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Some generalizations of the retract theorem
of T. Wazewski with applications to ordinary
and partial differential equations of the first order

by Andrzej Pelczar (Krakéw)

Abstract. There are given some extensions and generalizations of the classical
retract theorem of T. Wazewski, in various forms, for generalized semidynamical
systems and certain applications of them in the theory of ordinary and partial dif-
ferential equations of the first order.

By a generalized semidynamical system we mean a triple (<, T, m), where X
is a topological space, T is an abelian, ordered semigroup, satisfying some additional
conditions, and Tt:Tx XY is a continuous mapping, such that the family {mt}teT
of mappings nt: X < --m(t, x)e X have the semigroup structure with respect to the
composition.

The general theory is given in the first part of the paper. Some applications of
a local form of the generalized retract theorem in the theory of ordinary equations
given as an illustration of the method, and some essentially new results obtained by
using the generalized retract theorems, with respect to partial differential equations
of the first order, are presented with proofs detaily given, in the second part of the

paper.

CONTENTS
Introduction 16
PART I
1. Local abelian ordered semigroups 17
2. Generalized semidynamical systems 18
3. Some preliminary lemmas 20
4. Condition (C) 21
5. Notation 22
6. Invariant sets. Egress and strict egress points 22
7. A generalization of the Wazewski’'s retract theorem 23
8. Continuity of ¢ and some special forms of the retract theorem 24
9. Equivalence of Theorems Ill and IV for compact sets 27



16 A. Pelczar

PART Il
1. Investigations of local behavior of solutions of systems of ordinary differential
equations 34
2. Preliminaries necessary for generalized retract theorem for families of sur-
faces, with applications to partial differential equations 36
3. Applications of general results for families of regular surfaces 37
4. Applications of the results from Chapter 3 in the theory of partial differential
equations of the first order 43
5. Extensions of the results from Chapter 4 for systems of differential equations 47
6. Further applications of the main results from the first part in the theory of
partial differential equations 49
References 57

INTRODUCTION

The classical retract theorem of T. Wazewski from [37] and [38]
(see also [41], [42]) was extended and generalized by many authors. In
particular some general results are given by Albrecht [1], Bielecki and
Kluczny [8], Kluczny [14], [15], Fedorov [11], Pelczar [22], [23], [27]
Plis [28] (in the paper [28] the concept of quasi-isotopic deformative
retract, introduced by K. Borsuk in [9] was used). Extensions of the
Wazewski,s method for contingent equations, and — generally — for
multivalued mappings, are due to Bebernes and Schuur [3], [4], Bielecki
[7], Pelczar [23]. For references concerning dynamical systems given
by multivalued mappings (in particular by paratingent and contingent
equations), we refer to the papers of Bronstein [10] and Roxin [29].
The fundamental applications are given by Wazewski [37], [38] and by
the other authors, for instance Kaplan, Lasota and Yorke [13], Fedorov
[11], A. Pelczar [24], [25], [26].

There are many papers concerning asymptotic behaviour of solutions
of ordinary differential equations of many types, and structures of certain
sets generated by solutions having some asymptotic properties. Among
them, there are papers using the retract method of T. Wazewski in various
version, or some particular notions closely related to this method, for
instance the notion of egress points; there are many papers using some
other qualitative methods being in close connection with the Wazewski,s
retract method. We cite only: Kluczny [16], [17], Lojasiewicz [18].
Mikotajska [19], Szmydt [35], Szarski and Wazewski [34], Tatarkiewicz
[36], Olech [20], Onuchic [21], Staikos [31]. The purpose of the present
paper is to give a generalization of the classical retract theorem of T. Wa-
zewski, for general semidynamical systems defined by local semigroups
of transformations of a topological space into itself. Such generalizations
give some possibilities of applications, in particular, in the theory of
partial differential equations of the first order.
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The paper has two parts. The first part contains in its 9 sections
the general results concerning generalized semidynamical systems. Some
of these results were given already (in a little different form) in [22] (see
also [23] for additional remarks and a correction to [22]). The second
part has 6 chapters; each chapter is divided into sections, some sections
are divided into subsections. In the second part we give applications of
general results in the theory of differential equations. In the first chapter
we give an application for (local) investigation of the behaviour of solutions
of ordinary differential equations; there are no essentially new results,
but only an example of applications of general results in a local form.
Chapters 2-5 contain the results concerning families of regular surfaces,
with particular applications in the theory of partial differential equations
of the first order. Some of these results are signalized (without details)
in [24]. The last Chapter 6 contains some other applications of the main
results from the first part, in the investigations of the behaviour of so-
lutions of partial differential equations.

