e. a finite index R-submodule of a maximal isotropic R-submodule of $W_{2 n-2}$.

An important question that arises at this point is whether every Lagrangian subspace can be realized by a tangle. The answer is affirmative when $R=\mathbb{Z}_{p}, p>2$.

Theorem 2.5. For $p>2$, every Lagrangian subspace of $\mathbb{Z}_{p}^{2 n-2}$ is induced by an n-tangle.

Proof. This follows from the work of J. Assion (for $p=3$) and B. Wajnryb Wa-2, Wa-3] (for general $p>2$).

When $R=\mathbb{Z}_{2}$ or \mathbb{Z}, Theorem 2.5 is true for 2 - and 3 -tangles only and it is related via the double branched cover to the fact that the mapping class group of a torus and a genus two surface is generated by "horizontal" Dehn twists. An algebraic proof is based on the observation that the symplectic group $\operatorname{Sp}(2 n-2, R), n<4$, is generated by $2 n-1$ transvections $t_{i}(v)=$ $v+\hat{\varphi}\left(v, f_{i}\right) f_{i}$. However, Theorem 2.5 is not true in general when $p=2$.

Proposition 2.6. For $p=2$ the number of Lagrangians of $\left(\mathbb{Z}_{2}^{2 n-2}, \hat{\varphi}\right)$ is $\prod_{i=1}^{n-1}\left(2^{i}+1\right)$ while the number of Lagrangians induced by n-tangles equals $\prod_{i=1}^{n-1}(2 i+1)$. In particular, for $n \geq 4$ not all Lagrangians of $\left(\mathbb{Z}_{2}^{2 n-2}, \hat{\varphi}\right)$ are realizable by n-tangles.

Proof. When $p=2$, the space $\operatorname{Col}_{2}(T)$ is an invariant of homotopy of tangles (fixed on the boundary). Equivalently $\operatorname{Col}_{2}(T)$ is preserved by a
crossing change. Thus, $\psi\left(\operatorname{Col}_{2}(T)\right)$ depends only on connections between $2 n$ boundary points. Since there are $(2 n-1)(2 n-3) \ldots 3 \cdot 1$ such connections and each of them yields a different n-dimensional subspace of $\mathbb{Z}_{2}^{2 n-1}\left(\right.$ and $\left.\mathbb{Z}_{2}^{2 n-2}\right)$, the statement follows.

Corollary 2.7. Let $\psi: \operatorname{Col}_{R}(T) \rightarrow R^{2 n}$ be the homomorphism of R modules defined as before.
(a) $\operatorname{dim} \psi\left(\operatorname{Col}_{p}(T)\right)=n$ for any n-tangle T.
(b) For every p-coloring c of $2 n$ boundary points (an element of $\mathbb{Z}_{p}^{2 n-1}$) there is an n-tangle T and a Fox p-coloring of T that induces c, i.e.

$$
\mathbb{Z}_{p}^{2 n-1}=\bigcup_{T} \psi\left(\operatorname{Col}_{p}(T)\right)
$$

Proof. (a) Follows from Theorem 2.1
(b) Follows from Theorem 2.5 for $p \geq 3$ as every vector in a symplectic space is in some Lagrangian.

For $p=2$, let $\left(\epsilon_{1}, \ldots, \epsilon_{2 n}\right) \in \mathbb{Z}_{2}^{2 n}$ and assume that $\sum_{i=1}^{2 n} \epsilon_{i}=0$. Then the number of $i \in\{1, \ldots, 2 n\}$ such that $\epsilon_{i}=1$ is even. Let T be an n-tangle with no arc that connects boundary points labeled by 1 to those labeled by 0 . If we assign 1 to each arc of T with endpoints labeled by 1 , and 0 to the remaining ones, we see that such a Fox 2 -coloring of T induces $\left(\epsilon_{1}, \ldots, \epsilon_{2 n}\right)$ (see Figure (6).

Fig. 6. A tangle T inducing $\left(\epsilon_{1}, \ldots, \epsilon_{2 n}\right)$
Remark 2.8 (Surfaces analogy). The best known example of a symplectic \mathbb{Z}-module in topology is $H_{1}\left(F_{g}, \mathbb{Z}\right)$ (i.e. the first homology of a closed surface F_{g} of genus g), with the symplectic form defined as the algebraic crossing number of closed curves representing elements of $H_{1}\left(F_{g}, \mathbb{Z}\right)$. In fact, we can make the analogy more precise by considering the double branched cover of $\left(D^{3}, \partial D^{3}\right)$ along a given n-tangle. In particular, ∂D^{3} branched over $2 n$ points lifts to a surface F_{n-1}. The symplectic structure on the space $\mathbb{Z}_{p}^{2 n-2}$ of boundary points colorings lifts to the symplectic structure on $H_{1}\left(F_{g}, \mathbb{Z}_{p}\right)$. As is well-known, any 3 -manifold with boundary F_{g} yields a Lagrangian subspace in $H_{1}\left(F_{g}, \mathbb{Z}_{p}\right)$. In particular, the Lagrangian induced by an n-tangle corresponds to the Lagrangian subspace induced by a 3 -manifold of the double branched cover. As noticed before, (for $p=2$) not every Lagrangian is induced by an n-tangle. This in turn has its consequences for branched coverings and mapping class groups (see Remark 2.9).

Remark 2.9. The mapping class group of a surface is generated by a finite number of Dehn twists. Furthermore, one shows that it is enough to take a "horizontal" Dehn twist (for genus $g \leq 2$) together with one additional non-horizontal Dehn twist (for $g>2$) [Lic, Hu, Wa-1]. In fact horizontal Dehn twists correspond to crossing changes, and the argument we used for \mathbb{Z}_{2}-colorings shows the known fact (see $[\mathrm{B}-\mathrm{H}]$) that for $g>2$ horizontal twists are insufficient to generate the mapping class group of F_{g}. On the other hand the above reasoning shows that for 3 -tangles we produce all Lagrangians.

As is easy to see, the set $\mathcal{T}_{2 n}$ of all n-tangles with the operation of composition is an R-algebra. We will prove the following lemma.

Lemma 2.10. Let $m: \mathcal{T}_{2 n} \rightarrow \mathcal{T}_{2 n}$ be an isomorphism of R-algebras that sends an n-tangle T to its mirror image \bar{T} in the $x y$ plane. Then m induces an anti-isometry $m_{*}: W_{2 n-2} \rightarrow W_{2 n-2}$ of the symplectic module $\left(W_{2 n-2}, \hat{\varphi}\right)$ given by

$$
m_{*}\left(f_{i}\right)=(-1)^{i} f_{i}
$$

that maps Lagrangian submodules of $W_{2 n-2}$ determined by T to Lagrangian submodules of $W_{2 n-2}$ determined by $m(T)=\bar{T}$.

Proof. We see that
$m_{*}\left(f_{2 n-1}\right)=m_{*}\left(-f_{1}-f_{3}-\cdots-f_{2 n-3}\right)=f_{1}+f_{3}+\cdots+f_{2 n-3}=-f_{2 n-1}$. and analogously

$$
m_{*}\left(f_{2 n}\right)=m_{*}\left(-f_{2}-f_{4}-\cdots-f_{2 n-2}\right)=-f_{2}-f_{4}-\cdots-f_{2 n-2}=f_{2 n} .
$$

Using the method from our proof of Theorem 2.1, we first show that Lemma 2.10 holds for a basic tangle B_{0}. Then we show that if the lemma holds for an n-tangle T, it also holds for any n-tangle T^{\prime} obtained from T by adding a crossing, a minimum or a maximum.
(i) (Crossing) As noted earlier, adding a crossing σ_{i}^{ϵ} induces a transvection on $W_{2 n-2}$:

$$
t_{i}(v)=v-\epsilon \tilde{\varphi}\left(v, f_{i}\right) f_{i}
$$

Since the operation of taking the mirror image changes only ϵ to $-\epsilon$ in the transvection t_{i}, one easily verifies that the conclusion of Lemma 2.10 also holds for $T \sigma_{i}^{\epsilon}$.
(ii) (Minimum or maximum) Clearly a minimum and a maximum are fixed when taking the mirror image. Since, as we saw in the proof of Theorem 2.1, adding a maximum or a minimum changes by 2 the dimension of the symplectic R-module associated to the boundary points R-coloring, the conclusion holds for $T U_{i}^{m}$ and $T U_{i}^{M}$.

We note that an extension of the anti-isomorphism $m_{*}: W_{2 n-2} \rightarrow W_{2 n-2}$, $m_{*}\left(f_{i}\right)=(-1)^{i} f_{i}$, to $W_{2 n-1}$ is defined by

$$
\begin{aligned}
m_{*}\left(f_{2 n}\right) & =m_{*}\left(f_{1}+f_{3}+\cdots+f_{2 n-1}-f_{2}-f_{4}-\cdots-f_{2 n-2}\right) \\
& =-f_{1}-f_{3}-\cdots-f_{2 n-1}-f_{2}-f_{4}-\cdots-f_{2 n-2} \\
& =f_{2 n}-\left(f_{1}+f_{2}+\cdots+f_{2 n}\right)=f_{2 n}-2 v_{0} .
\end{aligned}
$$

Using Lemmas 1.1 (ii) and 2.10 we obtain as a corollary the following result, important for our later analysis of rotors.

Corollary 2.11. Let $m_{y}: \mathcal{T}_{2 n} \rightarrow \mathcal{T}_{2 n}$ be an anti-isomorphism of the R-algebra of tangles induced by the π-rotation about the y-axis in \mathbb{R}^{3}. Then the corresponding isometry of R-modules $m_{* y}: W_{2 n-2} \rightarrow W_{2 n-2}$ defined by

$$
m_{* y}\left(f_{i}\right)=(-1)^{i} f_{2 n-i}
$$

establishes a bijection between the sets of Lagrangians induced by T and by $m_{y}(T)$.
3. Buildings. Let C be the Coxeter group defined by the presentation

$$
G=\left\langle s_{1}, \ldots, s_{d+1} \mid\left(s_{i} s_{j}\right)^{m_{i j}}\right\rangle,
$$

where $m_{i i}=1, m_{i j}=m_{j i}$ and $m_{i j} \geq 2$ is an integer for $i \neq j$ (or ∞ in which case there is no $i j$ th relation). We also let $l(w)$ be the length of the shortest word representing w in the generators s_{i}. A Tits building is a set X with a C-valued distance function $d: X \times X \rightarrow C$ that has the following properties:

1. $d(x, y)=1$ iff $x=y$.
2. If $d(x, y)=w$ and $d(y, z)=s_{i}$ then $d(x, z)=w$ or $d(x, z)=w s_{i}$.
3. For each $x, y \in X$ and s_{i} there is $z \in X$ such that

$$
d(y, z)=s_{i}, \quad d(x, z)=d(x, y) s_{i} .
$$

Moreover, z is unique if $l\left(d(x, y) s_{i}\right)<l(d(x, y))$.
We note that X can be realized geometrically as a simplicial complex X_{t} as follows:

- Label the $(d-1)$-dimensional faces of the simplex Δ^{d} with s_{1}, \ldots, s_{d+1}.
- Form $X \times \Delta^{d}$ and, for any $w, w^{\prime} \in X$ with $d\left(w, w^{\prime}\right)=s_{i}$, glue $w \times \Delta^{d}$ and $w^{\prime} \times \Delta^{d}$ along the face labeled ${ }^{(12)}$ by s_{i}.

The same construction for C equipped with $d\left(w, w^{\prime}\right)=w^{-1} w^{\prime}$ in place of X yields the Coxeter complex C_{t} of C. The geometric realization of X_{t}

[^5]contains plenty of embedded copies of C_{t} (called apartments). Any pair of chambers (d-dimensional simplices of X_{t}) is contained in an apartment $\left({ }^{(13)}\right)$,

Remark 3.1. Let $c \in X$ be a chamber. Then the folding map $f_{c}: X \rightarrow C$ defined by

$$
f_{c}\left(c^{\prime}\right)=d\left(c, c^{\prime}\right)
$$

induces a simplicial morphism $f_{c}: X_{t} \rightarrow C_{t}$ which is an isomorphism when restricted to an apartment that contains c.

Assume that R is a field and consider the symplectic space ($W_{2 n-2}, \widehat{\varphi}$). We show how to construct a Tits building using ($W_{2 n-2}, \widehat{\varphi}$) by describing its geometrical realization as a simplicial complex. Indeed, as shown in Brown, Ga, the simplicial complex X_{n-1} whose vertices are isotropic subspaces of $W_{2 n-2}$ and which has flags $\left[{ }^{14}\right)$ of isotropic subspaces as simplices forms a building. More precisely, each vertex of X_{n-1} is labeled by the dimension of the corresponding isotropic subspace of $W_{2 n-2}$, and codimension one faces of chambers are labeled using the corresponding labels of the opposite vertices. Furthermore, the Lagrangian subspaces of $W_{2 n-2}$ are in one-to-one correspondence with vertices of X_{n-1} labeled by $n-1$. We observe that chambers of $X_{n-1}=X_{t}$ (elements of X) correspond to maximal isotropic flags in $W_{2 n-2}$. In our case, the Coxeter group C is a signed permutation group determined by

$$
\begin{aligned}
& m_{i, j}= \begin{cases}4 & \text { if } i=n-1, j=n-1, \\
3 & \text { if } 1 \leq i<n-2, \\
2 & \text { if }|i-j|>1,\end{cases} \\
& m_{n-2, n-1}=4, \quad m_{i, i+1}=3
\end{aligned}
$$

and the corresponding Coxeter complex can be identified with the first barycentric subdivision of the boundary of an $(n-1)$-dimensional cube I^{n-1}.

We now describe how to define apartments for our Coxeter complex. Choose a basis $B=\left\{v_{1}, w_{1}, \ldots, v_{n-1}, w_{n-1}\right\}$ of $W_{2 n-2}$ with the property

$$
\begin{aligned}
\widehat{\varphi}\left(v_{i}, w_{i}\right) & =-\widehat{\varphi}\left(w_{i}, v_{i}\right)=1 \\
\widehat{\varphi}\left(v_{i}, v_{j}\right) & =-\widehat{\varphi}\left(w_{i}, w_{j}\right)=\widehat{\varphi}\left(v_{i}, w_{j}\right)=0
\end{aligned}
$$

for $i \neq j$ and consider all isotropic subspaces $\left({ }^{15}\right)$ spanned by subsets of B. Vertices corresponding to these subspaces span an apartment $A(B)$ in X_{t}. Moreover, the 2^{n-1} Lagrangian subspaces in $A(B)$ consisting of all subspaces

[^6]of $W_{2 n-2}$ with exactly one vector from each pair $\left\{v_{i}, w_{i}\right\}$ correspond to vertices of the cube I^{n-1}.

Lemma 3.2. Let \mathcal{L} be the family of Lagrangian subspaces corresponding to ($n-1$)-labeled vertices of an apartment $A \subset X_{n-1}$. Then for each Lagrangian $M \subset W_{2 n-2}$ there exists an $L \in \mathcal{L}$ with $M \cap L=\{0\}$.