The author is indebted to Professor T. Wazewski for giving helpful
ideas while preparing this thesis and many valuable remarks; in particular
the author would like to underline that Theorem 8 in Chapter 6 was stated
owing to suggestions of Professor T. Wazewski.

Tho author would like to express his sincere thanks to Professors
J. Szarski, A. Pli$ and D. Bushaw for their valuable advice and remarks.

PART I

1. LOCAL ABELIAN ORDERED SEMIGROUPS

Let (T, <) be an ordered space (that is:€" s a transitive, reflexive
and antisymmetric binary relation, and for every s, teT: sS=t or t< s),
having the minimal element 0.

For s, teT (such that s<t or s<'t if it will be necessary for the
correctness of definitions of corresponding sets), we put:

By-<> (or <-,-,->) we denote elements of cartesian products;
thus <s,t> denotes (for s, teT of course) the pair belonging to TxT.

Definition 1. We say that (N, +) definies in T the local abelian
semigroup structure (in this case (T, <,-N, +) will be said to be a local
abelian ordered semigroup, shortly LAO-semigroup) if and only if the fol-
lowing seven conditions hold:

2 — Annales Polonici Mathem. t. 29 z. 1
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(cy N o1,

(c3) for every te T, there is se€T, s> 0, such that [0, t] x [0, s] N,

) if <t,s>e N, then <s,t>¢ N and t+5 =s+1t

(C5 if <t, s>, <t+s, u>¢ then <t, s+u>, <t+u, s>¢N and (t+s) +
+u =t+(s+u),

(C6) <O,t>eN and 0+t =t for every teT,

(C) if<t, s>, <t+u>eN and s < u, then t+s<t+u.

Remark la. If N = TxT fulfils the above conditions (CL)-(C7),
then (T, <, +) is an ordered abelian semigroup with the neutral element
0, being also the minimal element. Hence the notion of LAO-semigroup
is a generalization of the notion of ordered abelian semigroups. In the
other words, (T, =,T><T, +) can be identified with an abelian ordered
semigroup (T, <, +)

On the other hand we have the following

Remark Ib. If (T, =, +) is an abelian, ordered, dense semigroup
without a maximal element, having the neutral element 0, which is also
the minimal element, and condtion (*) (see Section 2, below) is satisfied,
and, moreover, w0l =0 is a fixed element of T, then putting T0
= [0,w0) and NO = {<s,t>: s,t,s +teT(} we obtain a LAO-semigroup
(T0,=<0, NO, +0), where =0 and —+0 are the natural restrictions of <
and + to T0 and TO0 x T0 respectively.

An important example of such a situation is the case: T = R*
= [0, ) with To = [0, w0), where w0 is a positive real number, and +
and < are the usual addition and ordering relation in real number
space.

2. GENERALIZED SEMIDYNAMICAL SYSTEMS

Let X be a topological space and let (T, <, N, +) be a LAO-semi-
group (with some N TxT) having the neutral element 0, being also
the minimal element of T, without a maximal element, such that for
every § "T, S #0, infS exists. We assume that (T, <) is dense: for
every s, te T, s < t, there exists a u €T such that s < u <t. We will con-
sider T also as a topological space (but not necessarily as a topological
semigroup!) with the natural topology given by the ordering relation;
this means that the basis of neighbourhoods for any t0e T, t0 > 0 is the
family3{( s< ti< 1t} and the basis of neighbourhoods of 0. is the
family {[0, t): t= 0}. We will assume the following condition:

(*) (s, teT,s<t) => (there exists a A¢ T, A> 0, such that s+A <t).
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Remark 2. The density of (T, <) and condition (*) imply imme-
diately that:

(**) (s, te T, s<t) = (there exists a Ae T, A> 0, such that s + A<<t).

Conversely, condition (**) implies trivially condition (*).

Assumption. Throughout the whole first part of the present paper,
X and (T,<, N, + ) trill be as above, we shall consider them as fixed in
the sequel.

Definition 2. Suppose that T0 = T or T0 = [0, w0), where w0e T, wl
>0, and that T xT N in the first case (and observe that obviously
{0} x [0, wO) in the second case).

A mapping 1, To xX- X is said to be of the class G(T0) (or shortly:
1te G(T0)) if and only if

(G1) m is continuous as a mapping from the topological space T0 <X
provided with the natural topology of the cartesian product given in the
usual way by the topology on T0 (induced by the topology on T) and X,
into the topological space A;

(G2) the family {nt: teT0}, where for every teTl(

)

fulfils the following (local) semigroup conditions:

2) TIs® Tt = Tt° s = mit+s ~ for every s,teTO, (S,>€e N,
€)) 0 = idXx( <> n0(x) = x for every Xe X).