Proof. Suppose this is not the case. Then for each $L \in \mathcal{L}$ there is a length ≤ 2 path P_{L} in the 1-skeleton of X_{n-1} connecting M and L. Choose a chamber $c \in A$ and consider the folding map f_{c}. The family $\left\{f_{c}\left(P_{L}\right) \mid L \in \mathcal{L}\right\}$ is a family of length ≤ 2 paths in the 1-skeleton of C_{t} connecting $f_{c}(M)$ to every vertex of the cube I^{n-1}. However, $f_{c}(M)$ cannot be connected by such a path to the vertex opposite to it. In other words, if L corresponds to the vertex antipodal in A to $f_{c}(M)$, then L intersects trivially with M.

To finish this section, we give an example of a family \mathcal{L} as in the lemma describing its elements in terms of Catalan tangles (i.e. n-tangles with no crossings). Let $B=\left\{v_{i}, w_{i}: i=1, \ldots, n-1\right\}$, where

$$
\begin{array}{ll}
v_{1}=f_{n-1}, & w_{1}=f_{n} \\
v_{2}=f_{n-2}+f_{n}, & w_{2}=f_{n-1}+f_{n+1} \\
v_{3}=f_{n-3}+f_{n-1}+f_{n+1}, & w_{3}=f_{n-2}+f_{n}+f_{n+2}
\end{array}
$$

etc.
Proposition 3.3. Each Lagrangian subspace of $W_{2 n-2}$ corresponding to a vertex of $A(B)$ is represented by exactly one n-tangle from the following family \mathcal{L}. A tangle T is in \mathcal{L} iff
(a) T is a Catalan n-tangle;
(b) each boundary point p_{i} is connected to one of $p_{i-1}, p_{i+1}, p_{2 n-i}, p_{2 n-i-2}$.

Proof. We construct tangles from the family \mathcal{L} inductively, starting from the left of the square (see Figure 1), adding the i th arc while choosing a vector from the pair $\left\{v_{i}, w_{i}\right\}$ at the same time. In the first step the choice of v_{1} results in joining p_{n} to p_{n-1} by an arc and the choice of w_{1} corresponds to connecting p_{n} and p_{n+1} by an arc. If in the k th step v_{k} was chosen, then in the next step one can choose v_{k+1} (and, at the same time, add an arc connecting the lowest available boundary points) or w_{k+1} (and, at the same time, connecting the two lowest available boundary points on the right hand side of the square).

If in the k th step w_{k} was chosen, then in the next step one can choose w_{k+1} (and add a strand across the square connecting the lowest available boundary points) or v_{k+1} (and connect the two lowest available boundary points on the left hand side of the square).

Finally, one connects the remaining two boundary points.
4. Rotors. In this section we given criteria when a dihedral flype (see Definition 4.2p preserves the space of Fox p-colorings $\operatorname{Col}_{p}(L)(p>2)$ modulo trivial colorings (the first homology with \mathbb{Z}_{p} coefficients of the double branched cover of S^{3} branched along a link [Pr-1]).

Definition 4.1 ($\mathrm{A}-\mathrm{P}-\mathrm{R})$. Consider an n-tangle which is a part of the link diagram placed in the regular n-gon with $2 n$ boundary points (n inputs and n outputs). We say that such an n-tangle is an n-rotor if it has rotational symmetry, that is, the tangle is invariant with respect to rotation about the z-axis by $2 \pi / n$ (see Figure 7).

Definition 4.2 ($\mathrm{A}-\mathrm{P}-\mathrm{R}$; rotation operation on a link diagram). Consider a link L_{1} whose diagram is divided into two n-tangles: the rotor part, as described in Definition 4.1, and its complement called a stator. A rotant of a link L_{1} is the link L_{2} (Figure 7) obtained from L_{1} by a dihedral flype of the rotor part. Note that L_{2} does not depend on the choice of the dihedral flype. We say that L_{2} is obtained from L_{1} by a rotation.

As noted before, there is a $\mathbb{Z}_{2 n}$-action on the set $\mathcal{T}_{2 n}$ induced by the rotation r of n-tangles counterclockwise about the z-axis by the angle π / n. Moreover, on the space $\mathbb{Z}_{p}^{2 n}$ of p-colorings of $2 n$ boundary points, r yields an isomorphism defined by $r\left(e_{i}\right)=e_{i+1}$ (where indices are modulo $2 n$) and, when restricted to $W_{2 n-1}$, the map r is a φ-isometry which maps basis vectors as follows:

$$
\begin{aligned}
r\left(f_{i}\right) & =f_{i+1} \\
r\left(f_{2 n-1}\right) & =f_{2 n}=\sum_{i=1}^{n-1}\left(f_{2 i-1}-f_{2 i}\right)+f_{2 n-1} \\
r\left(f_{2 n}\right) & =f_{1}
\end{aligned}
$$

We analyze invariant subspaces of r^{2} and, in particular, we look for invariant

Fig. 7. A link L and its rotant $m_{y}(L)$

Lagrangians of the $2 \pi / n$-rotation about the z-axis. We use our analysis to partially answer the question whether an operation of rotation (in the sense of Definition 4.2) preserves the first homology of the double branched cover of S^{3} along a link.

In particular, we prove the following result.
Theorem 4.3. Let L be a link diagram with an n-rotor part R. Let the rotant $m_{y}(L)$ be obtained from L by rotating R around the y-axis by the angle π and keeping the stator, $L-R$, unchanged. Assume that either $n=p$, where p is a prime number, or n is co-prime to p and such that there exists s with $p^{s} \equiv-1 \bmod n$. Then the space $\operatorname{Col}_{p}(L)$ is preserved by any n-rotation.

In the proof of Theorem 4.3 we analyze eigenspaces of the symplectic space $\mathbb{Z}_{p}^{2 n-2}$ with respect to rotation. This will allow us to obtain conditions under which a rotation invariant Lagrangian subspace of $\mathbb{Z}_{p}^{2 n-2}$ is also invariant under the dihedral flype s. Figure 7 illustrates a pair of 4 -rotants which have different spaces of Fox 5 -colorings, \mathbb{Z}_{5}^{2} and \mathbb{Z}_{5}^{3}, respectively. One can also check for the tangle R in Figure 7 that $\operatorname{ker}(\psi)=\mathbb{Z}_{5}$. Therefore, there exists a nontrivial 5 -coloring of R which is 0 on the boundary of $R{ }^{\left({ }^{16}\right)}$. Analogous examples can be constructed whenever $\operatorname{gcd}(p-1, n)>2$.

Most of this section is devoted to the proof of Theorem 4.3. Let μ_{n} be the group of nth roots of 1 , and let k be a finite algebraic extension of \mathbb{Z}_{p} containing μ_{n}. To understand r^{2}-invariant Lagrangians of $W=W_{2 n-2}$ we first consider the action of r^{2} on two invariant subspaces

$$
W_{+}=\left\langle f_{0}, f_{2}, \ldots, f_{2 n-2}\right\rangle \quad \text { and } \quad W_{-}=\left\langle f_{1}, f_{3}, \ldots, f_{2 n-1}\right\rangle .
$$

After extending scalars to k we can diagonalize this action. For each $\alpha \in$ $\mu_{n}-\{1\}$ the vector

$$
D_{\alpha}=\sum_{j=0}^{n-1} \alpha^{j} f_{2 j}
$$

(respectively $C_{\alpha}=\sum_{j=0}^{n-1} \alpha^{j} f_{2 j+1}$) is an eigenvector of r^{2} with eigenvalue α. The vectors D_{α} (resp. C_{α}) form a basis of W_{+}(resp. W_{-}). One shows

Formula 4.4.

$$
\begin{align*}
& \widehat{\varphi}\left(C_{\alpha}, D_{\beta}\right)= \begin{cases}n(\alpha-1) & \text { if } \alpha \beta=1, \\
0 & \text { otherwise },\end{cases} \tag{1}\\
& \widehat{\varphi}\left(C_{\alpha}, C_{\beta}\right)=\widehat{\varphi}\left(D_{\alpha}, D_{\beta}\right)=0\left(W_{+} \text {and } W_{-} \text {are Lagrangians }\right)
\end{align*}
$$

where $\hat{\varphi}$ is also used for the extension k of \mathbb{Z}_{p}.