If —in some particular questions — the set To will be fixed, then
G(T0) will be denoted shortly byG

Definition 3. For every 1ie G(T0), we will call the triple (X, TO0, i)
a generalized semidynamical system (GSD-system).

Remark 3. Perhaps a natural name for triples (A, TO, m) with
belonging to would be local semidynamical systems. But Bhatia and
Hajek [5] have already used the name “local semidynamical systems”
for some other systems, and therefore to avoid confussion, we will use
here a terminology slightly different from that used in [5]. Note, that
GSD-systems considered here are special cases of local semidynamical
systems from [5] if T = R*

Remark 4. In the present paper we will prove general theorems con-
cerning GSD-systems for arbitrary T (under assumptions introduced
above, of course). However, applications given in the second part of the
paper concern only the case, namely T = R* = [0, ). Hence, from the
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practical point of view, one can think always about T being the real half-
line. An example of T being not the positive real half-line, and an appli-
cation of the general results presented here for such strange T, is given
in [21].

3. SOME PRELIMINARY LEMMAS

Lemma 1. If T0 = [0, w0) or T0 = T and the mapping A: T0-X is
continuous, M X, t,t'eT(, t<t', A()e M, A(t)j XL, then putting

8 ={x=1[t, f]: As)<f M} and S0 =inf(3,
we have
{(s°) OM (= the boundary of 31).

Proof. Let U X be a neighbourhood of A(s0) A Since Ais contin-
uous, there is a neighbourhoodQ  T0ofs0 (Q = (u,Vv) with some u, vt TO0,
u<si<vifsi>0andQ = [0, v) with some v >0, if s0 = 0), such that
AQn[t,t']) U. Since s0 =infS, we have SnQn[{/z] #0 and then
Un(>X\M) = . On the other hand Qn[t,t"]n{TO\S) 0 (if not,
there will exist an element se€S such that s < s0), and then we have:
UnM # . The neighbourhood U of A(s0) was arbitrarily fixed. Then,
we have proved, that for every neighbourhood U of A(s0) we have: UnM
#Z and Un(X\M) # . This means that and
then A(s0)e o M.

Lemma 2. For every t1,t2¢T,®t1=12, the interval [tl,t2] is compact.

Proof. We will repeat here the classical reasoning showing that
a closed and bounded interval in R =(-oo, +o) is compact. Let
[t1,t2] T be fixed and letH be a family of open sets covering [tl, t2],
that is such that [t1,©2] WU{He H) Suppose that there are no finite
subfamilies of H covering [t1,t2]. Thus, the set P ={teT: tl=t=t2
[t1] is not contained in the union of any finite subfamily of iS non-
empty. Put s = infP. Let H0 be such that se HOe H Since HO is open,
there exist s',s"e T, such that s'<s<s" and (s",s") HO0. Consider
[t1,s]. Because of the definition of s = infP, for every seT such that
s¢ [t1,5]. there exists a finite subfamily of  of open sets, say H1, ..., Hp,
such that [t1,§] U(Hi: i =1, ...,p}. Hence, for 8e [tl s)n(s's"),
we have:

[t1,s) [tL,8]U(ss") U{Hi i =0,1, ...,p}

Thus, we have proved, that [t1, s] can be covered by a finite subfamily
of This, in virtue of the assumption that the set P is non-empty,
yields us the inequality s < t2. Let us consider again the set HOe H,, such
that seH0. There are s',s"€T, such that se(s',s"), (s',s') HO and
s" < t2. As previously, take s¢ (s', s")n[tl, s). Take also a point S¢ (s, s™).
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We have
[t1,8) [t1,8]1U (s,s™) U{Hi-.i=0,1, ...p}

which is impossible in virtue of the definition of s = infP, because § > s

Corollary. Every closed interval [s,tf] T0 is compact in TO, with
respect to the topology induced in TO by the topology of T.

4. CONDITION (C)

Definition 4. Let M be an open subset of X, M # | let w0¢ T,
wl > 0 be fixed, and let m be a mapping from [0, w0) x X into X (resp.
from T xX into X). We say that M fulfils condition C(w0; n) (resp. C(m))
if and only if, for every t,t' [0, wO) (resp. t,t'« T) such that t<<t' and
every X¢ M such that (s, X)e Mfor0 < s < t', there exists a neighbourhood
IF of the point x such that

(4) yew =>T11(s, y)eEM  for 0<s<t.