[^7]The action of m_{y} on our eigenvectors is given by

$$
\begin{equation*}
m_{y}\left(C_{\alpha}\right)=-\alpha^{-1} C_{\alpha^{-1}}, \quad m_{y}\left(D_{\alpha}\right)=D_{\alpha^{-1}} \tag{2}
\end{equation*}
$$

Let

$$
W_{\alpha^{ \pm 1}}=\left\langle C_{\alpha}, C_{\alpha^{-1}}, D_{\alpha}, D_{\alpha^{-1}}\right\rangle
$$

It follows from (1) that the subspaces $W_{\alpha^{ \pm 1}}$ are symplectic and $\widehat{\varphi}$-orthogonal to each other. Moreover, they are all 4-dimensional except the 2-dimensional $W_{-1}=\left\langle C_{-1}, D_{-1}\right\rangle$ which appears when n is even.

Using the above description we see that r^{2}-invariant Lagrangian subspaces of $W \otimes k$ are direct sums $L_{-1} \oplus \bigoplus L_{\alpha^{ \pm 1}}$, where

$$
L_{-1} \subset W_{-1}, L_{\alpha^{ \pm 1}} \subset W_{\alpha^{ \pm 1}} \quad \text { and } \quad \operatorname{dim} L_{-1}=1, \operatorname{dim} L_{\alpha^{ \pm 1}}=2
$$

Moreover, while L_{-1} can be an arbitrary 1-dimensional subspace of W_{-1}, $L_{\alpha^{ \pm 1}}$ has to be r^{2}-invariant and isotropic in $W_{\alpha^{ \pm 1}}$. There are three possibilities for the latter to hold:
(a) $L_{\alpha^{ \pm 1}}=\left\langle C_{\alpha}, D_{\alpha}\right\rangle$,
(b) $L_{\alpha^{ \pm 1}}=\left\langle C_{\alpha^{-1}}, D_{\alpha^{-1}}\right\rangle$,
(c) $L_{\alpha^{ \pm 1}}=\langle v, w\rangle$, where v is a vector in $\left\langle C_{\alpha}, D_{\alpha}\right\rangle$ and w is the unique (up to scaling) vector in $\left\langle C_{\alpha^{-1}}, D_{\alpha^{-1}}\right\rangle$ such that $\widehat{\varphi}(v, w)=0$.
LEMMA 4.5. The vectors w in (c) and $m_{y}(v)$ are proportional.
Proof. One checks using (1) and (2) that $\widehat{\varphi}\left(v, m_{y}(v)\right)=0$.
Proposition 4.6. An r^{2}-invariant subspace of $W \otimes k$ is also m_{y}-invariant unless it contains a subspace of the form $\left\langle C_{\alpha}, D_{\alpha}\right\rangle$.

The next step is to analyze which r^{2}-invariant Lagrangian subspaces of $W \otimes k$ arise as r^{2}-invariant Lagrangian subspaces of W by extension of scalars.

As r^{2} has no multiple eigenvalues in W_{+}and W_{-}, both of these split into direct sums of r^{2}-irreducible subspaces:

$$
W_{ \pm}=\bigoplus_{\phi} W_{ \pm}^{\phi}
$$

where ϕ runs through the factors of $\frac{x^{n}-1}{x-1}$ over \mathbb{Z}_{p}. Put $W^{\phi}=W_{+}^{\phi} \oplus W_{-}^{\phi}$. Every r^{2}-invariant Lagrangian subspace L of W decomposes as

$$
L=\bigoplus_{\phi}\left(L \cap W^{\phi}\right)
$$

Furthermore, each $L \cap W^{\phi}$ is either $\{0\}, W^{\phi}$, or the graph of an r^{2}-equivariant linear map $W_{-}^{\phi} \rightarrow W_{+}^{\phi}$ (including the degenerate case of W_{+}^{ϕ}). Clearly, only when for some $\phi, L \cap W^{\phi}=W^{\phi}$, does the space $L \otimes k$ contain a $\left\langle C_{\alpha}, D_{\alpha}\right\rangle$. Now W^{ϕ} is isotropic if and only if for each pair $\alpha, \alpha^{-1} \in \mu_{n}$ at most one of α, α^{-1} is a root of ϕ.

Lemma 4.7. Consider the following condition:
There exists s such that $p^{s} \equiv-1 \bmod n$.
(i) If (3) holds, then for each α and some ϕ,

$$
\phi(\alpha)=0 \quad \text { if and only if } \phi\left(\alpha^{-1}\right)=0
$$

(ii) If (3) does not hold, then there exist α and ϕ such that $\phi(\alpha)=0$ while $\phi\left(\alpha^{-1}\right) \neq 0$.

Proof. The Galois group $\operatorname{Gal}\left(k / \mathbb{Z}_{p}\right)$ is generated by the Frobenius automorphism $x \mapsto x^{p}$. If $\phi(\alpha)=0$, then the roots of ϕ are exactly the conjugates of α, i.e.

$$
\alpha, \alpha^{p}, \alpha^{p^{2}}, \alpha^{p^{3}}, \ldots
$$

If (3) holds, this sequence contains α^{-1}. If α is a primitive nth root of 1 , (3) is also necessary for this sequence to contain α^{-1}. This proves the lemma.

Theorem 4.8.
(i) If (3) holds, then all r^{2}-invariant Lagrangians in W are m_{y}-invariant.
(ii) If (3) does not hold, then there are r^{2}-invariant Lagrangians in W which are not m_{y}-invariant.

Proof. For (i) we observe that (3) implies that no W^{ϕ} is isotropic. That is, $L \cap W^{\phi}$ has to be the graph of a map $W_{-}^{\phi} \rightarrow W_{+}^{\phi}\left(\right.$ or $\left.W_{+}^{\phi}\right)$. Then $\left(L \cap W^{\phi}\right) \otimes k$ is the graph of $W_{-}^{\phi} \otimes k \rightarrow W_{+}^{\phi} \otimes k$ (or $W_{+}^{\phi} \otimes k$), and does not contain the subspace $\left\langle C_{\alpha}, D_{\alpha}\right\rangle$.

For (ii), we pick ϕ as in Lemma 4.7(ii). Among all the other irreducible factors of $\frac{x^{n}-1}{x-1}$ exactly one, call it ϕ^{\prime}, has as its roots the inverses of the roots of ϕ. Put

$$
L=W^{\phi} \oplus \bigoplus_{\psi \neq \phi, \phi^{\prime}} W_{+}^{\psi}
$$

We see that L is isotropic and

$$
m_{y}(L)=W^{\phi^{\prime}} \oplus \bigoplus_{\psi \neq \phi, \phi^{\prime}} W_{+}^{\psi}
$$

For $n \leq 17$ we list of all pairs $(n, p \bmod n)$ that satisfy (3):

- $(3,2),(4,3),(5,2),(5,3),(5,4),(6,5),(7,3),(7,5),(7,6),(8,7),(9,2)$, $(9,5),(9,8),(10,3),(10,7),(10,9),(11,2),(11,6),(11,7),(11,8),(11,10)$, $(12,11),(13,2),(13,4),(13,5),(13,6),(13,7),(13,8),(13,10),(13,11)$, $(13,12),(14,3),(14,5),(14,13),(15,14),(16,15),(17,2),(17,3),(17,4)$, $(17,5),(17,6),(17,7),(17,8),(17,9),(17,10),(17,11),(17,12),(17,13)$, $(17,14),(17,15),(17,16)$.