We say that m fulfils condition (C(w0)) (resp. ((C)) if and only if condition
C(w0; ) (resp. C(m)) is satisfied for each open and non-empty subset
M of X, that is for every <x t, t', M>e X XT xT x0(X), where 0O(X)
denotes the family of all open and non-empty subsets of X, such that
O<st<t'<wl (resp. 0<st<t) and m(s,x)eM for 0<s<t', there
exists a neighbourhood W of x such that implication (4) holds true.

Since M is open, W can be required to be a subset of M.

Remark 5. In the classical cases of dynamical systems given by sys-
tems of differential equations, the usual conditions of regularity assumed
there imply conditions (C). In the general theory of generalized dynamical
systems, one assumes very often some stronger conditions; for instance,
Hale and Infante assume in [12] uniform continuity of 1 in bounded sets.
We shall prove below a lemma concerning condition (C) in the case of
continuous T, more precisely, we shall prove that (C) is satisfied for m
belonging to G.

Lemma 3. For every 1€ G = G(T0), where T0 = [0, w0) or T0 =T
(W0 > 0), condition (C(w0) or (C) — respectively — is satisfied.

Proof. Let M X be open and non-empty. Let t, t'¢ T0 and x¢ M
be such that t < t' and ns(x)e M for se [0, t'). Consider the interval [O, t].
For every st [0, t] (and for the fixed point x), there exist neighbourhoods
Sﬁ,x = (ts1,ts2) of s (or Ss,x = [0, ts2) if p = 8) and Vs,x of the point x, such
that:

{ue Ss,x, ye Vs, x) => mu(y)e M.

This is obvious in virtue of the continuity of m.



22 A. Pelczar

Of course, the family of open sets {Ssx}Se[0,f] covers the interval
[0, t]. Since [O, t] is compact (see Lemma 2), we can choose a finite sub-
family convering the interval [O, t]. Put
i =1,...,p} We have the following sequence of implications:

Thus, if yeV, then nu(y)e M for ue [O, t].

Corollary. For every open set M == |, and every 1t¢ G(T0), the con-
dition C(w0, 1) is satisfied.

5. NOTATION

Let (X, TO, i) be a GSD-system (with T0 = [0, w0)). Let 16 =6(TO)
and let ye X.

We put
(5) (y) = {mt(y): te T0},
(6) n 1(y)= {zeX: yen(2)}.
If zen i(y), then we define:
(7) t(z,y) =inf{teT0. nt(z) = vy},
©) (zy) = {mt(z): O<t<t(z, y)}
9) [z,y) = (z,y)U{z} (=mt(2): O=< t< t(z, y)}).

The same notation will be used in the case of GSD-systems (x, T, )
where T is a semigroup.

6. INVARIANT SETS. EGRESS AND STRICT EGRESS POINTS

Let (X, TO, m) be a GSD-system and let N X be non-empty.

Definition 5. We say that N is invariant (with respect to n) if and
only if t(y) N for every ye¢N.

Definition 6. Let N X be open and non-empty. We say that
yeoM is an egress point if and only if there exists ze m-1(y)nM, such
that [z,y) M. The point ye OM is said to be a strict egress point if and
only if y is an egress point, and for every A€T(, A > 0, there is neTy,
N<<A, such that (y, mn(y)} = and
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By Me and Mse we will denote the sets of all egress and all strict
egress points respectively.

Remark 6. The definition of a strict egress point can be given equi-
valently in the following, slightly modified form: ye 0M is a strict egress
point if and only ye Me and there is an ne T0, n > 0, such that (y, TA(Y)]
# for0<\A<nand M (y, my) = .

Remark 7. Suppose that M X is open and non-empty. Then
the following three conditions (a), (b), (c) are equivalent: (a) Yy € Me,
(b) for every open and invariant set N X such that M N, yedMnN
and there is an z¢ -1(y)nM for which [z, y) M, (c) there exists an open
and invariant set N X, containing M, such that ye 9MnN and there
is an ze m-1(y)nM, for which [z,y) M.

In book [6] the definition of egress points is given in a form similar
to (c). Our first definition is an extension of the original definition of
Wazewski [33], [34], by using the notation similar to that of [6].

Remark 8. Let M N X be open, N be invariant, M # and
let te G = G(T0) (in particular, N can be equal to X}. If OMnNnMe = |
then M is invariant. Indeed, if M is not invariant, then there is ye M,
such that i(y) M. Hence, there is t € TO, such that mt(y) does not belong
to M. Put ¢ = inf{te T0: mt(y) M}. We have ma(y)e OM (see Lemma 1).
Since N is invariant and yeN, we have mo(y)eN. Putting w = ma(y),
we have ¢ = t(y,w). Hence [y,w) M. Thus we Me. Then, we have
proved, that there is we MenNNAM this is impossible because of the
assumption.

The above remark generalizes a lemma from [6] (p. 96) and gives
some information about of properties of Me.

7. A GENERALIZATION OF THE WAZEWSKI'S RETRACT THEOREM

Proposition 1. If M X is open and non-empty, S M 0M is
non-empty, Tte G(T0) and
(10) S' ={yeS-. n(y) M}
is non-empty, then for every y

11)

is a well defined element of T0 (see Lemma 1). Then we can define the following
mapping

(12) Sy - o(y)eTo.

Moreover, if yeS'nM, then o(y) = {t € TO: nt(y)e Me} and
mo(y)(y)eMe. If ye S*'noM, then o(y) = 0.
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Theorem I. Let (X, T0, m) be a GSB-system, let M X be open and
non-empty, B be a subset of OM (the case B = O is not excluded). Suppose
thatS M Me B is non-empty, such that there is a retraction (Me (BnS))
-»Sn(MeuB), but there are no retractions S—Sn(Me B). Suppose, moreo-
ver, that if S' defined by (10) is non-empty, then the mapping f: S'3x
- To(x)(X)e Me B, where o(x) is given by (11), is continuous.

Under the above assumptions, there is ay¢ SnM, such that ti(y) M.

Proof. Suppose that the set {ye¢S: m(y) M} is empty. Then
S = 8', and f is defined and continuous in S. The mapping h = g°f,
where g: Me {BnS)-Sn(Me B) is a retraction, is evidently a retrac-
tion S-Sn{Me B). This, however, contradicts the assumptions.

The above theorem is a generalization of the retract theorem of
T. Wazewski in the version of [38]. A generalization of another form of
the retract theorem (cf. [37]) will be given below.

A special case of Theorem 1, is the following

Theorem la. Let (X, TO, 1) be a GSD-system, M X be open, M # |
aset SM  Me be non-empty and such that there is a retraction Me-
SnMe, but there are no retractions S-Sn Me. Suppose that if S' defined
by (10) is non-empty, then the mapping f: S"3 x o(x)(x) € Me is continuous.
Then there exists a yeSnM, such that mt(y) M.

This form of the retract theorem is presented in [20] as Theorem A",

8. CONTINUITY OF ¢ AND SOME SPECIAL FORM
OF THE RETRACT THEOREM

It is easy to see that a fundamental role in Theorem 1 is played by
the continuity of ¢. Indeed, the mapping f introduced in the assumptions
of Theorem 1 is equal to m°(0, identity) and then it is continuous if ¢
is continuous. Thus, it is very important for applications to give some
conditions sufficient for ¢ to be continuous.

Let us put, for non-empty open M X:

(13) for every A¢ TO, A > 0 there exists neT0,N<<A
such that tyl(y) = and

Remark 9. For a set N X define A-start points as follows: xeN
is said to be an N-start point if and only if there are no y € A\{a?} such that
xet{y) (in the other words: 1-1(X)nN = {x} and if 1(t,y) = x, then
t =0andy = x or ye N). This definition is an extension of the definition
of start points given by Bajaj [2]. Using this notation, and denoting by
Xs the set of all N-start points, we can state the following obvious re-
lations:
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In order to underline certain particular properties of some sets, we
will use in the sequel the set

(14)

Theorem Il. Let (X, TO, m) be a GSD-system, M X be open and
non-empty stich that Me = Mse. Suppose that S M M* is non-empty
and such that for every ye S, n(y) M. Then the mapping S 3y>-o(y) € T0,
with o given by (11), is continuous.

Remark 10. Since Me = Mse, we have Me M* = Mse M*
=M* M Mse (see Remark 9). An important (for applications) case
is which gives In this
case M' Mse = M* and then Theorem Il can be equivalently stated with
M* replaced by Me M', or by Me M* or by Mse M, or finally by
Mse M*