Corollary 4.9. If (n, p) satisfies (3) (e.g. for the pairs above), then the number of p-colorings is the same for a link and its rotant.

For instance, when $\operatorname{gcd}(p-1, n)>2$ condition (3) does not hold, i.e. $x^{n}-1$ has a root α in \mathbb{Z}_{p} different from 1 and -1 . We will show that in such a case there exist rotors whose Lagrangians are not m_{y}-invariant. In particular, the number of p-colorings can be different for a link and its rotant. Consider a rotor R with fundamental domain shown in Figure 8 ,

Fig. 8. Rotor R with 3 -tangle B

We find a 3 -tangle B such that

$$
\widehat{\psi}\left(\operatorname{Col}_{p}(R)\right) \otimes k \supseteq\left\langle C_{\alpha}, D_{\alpha}\right\rangle
$$

i.e. each k-coloring v of $2 n$ boundary points of R satisfying $r^{2}(v)=\alpha v$ is induced by the Fox p-coloring of R. The following condition on B ensures that R has the above property (as one can see using r^{2}-equivariant colorings): For all $a, b \in \mathbb{Z}_{p}$, there are $c, d \in k$ such that the k-coloring of the six boundary points shown in Figure 9 is induced by a Fox p-coloring of B.

Fig. 9. Condition for boundary coloring
We observe that it is sufficient to verify the above condition for two k linearly independent pairs (a, b). Thus, for instance, we take $(1,1)$ and $(\alpha, 1)$. For each such pair, we find (c, d) and then check that the resulting boundary k-colorings are $\widehat{\varphi}$-orthogonal (in W_{4}). For $(1,1)$ we take $c=d=\frac{1}{\alpha+1}$ and for $(\alpha, 1)$ let $c=0$ and $d=1$. The resulting colorings are represented in W_{4}
by the following vectors:

$$
\begin{aligned}
& v_{1}=\frac{1}{\alpha+1} f_{1}+f_{3}+\frac{\alpha}{\alpha+1} f_{5} \\
& v_{2}=\alpha f_{3}+(1-\alpha) f_{4}+(\alpha-1) f_{5}+f_{6}
\end{aligned}
$$

It is straightforward to check that these are $\widehat{\varphi}$-orthogonal. It follows from Theorem 2.5 that the subspace of W_{4} spanned by v_{1}, v_{2} is induced by some 3 -tangle B.

REMARK 4.10. All rotors constructed above have non-trivial p-colorings (corresponding to v_{1}) equal to 1 on the boundary and non-constant in the interior. After subtracting from this coloring the constant coloring of B (with value 1), one gets a non-trivial Fox p-coloring of B which can be extended r^{2}-equivariantly to a p-coloring of R with zero values on the boundary.

Two such cases are discussed in the next example.
EXAMPLE 4.11. As one can verify, for $n=4, p=5$, we can take the braid $B=\sigma_{2}^{-2} \sigma_{1} \sigma_{2}^{-1}$ and $\alpha=2\left(2^{4}-1=15 \equiv 0 \bmod 5\right)$. For $n=3, p=7$ we take the braid $B=\sigma_{2}^{-1} \sigma_{1}^{3} \sigma_{2}^{2} \sigma_{1}^{-1}$ and $\alpha=2\left(2^{3}-1=7 \equiv 0 \bmod 7\right)$.

Remark 4.12. In Example 4.11, $\widehat{\psi}\left(\operatorname{Col}_{5}(R)\right)$ and $\widehat{\psi}\left(\operatorname{Col}_{5}\left(m_{y}(R)\right)\right)$ intersect along their L_{-1}-part, so that if we use R as both the rotor and the stator then

$$
\log _{5}\left|\operatorname{Col}_{5}(R \cup R)\right|=2+\log _{5}\left|\operatorname{Col}_{5}\left(R \cup m_{y}(R)\right)\right|
$$

Let us now consider the case $n=p>2$. As before, we split $W=W_{2 n-2}$ into a direct sum $W=W_{+} \oplus W_{-}$, where

$$
W_{+}=\left\langle f_{0}, f_{2}, \ldots, f_{2 n-2}\right\rangle \quad \text { and } \quad W_{-}=\left\langle f_{1}, f_{3}, \ldots, f_{2 n-1}\right\rangle
$$

For $j=1, \ldots, p-1$ put

$$
\begin{equation*}
w_{p-j}=\sum_{k=0}^{j-1}(-1)^{j+k-1}\binom{j-1}{k} f_{2 k}, \quad v_{p-j}=\sum_{k=0}^{j-1}(-1)^{j+k-1}\binom{j-1}{k} f_{2 k+1} \tag{4}
\end{equation*}
$$

The vectors $w_{p-j}\left[v_{p-j}\right]$ form a basis of $W_{+}\left[W_{-}\right]$. In these bases, the action of r^{2} is

$$
\begin{align*}
r^{2} w_{i} & =w_{i}+w_{i-1}, & r^{2} v_{i} & =v_{i}+v_{i-1} \\
r^{2} w_{1} & =0, & r^{2} v_{1} & =0 \tag{5}
\end{align*}
$$

One checks directly that

$$
\begin{equation*}
\widehat{\varphi}\left(w_{p-i}, v_{p-j}\right)=(-1)^{i+j}\binom{i+j-1}{j} \tag{6}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\widehat{\varphi}\left(w_{i}, v_{j}\right)=(-1)^{i+j}\binom{2 p-i-j-1}{p-j} \tag{7}
\end{equation*}
$$

where the binomial coefficient should be read modulo p. In particular $\widehat{\varphi}\left(w_{i}, v_{j}\right)$ $=0$ when $2 p-i-j-1 \geq p$, i.e. when $i+j \leq p-1$.

Corollary 4.13. Let $\Lambda_{s}=\left\langle w_{1}, v_{1}, \ldots, w_{s}, v_{s}\right\rangle$. Then Λ_{s} is an isotropic subspace of W if and only if $s \leq(p-1) / 2$.

We want to describe the r^{2}-invariant Lagrangian subspaces L of W. Let s be the largest number such that $\Lambda_{s} \subset L$ (it may well be 0) and put $t=p-s-1$.

Lemma 4.14. $L \subset \Lambda_{t}$.
Proof. Suppose $L \nsubseteq \Lambda_{t}$. Then we can find in L a vector

$$
u=a_{k} w_{k}+a_{k-1} w_{k-1}+\cdots+a_{1} w_{1}+b_{p-1} v_{p-1}+b_{p-2} v_{p-2}+\cdots+b_{1} v_{1}
$$

with $k>t, a_{k} \neq 0$ (or a vector of this form with w and v switched) that is not in Λ_{t}. Then $\varphi\left(\left(r^{2}-1\right)^{k-t-1} u, v_{s}\right) \neq 0$.