Proof of Theorem Il. Let yeS. We have 11(y) M and then
there is ate TO, such that nt(y)e OM (see Lemma 1 in the case ye MnS;
in the case yt M*nS the existence of such t is trivial, since m0(y)
=yt M*nS 0M). Then there exists a teT0 such that mt(y)e Me M*
= Mse M* = M*; if, moreover, ye S\M* then mt(y)e Me = Mse. We
have (see Proposition 1):

o(y) =Iinf{teT0; nt(y) M} = inf{teTO; nt(y)e oM}
= inf{teTO; mt(y) Me} =t(y, mo(y)(y) for every yeSnM,

and o(y) =0 for ye SnM* oM

Let y be a point of S\M* = SnM. Consider o(y) and an arbitrarily
fixed neighbourhood (t1,t2) T0 of o(y). Of course, 0 <tl< o(y) < t2
Since Tna(y)(y)eMe= Mse and o(y) = t(y, no(y)(y)), we have [mutl(y),

na(y)(y)) and

(15) ()y), s, (D)) = and

for some seT0, such that o(y) < s < t2 Indeed, we can choose t'e To,
t, > 0, such that o(y) +t' < t2 (see condition (*) from the second section).
On the other hand, putting z = no(y)(y), we obtain: zeMse, and then
we can find for the t' chosen previously an element s'e T0 such that 0 < s'
<t (z,ms'(2)#~ and (z, ma(z))nrM = . We have obviously ms'(2)
= ns'(na(y)(y)) = na(y)+s'(y), and then putting s = a(y) +s', we obtain the
element s having the required properties (15).

Furthermore, we can require the condition
a little stronger than the second condition of (15) (if ns(y) belongs to
then we can replace s by some %€ (o(y), s), for which
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Since nt(y)eM for O< t<<o(y), there is a neighbourhood W of
the point y such that W N/ and mt(w)eM for 0 <t<tl and weW.
This follows directly from the condition C(m), which is satisfied (see Lemma
3) because Tt

Moreover, and then there is a neighbourhood V (1 M)
of y, such that for xe V. Then, for any point xe WnVnS§,
we have: mt(x)e M for te[0,tl) and

Hence (see Lemma 1) for xe WnNnVNS we have: tl< o(X) <s<t2
Because of the relation: the equality o(x) = s is impossible
for xe WnVnS. Thus, for such x, we have tl < a(x) < t2. Then, for every
neighbourhood Q of ao(y), there is a neighbourhood U (=WnVnS)
of ye S, such that

xe U =>0(X)e Q.

This means that ¢ is continuous in the set S\M*

Let now yeSnM* 0M. Then a(y) =0 and ma(y)(y) = n0(y) =v.
Consider a neighbourhood [0, t2) T0 of o(y). Since ye M*, there is a
se TOsuchthat0 <s<t2 (y ms(y) # and (formally,
from the definition of M*, we have only but as in the
preceding case, we can replace s by some § € (0, s) for which the required
stronger condition holds true). Hence, in particular, From
the continuity of m, it follows that there is a neighbourhood V of y such
that ms(x)e for xe VNS M M* Consider a point xe VNS.
If xXe M* , then o(x) = 0 and o(x) belongs to the interval [0, t2) trivially.
If X M* then xe M and then o(x)e(0,s) [0, t2). Then, for every
neighbourhood Q of o(y) =0, there is a neighbourhood U (= Vn§S)
of y, such that xe U=>6(x)e Q. Thus, ¢ is continuous in SnM*. Since
§ = (SnM*) (S\M*), we have proved the continuity of ¢ in the whole
set S.

From Theorems | and Il we obtain immediately the following

Theorem Ill. Suppose that (X, To, m) is a GSD-system, M X is
non-empty and open, Me = Mse. Supposethat S M M*(=M Me M¥*
is non-empty and such that Sn Me ( =S nMe n M*)isa retractof Me  (M* n/S),
but there are no retractions S-SnM* (= Sn(Me M?*)).

Then there exists a yeS n Msuch that mt(y) M.

(The equalites noted in parantheses follow directly from the equality
Me = Mse, see Remark 10.)

The above Theorem 111 is a generalization of the retract theorem
given by T. Wazewski in [37]; see also [22] for a generalized form.

As a trivial consequence of Theorem I1l, we obtain the following

Theorem |V. Suppose that (X, TO, ) is a GSD-system, M X,
M # |, Misopen, Me = Mse, S M Me M'is non-empty, Sn(MenM’)
is a retract of Me (M'nS) but there are no retractions S-Sn(Me M)
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Then there exists a yeSnM, such that n(y) M.

As a corollary, we have the following:

Theorem IV'. If (X, TO, n) is a GSD-system, M X is open, M # |
Sisnon-emptyandS M Me, Me = Mse, there is a retraction Me - S n Me,
but there are no retractions S-S n Me, then there exists a ye Sn M, such
that i(y) M.

Another simple consequence of Theorem 111 is the following

Theorem V. Suppose that (X, TO, m) is a GSD-system, M X is
non-empty, M is open, Me = Mse, S M M is non-empty and such that
Sn M* is a retract of Me (M'n S), but there are no retractions S-SnM".
Then there exists a yeSnM, such that n(y) M

We shall give below a modification of Theorem V' based on Remark 7
which is a generalization of the retract theorem in the form given by Bhatia
and Szegd in [6], namely the following

Theorem IV bis. Let (X, TO, m) be a GSD-system and let M, N X
be two open and non-empty sets, such that N is invariant and M N. Sup-
pose that if yedMnN and there is an element ze Mnm-1(y) such that
[z,y) M, then there exists AeT0,A=0, such that (y,TiA(y)] = and

for every neTo, n < A Suppose finallythat S M M
is non-empty and S n Me is a retract of Me, but SnMe is not a retract of .
Under the above assumptions, there exists yeSnM such that 1t(y) M.

Finally, we will formulate explicitly a very special case of Theorem 111,
because it will be useful for some applications in the theory of partial
differential equations of the first order. Namely, we have the following

Theorem R. Let us consider R* = [0, o) with the natural topology
and ordered semigroup structure with respect to the usual addition and
the usual ordering relation <. Let a > 0 be fixed and let X be a topological
space, 1 [0, a) xX X be a mapping belonging to G([0, a)) {in the sense
of Definition 2 for T = R*, T0 = [0, a)). Let M X be non-empty and
open, such that Me = Mse, and let S M M* be non-empty, such that
M n S*is a retract of (Sn M*) Me, but there are no retractions S-S n M*.

Then, there exists a ytSnM, such that i(y) M.

The reduction of Theorem R to Theorem 111 is trivial, because of
the obvious fact that T = R* and T0 = [0, a) fulfill all assumptions intro-
duced in the two first sections.

9. EQUIVALENCE OF THEOREMS 111 AND IV' FOR COMPACT SETS

Suppose that (T, <, +) is an abelian ordered and dense semigroup,
with the neutral element 0, which is also a minimal element and suppose
that forevery T' T, T' # | there exists infT'. Then {T, <, T xT, +)
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is an LAO-semigroup. Let w0¢ T, w0 > 0 be fixed. Then, for T0 = [0, w0)
the system T0,=, NO, +), where N0 = {<s t>¢ T0 xT0. s+teT0} is
an LAO-semigroup.

Now we assume the following condition of a local (in T0) sub-
traction:

(S) For every s,teT0 such that s=t there exists exactly one element u
= u(s, t)e T0 such that s+u =t. We shall write

Theorem VI. Under the above assumptions on T and To, Theorems
I11 and 1V' are equivalent for every M which is relatively compact (that is
such that M compact) and fulfils the condition: OM = M* = Mse M.
Proof. The implication Theorem Il11 =>Theorem V' is trivial because
Theorem 1V' is a special case of Theorem IV, which is of course a special
case of Theorem 11l (without any supplementary assumptions on T

and M).
In order to prove the inverse implication we shall construct for

a given system (X, To, i) with T0 as above and for given M X, S M
(Me M) another system and sets

such that the set (closure of is empty, and then also More
precisely, we shall prove the following

Proposition 2. Let X be a topological space and let (X, TO, m) be
a GSD-system, with TO as above (that is TO = [O,w0) T, To fulfilling
(S)) and teG(T0). Let M Xbe an openset, M = , M is compact, Me = Mse.
Suppose that S M Me M' is non-empty such that there is a retraction
Me M'-Sn(MeuM'), but there are no retractions S-Sn(Me M.

Then there exists a GSD- system (X T°, n) and there are sets M~ X~
and S = Mu m, such that 3, 8 =@, M is open, M = M,;c and there
is a retraction Me—>SnMn, but there are no retractions S—»SnMe, (closure
of M)* =@, and furthermore the following two conditions (a) and (o) are
equivalent

(a) there is yeSnM, such that i(y) M,

It is clear that if the above Proposition 2 holds true, then for T and
JI as we have assumed, Theorem IV' implies Theorem 1I1I.
Indeed, assuming Theorem V' and the assumptions of Theorem 111

we can apply Theorem IV' to and corresponding sets
and then we will obtain condition In virtue of Proposition 2, condi-
tion implies (a), and then Theorem |11 holds true.