Lemma 4.15. L contains a unique vector of the form

$$
u_{t}=w_{t}+\sum_{i=s+1}^{t} a_{i} v_{i}
$$

(or one with w and v switched), and then it has the following basis: w_{1}, \ldots, w_{s}, $v_{1}, \ldots, v_{s}, u_{s+1}, \ldots, u_{t}$ where

$$
\begin{equation*}
u_{k}=w_{k}+\sum_{i=s+1}^{k} a_{i+t-k} v_{i} \tag{8}
\end{equation*}
$$

Proof. If $u \in L \cap \Lambda_{k}$ is non-zero in $\Lambda_{k} / \Lambda_{k-1}$, then so is $\left(r^{2}-1\right)^{l} u$ in $\Lambda_{k-l} / \Lambda_{k-l-1}$. Therefore, $\left(L \cap \Lambda_{k}\right) / \Lambda_{k-1}$ is 1-dimensional for $s+1 \leq k \leq t$ (it is 0 -dimensional for $k>t, 2$-dimensional for $k \leq s$, while L has dimension $t+s$ and does not contain Λ_{s+1}).

Pick a vector $u \in L$ that spans L / Λ_{t-1}. We may assume that w_{t} (or v_{t}) appears in u with coefficient 1 . If $c_{t-l} w_{t-l}$ appears in u, it can be canceled by subtracting $c_{t-l}\left(r^{2}-1\right)^{l} u$. We can also remove w_{i} and v_{i} with $i \leq s$, as these are in $\Lambda_{s} \subset L$. After these operations, we get the vector u_{t} as in (8). Now u_{k} equals $\left(r^{2}-1\right)^{t-k} u_{t}$ (modulo Λ_{s}), thus it belongs to L. Thus all the vectors $w_{1}, \ldots, w_{s}, v_{1}, \ldots, v_{s}, u_{s+1}, \ldots, u_{t}$ are in L, and are clearly linearly independent. Since $\operatorname{dim} L=t+s$, these vectors form a basis of L.

Lemma 4.16. $a_{t}=0$.

Proof. We see that

$$
\begin{aligned}
0 & =\varphi\left(u_{t}, u_{s+1}\right)=\varphi\left(w_{t}, a_{t} v_{s+1}\right)+\varphi\left(a_{t} v_{t}, w_{s+1}\right) \\
& =-a_{t}\left(\binom{p-1}{t}-\binom{p-1}{p-t}\right)=2(-1)^{t+1} a_{t}
\end{aligned}
$$

Every r^{2}-invariant Lagrangian subspace L of W is therefore determined by choosing $s, a_{s+1}, \ldots, a_{t-1}$, where $t=p-s-1$. However, not every choice of these parameters gives rise to an isotropic subspace of W-there are extra conditions $\varphi\left(u_{u}, u_{k}\right)=0$, which can be written as
$(9)_{u, k} \sum_{i=p+t-u-k}^{t-1} a_{i}(-1)^{u+k+i-t}$

$$
\times\left(\binom{2 p-u-k+t-i-1}{p-k-i+t}-\binom{2 p-u-k+t-i-1}{p-k-1}\right)=0 .
$$

The above has to hold for each pair u, k such that $t \geq u>k \geq s+2$, $u+k>p$.

LEMMA 4.17. $(-1)^{k}\binom{n}{k}=\binom{p-1+k-n}{k} \bmod p$.
Proof. We have

$$
\begin{aligned}
\binom{n}{k} & =\frac{n(n-1) \ldots(n-k+1)}{k!} \\
\binom{p-1+k-n}{k} & =\frac{(p-n+k-1) \ldots(p-n+1)(p-n)}{k!}
\end{aligned}
$$

Now $p-n \equiv-n \bmod p, p-n+1 \equiv-(n-1) \bmod p$, etc.
Let us now turn to the invariance of L under m_{y}. First, using (4), (3) and Lemma 4.17 one gets

$$
m_{y}\left(w_{j}\right)=(-1)^{j} \sum_{i=0}^{j}\binom{j+1}{i+1} w_{i}, \quad m_{y}\left(v_{j}\right)=(-1)^{j+1} \sum_{i=0}^{j}\binom{j}{i} v_{i}
$$

Therefore (calculating modulo m_{y}-invariant Λ_{s})

$$
\begin{aligned}
m_{y}\left(u_{u}\right) & =m_{y}\left(w_{u}+\sum_{i=s+1}^{u-1} a_{t+i-u} v_{i}\right) \\
& =(-1)^{u} \sum_{j=0}^{u}\binom{u+1}{j+1} w_{j}+\sum_{i=s+1}^{u-1} a_{t+i-u}(-1)^{i+1} \sum_{l=s+1}^{i}\binom{i}{l} v_{l} \\
& =(-1)^{u} \sum_{j=0}^{u}\binom{u+1}{j+1} w_{j}+\sum_{l=s+1}^{u-1}\left(\sum_{i=l}^{u-1} a_{t+i-u}(-1)^{i+1}\binom{i}{l}\right) v_{l}
\end{aligned}
$$

Note that $m_{y}\left(u_{u}\right) \in L$ if $m_{y}\left(u_{u}\right)$ is a linear combination of u_{j} with coefficients matching those of w_{j} in the above sum. Comparing the v_{l} terms (in the above sum) gives
$(10)_{u, l} \quad \sum_{i=t+l-u}^{t-1} a_{i}(-1)^{u}\left(\binom{u+1}{t+l+1-i}+(-1)^{i-t}\binom{i+u-t}{l}\right)=0$.
To ensure m_{y}-invariance of L, this formula should hold for all pairs u, l such that $t \geq u>l \geq s+1$.

THEOREM 4.18. If $n=p>2$ then each r^{2}-invariant Lagrangian subspace of W is also m_{y}-invariant.

Proof. We will prove that equations (9) imply 10 .
Applying Lemma 4.17 to 10 we find that $10{ }_{u, l}$ is equivalent to $11 u+1, l$, where
$(11)_{u, l}$

$$
\sum_{i=t+l-u+1}^{t-1} a_{i}(-1)^{t+l-u+i}\left(\binom{p+t+l-u-i}{l+t+1-i}-\binom{p+t+l-u-i}{l}\right)=0
$$

So, we want to prove $(11)_{u+1, l}$ for all u, l such that $t \geq u>l \geq s+1$. In other words, we want $11 v_{v, l}$ for all v, l such that $t+1 \geq v \geq s+3$, $v-2 \geq l \geq s+1$.

On the other hand, (9) ${ }_{u, k}$ is equivalent to $\left.{ }_{11}\right)_{u, l}$ with $l=p-k-1$, so ${ }^{11} x, p-y-1$ for x, y such that $t \geq x>y \geq s+2, x+y>p$, in other words, (11) x, z for x, z such that $t \geq x \geq s+3, x-2 \geq z \geq p-x-2$. This directly covers part of the equations that we want to have. There are two cases left:
(a) $p-v-2>l \geq s+1$,
(b) $v=t+1$.

If (a) holds, we notice that $\operatorname{11}_{v, l} \Leftrightarrow(11)_{p-l-1, p-v-1}$, and the latter is on our list of assumptions.

If (b) is true, we first notice that $(11)_{t+1, s+1}$ is a linear combination of $\sqrt{11} t, s+1$ and $1_{t, s}$. But $t_{t, s}$ has zero coefficients since $\binom{n}{k}=\binom{n}{n-k}$. If $s+1$, then $(11)_{t+1, l}$ is a linear combination of $11{ }_{t, l-1}$ and 11$)_{t, l}$. .
5. Symplectic form on t-colorings of tangles. In this section, we consider a generalization of the symplectic structure on Fox p-colorings that we studied in previous sections to Alexander-Burau-Fox t-colorings (briefly $A B F$-colorings) and a related t-invariant symplectic structure. Here we only sketch an idea which we plan to develop in the future. Consider a 2 -dimensional disk with $2 n$ boundary points $p_{1}, \ldots, p_{2 n}$ (n inputs and n outputs, see Figure 1). For a fixed commutative ring R with identity we consider the free $R\left[t^{ \pm 1}\right]$-module $\left(R\left[t^{ \pm 1}\right]\right)^{2 n}$ with a basis $e_{1}, \ldots, e_{2 n}$ and we view elements of
this module as colorings of boundary points by elements of $R\left[t^{ \pm 1}\right]$. Consider the submodule $W_{2 n-1}$ of $R\left[t^{ \pm 1}\right]^{2 n}$ generated by all elements of the form $e_{i}-u e_{i+1}$, where u equals $-1, t$, or t^{-1} depending on whether p_{i}, p_{i+1} are inputs or outputs. On the $R\left[t^{ \pm 1}\right]$-module $W_{2 n-1}$ regarded as an R-module, we define a t-invariant alternating form. The quotient of $W_{2 n-1}$ by trivial (constant) colorings is a symplectic R-module. We show that $R\left[t^{ \pm 1}\right]$-colorings of an oriented n-tangle T which satisfy the Alexander-Burau relation at each crossing yield a Lagrangian in our symplectic R-module. We discuss a relation between t-colorings and homologies of the universal cyclic coverings and evenfold cyclic branched coverings. We note that our considerations in the previous sections correspond to the case when $t=-1$ and the double branched covering.

Let R be a commutative ring with identity and assume that the ring $\mathbb{Z}\left[t^{ \pm 1}\right]$ acts on R. Thus R is also a $\mathbb{Z}\left[t^{ \pm 1}\right]$-module. An ABF-coloring of an oriented tangle T is an assignment of elements of R to arcs of T, such that at each crossing the $A B F$ relation:

$$
(1-t) a+t b-c=0
$$

(or equivalently, $\left.\left(1-t^{-1}\right) a+t^{-1} c-b=0\right)$; see Figure 10 . We are mostly interested in the cases when R is $\mathbb{Z}\left[t^{ \pm 1}\right], \mathbb{Z}\left[t^{ \pm 1}\right] /\left(\frac{t^{2 k}-1}{t-1}\right)$ or $\mathbb{Z}_{p}\left[t^{ \pm 1}\right] /(q(t))$, where p is a prime number and $q(t)$ an irreducible polynomial. For a boundary point we put $\varepsilon_{i}=1$ if the point is an output and $\varepsilon_{i}=-1$ for an input. Define the t-alternating condition for an element $\sum_{i=1}^{2 n} a_{i} e_{i} \in R^{2 n}$ to be $\sum_{i=1}^{2 n} c_{i} a_{i}=0$, where $c_{i+1}=\varepsilon_{i} \varepsilon_{i+1} t^{\left(\varepsilon_{i}+\varepsilon_{i+1}\right) / 2} c_{i}$.

Fig. 10. $A B F$-coloring relation
Let $\operatorname{Col}_{R, t}(T)$ be the R-module of $A B F$-colorings of a tangle T. There is a map

$$
\psi: \operatorname{Col}_{R, t}(T) \rightarrow R^{2 n}
$$

which assigns to an $A B F$-coloring of T a coloring of its $2 n$ boundary points.
Lemma 5.1. Elements of $\psi\left(\operatorname{Col}_{R, t}(T)\right)$ satisfy the t-alternating condition.
Proof. The proof proceeds in the same manner as in the case $t=-1$. The most important observation is that the t-alternating condition holds locally. In fact for a crossing we can write the $A B F$-relation in the form $a+t b-t a-c=0$.

As in the case $t=-1$ we can find a basis for the subspace satisfying the t-alternating condition. Let $W_{2 n-1}=W_{2 n-1}\left(\varepsilon_{1}, \ldots, \varepsilon_{2 n}\right)$ denote this R-module.

Lemma 5.2. $W_{2 n-1}$ is a free R-module of rank $2 n-1$ with a basis $\left\{f_{1}, \ldots, f_{2 n-1}\right\}$, where $f_{i}=e_{i}+u_{i} e_{i+1}$ and u_{i} satisfies $c_{i+1}=-u_{i}^{-1} c_{i}$, i.e.

$$
u_{i}=-\varepsilon_{i} \varepsilon_{i+1} t^{-\left(\varepsilon_{i}+\varepsilon_{i+1}\right) / 2}
$$

Our plan is to define a t-invariant alternating form of nullity one on $W_{2 n-1}$ that, as before, satisfies the condition

$$
\varphi\left(f_{i}, f_{j}\right)= \begin{cases}0 & \text { if }|j-i| \neq 1 \\ j-i & \text { otherwise }\end{cases}
$$

and additionally

$$
\varphi\left(-t f_{i}, f_{j}\right)=\varphi\left(f_{i}, f_{j}\right)
$$

Of course, we did this before for $t=-1$, but to achieve it in a more general setting (${ }^{17}$), we need to regard R as a ring with a subring R_{0}. Let $j: R_{0} \rightarrow R$ be a homomorphism of rings and φ be defined over R_{0}. We show how it works in one important case:

Example 5.3. Let I be an ideal of $R_{0}\left[t^{ \pm 1}\right]$ such that $(t+1) \in I$ and $R=R_{0}\left[t^{ \pm 1}\right] / I$. Then the t-invariant alternating form φ with nullity one described above is well defined.

Theorem 5.4. If T is a rational tangle then $\psi\left(\operatorname{Col}_{R, t}(T)\right)$ is a Lagrangian of nullity one in $W_{2 n-1}$.

Proof. We proceed as in the proof of Theorem [2.1. We observe that the homomorphism corresponding to a crossing is $(t+1)$ approximation to a transvection, so φ is an isometry.
6. History of the paper. In May of 2000 while J. H. Przytycki visited Banach Center in Warsaw he attended T. Januszkiewicz's talk on Coxeter groups and buildings. After the talk Przytycki asked a question concerning his student M . Dąbkowski's calculations of the number of Fox 3colorings induced on the boundary by 2 -, 3 - and 4 -tangles. As Przytycki told Januszkiewicz, his student got the numbers 4, 40 and 1120. Januszkiewicz immediately noticed that these numbers suggested the number of Lagrangians in symplectic spaces over \mathbb{Z}_{3}. Soon after, J. Dymara and Przytycki found the appropriate symplectic form on the space of p-colorings of $2 n$ boundary points on a circle. It was the beginning of our collaboration. The first version of this paper was ready in 2001, but its publication was delayed $\left(1^{18}\right)$. Przytycki gave several talks related to this paper, starting from [Pr-6]. Meanwhile

[^8]some parts of this work were cited in $[\mathrm{Pr}-3, \widehat{\mathrm{Pr}-4}, \mathrm{Pr}-5]$ and the approach described in Section 5 was developed by Cimasoni and Turaev (C-T-1, C-T-2.

Acknowledgments. The first two authors were partially supported by Polish grant 5 P 03 A 035 20. The third author was partially supported by the National Science Foundation; Grant No. DMS-9808955, and by the Simons grant (award number: 637794). He also acknowledges discussions with M. Dąbkowski, A. Sikora, and D. Silver.

References

[A-P-R] R. P. Anstee, J. H. Przytycki and D. Rolfsen, Knot polynomials and generalized mutation, Topology Appl. 32 (1989), 237-249.
[A] J. Assion, Einige endliche Faktorgruppen der Zopfgruppen, Math. Z. 163 (1978), 291-302.
[B-H] J. S. Birman and H. M. Hilden, On the mapping class groups of closed surfaces as covering spaces, in: Advances in the Theory of Riemann Surfaces, Princeton Univ. Press, Ann. of Math. Stud. 66, Princeton, NJ, 1972, 81-115.
[Brown] K. S. Brown, Buildings, Springer, New York, 1989.
[C-T-1] D. Cimasoni and V. Turaev, A Lagrangian representation of tangles, Topology 44 (2005), 747-767.
[C-T-2] D. Cimasoni and V. Turaev, A Lagrangian representation of tangles. II, Fund. Math. 190 (2006), 11-27.
[DIPY] M. Dąbkowski, M. Ishiwata, J. H. Przytycki and A. Yasuhara, Signature of rotors, Fund. Math. 184 (2004), 79-97.
[DP-1] M. K. Dąbkowski and J. H. Przytycki, Burnside obstructions to the MontesinosNakanishi 3-move conjecture, Geom. Topol. 6 (2002), 355-360.
[DP-2] M. K. Dąbkowski and J. H. Przytycki, Unexpected connection between Burnside groups and knot theory, Proc. Nat. Acad. Sci. USA 101 (2004), 17357-17360.
[Ga] P. Garrett, Buildings and Classical Groups, Chapman \& Hall, London, 1997.
[Hu] S. P. Humphries, Generators for the mapping class group, in: Topology of LowDimensional Manifolds (Chetwood Gate, 1977), R. Fenn (ed.), Lecture Notes in Math. 722, Springer, 1979, 44-47.
[Lic] W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962), 531-540.
[O] O. T. O'Meara, Symplectic Groups, Math. Surveys 16, Amer. Math. Soc., Providence, RI, 1978.
[Pla] A. Plans, Contribution to the study of the homology groups of the cyclic ramified coverings corresponding to a knot, Rev. Acad. Ciencias Madrid 47 (1953), 161-193 (in Spanish).
[Pr-1] J. H. Przytycki, 3-coloring and other elementary invariants of knots, in: Knot Theory, Banach Center Publ. 42, Inst. Math., Polish Acad. Sci., Warszawa, 1998, 275-295.
[Pr-2] J. H. Przytycki, Search for different links with the same Jones' type polynomials: Ideas from graph theory and statistical mechanics, in: Panoramas of Mathematics, Banach Center Publ. 34, Inst. Math., Polish Acad. Sci., Warszawa, 1995, 121-148.
[Pr-3] J. H. Przytycki, Skein module deformations of elementary moves on links, in: Invariants of Knots and 3-Manifolds (Kyoto, 2001), Geom. Topol. Monogr. 4 (2002), 313-335.
[Pr-4] J. H. Przytycki, From 3-moves to Lagrangian tangles and cubic skein modules, in: Advances in Topological Quantum Field Theory (Kananaskis Village, 2001), Kluwer, 2004, 71-125.
[Pr-5] J. H. Przytycki, The Trieste look at knot theory, in: Introductory Lectures on Knot Theory, Ser. Knots and Everything 46, World Sci., 2012, 407-441.
[Pr-6] J. H. Przytycki, Symplectic structure on colorings and Lagrangian tangles, Abstracts Amer. Math. Soc. 21 (2000), 545.
[Ron] M. Ronan, Lectures on Buildings, Perspectives in Math. 7, Academic Press, Boston, MA, 1989.
[Tra] P. Traczyk, Conway polynomial and oriented rotant links, Geom. Dedicata 110 (2005), 49-61.
[Tur] V. G. Turaev, Quantum Invariants of Knots and 3-Manifolds, de Gruyter Stud. Math. 18, de Gruyter, Berlin, 1994.
[Wa-1] B. Wajnryb, A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983), 157-174.
[Wa-2] B. Wajnryb, Markov classes in certain finite symplectic representations of braid groups, in: Braids (Santa Cruz, CA, 1986), Contemp. Math. 78, Amer. Math. Soc., Providence, RI, 1988, 687-695.
[Wa-3] B. Wajnryb, A braidlike presentation of $\operatorname{Sp}(n, p)$, Israel J. Math. 76 (1991), 265-288.

Jan Dymara
Instytut Matematyczny
Uniwersytet Wrocławski
Wrocław, Poland
ORCID: 0000-0002-7127-3298
E-mail: Jan.Dymara@math.uni.wroc.pl
Józef H. Przytycki
Department of Mathematics
The George Washington University
Washington, DC, U.S.A.
and
Institute of Mathematics
University of Gdańsk
Gdańsk, Poland
ORCID: 0000-0002-1600-8889
E-mail: przytyck@gwu.edu

Tadeusz Januszkiewicz
Instytut Matematyczny PAN
Warszawa, Poland
and
Instytut Matematyczny
Uniwersytet Wrocławski Wrocław, Poland
ORCID: 0000-0002-6570-0281
E-mail: T.Januszkiewicz@impan.pl

[^0]: 2020 Mathematics Subject Classification: Primary 57K10; Secondary 57R17, 51E24, 20 E 42.
 Key words and phrases: knot, link, rotor, tangle, branched cover, symplectic form, Lagrangian, Fox coloring, Tits building.
 Received 30 December 2020; revised 28 February 2021.
 Published online 19 March 2021.
 $\left({ }^{1}\right)$ This relation might be viewed as a parallel of the well-known result that 3manifolds yield Lagrangians in $H_{1}(\partial M, \mathbb{Q})$.

[^1]: $\left({ }^{3}\right)$ If a skew-symmetric form φ has nullity k, we often call it a symplectic form of nullity k Tur.

[^2]: $\left({ }^{5}\right)$ Note that there is a general category of tangles with boundary points as objects and tangles as morphisms.
 $\left({ }^{6}\right)$ If inputs and outputs are labeled as in Figure 1 (right), then the standard i th generator of the braid group B_{n} will be denoted by $\sigma_{2 n-i}$. However, it is convenient to be able to add crossings, minima and maxima at any place in a given tangle T as we can then take advantage of rotational symmetry that is important for this paper.
 $\left({ }^{7}\right)$ Any n-tangle with no crossings or trivial components can be chosen as a starting tangle.

[^3]: $\left(^{8}\right)$ Since an n-tangle T is a 1 -dimensional manifold properly embedded in a cube, T is a Morse function along the x-axis with σ_{i} 's between extremal points.
 $\left({ }^{9}\right)$ In $\mathrm{Pr}-1$, we gave a proof of this result in the case when 2 is not a zero divisor in R.
 $\left({ }^{10}\right)$ We could take the identity n-tangle Id shown in Figure 3 as an n-tangle with no crossings or trivial components as a "basic" state, but due to our later considerations it is better for us to choose B_{0}.

[^4]: $\left({ }^{11}\right)$ This is a special case of Turaev's "contraction lemma" (see Tur, p. 180]).

[^5]: $\left(^{12}\right)$ Note that faces that are glued together have induced labeling of their faces by the remaining generators of C, and the gluing has to preserve them.

[^6]: $\left({ }^{13}\right)$ One may use the family of apartments to give another definition of buildings (see (Brown Ron]).
 $\left({ }^{14}\right)$ A flag in a vector space is a strictly increasing sequence of subspaces.
 $\left({ }^{15}\right)$ Such a subspace can be obtained by choosing at most one vector from each pair $\left\{v_{i}, w_{i}\right\}$.

[^7]: $\left({ }^{16}\right)$ This follows from the fact that any rotation preserves the determinant of L which is equal to the order of the first homology, $H_{1}\left(M_{L}^{(2)}, \mathbb{Z}\right)$, where $M_{L}^{(2)}$ is the 2-fold branched cover of S^{3} along L Pr-2, Tra, DIPY. Thus, if a rotation changes the space of 5-colorings then always $\operatorname{ker}(\psi) \neq\{0\}$.

[^8]: $\left({ }^{17}\right)$ The general setting is a future project.
 $\left({ }^{18}\right)$ There was also a mathematical reason for this. In early winter of 2002 Dąbkowski and Przytycki solved the Montesinos-Nakanishi conjecture using the nonabelian version of Fox n-colorings called Burnside groups of links [DP-1, DP-2].