Thus, under all assumptions of Theorem 11l and the conditions
introduced above for T and T0 (in particular (S)) we will construct a system
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having the required properties. Of course M is assumed to be
relatively compact and such that oM = M* = MuM' Consider the set

and define an ordering relation -3 in U, as follows:

<t,0> <0,0> <0,t> for every te [0, w0),
<t, 0> <s 0> if and only if t<s in T (in TO),
<0,0> <0,s> if and only if t=ss in T (in TO).
An easy proof that this is really an ordering relation will be omitted.
Observe that (U, ) is such that for every V U, V # , such
that there is a <s1, s2>¢ U, for which <s1, s2>  <tl, t2> for every <tl, t2>¢ V.
there exists infV.
Moreover, the space (U, ) is also dense. There are no maximal

and minimal elements in U.
It is clear, that the mapping

(16)

is an increasing bijection between (T0,<) and (U+, +), where +
is the restriction of  to U+
Hence, the mapping

an TO3t — <0, bl

can be considered as an embedding (inclusion) compatible with the ordering

relation. This mapping is also a homomorphism of the (local) semigroup

T0 into the (local) semigroup U in a sense which we will define below.
Let now M UxU be defined as follows

(18) M = {<<0,s>,<t,0>> s,te T0} {<<0,5>,<t,0>>:s,t€ T0}
{<<0,s>,<t,0>>: s,te TO,S + 1€ T0}
{<<0,s>, <0,t>>: s,t€ TO, s +t € TO}.

We now define +-: MU as follows:
<0, s>+-<0,t> = <0 ,s+t>, <s,0>+-<t,0> = <s+t,0>,

<0,s—t ift=<s
<t—s, 0> ifist
<s , 0>+ <0,t> = <0,t>+-<s,0>.

<0, s>+-<t, 0>
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Here, + and — denote the addition and the subtraction (in the sense
of (S)) in T

It is easy to see that the restriction of +- to U+ (which we will denote
by the same symbol +:) makes (U+, +, Mn(U+ xU+), +-) an LAO-
semigroup which can be identified with (T0,<<,NO0, +) by the mapping
(16). More precisely, the mapping (16) is a bijection compatible with both
the additions and both the orders. The spaces (T0, <) and (U+, +) are
also topologically equivalent (by (16)), with respect to the topologies given
by the ordering relations. These facts permit us to identify <0, t>e¢ U+
with te TO, +- with +, and + with <. In order to simplify, in this line,
the notation with respect to the whole U, we will use the following con-
vention: if <s, t>¢ U, then by -<s, t> we will denote the element t, s")
belonging of course also to U. Hence —(-<s,t>) =<s,t>. According
to this convention and to the identification of <O,t> with t (for te TO),
we will write t in the place of <0, t> and - tin the place of <t, 0>, for every
teT0. Then, the following formal rule: - (-t =t, - 0 =0, for every
te TO, is a natural consequence of the previous conventions. Moreover,
we will write < in the place of -3 and + in the place of +'. Thus, we
have - t<0<sforeverys, teT0, and we can write simply U = (—wQ0, O]

[O,w0) = (-wO0, w0). This means that we can consider (U,<) as an

extension of (T0,<)j moreover, the local abelian ordered group
(U,=, M, +) is in this sense an extension of the LAO-semigroup
(T0, =, .JI°, +). We have: t=0=0< —-tand -t<0<>0<t for every
teU and /<=s<0<>0< -s< -t for every s, te U. The formulas in
the definition of + (denoted in the sequel by +) have now the
following forms:

s+t =s+< (in the sense of + in To for 0 <s, t,
s+'t= {-s)+(-t) for s t=<O,
s+t =max(s, (-t)—min@8, (—t) for0<s, t<0,

s+t —max(t (-s))—min(<, (—=s) for 0<t, s<0O.

We have indeed in U the structure of a local ordered abelian (and
dense) group: t+s =s+t, t+0 = t,t+(-t) = O,t+(s+u) =(t+s)+u
(if at least one side is well defined) and if s,t, uc U, u<t 0<s, then
S+Uu < s+t

Furthermore, for s,teU such that 0 <s<'t, there exists At U,
A> 0, such that s+A <t and for s, te U, such that t < s < 0 there exists
Ae U, A< 0, such that t<< s+ A; this follows directly from condition (*)
in Section 2.

In U we will consider the topology given by the ordering relation.
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Now, we will define a space which is a subspace of Ux X, as
follows:

if and only if, there exists x¢ X, such that y = mmax(0,s) (X).

Thus if and only if s< 0 or 0 <s and there is x¢ X, such
that y = ms(x).
In U <X we consider the topology of the cartesian product, induced

on the usual way by the topologies of U and X. In  we consider the
restriction of the topology of U xX.

Let us consider a mapping defined as follows:

for where Xx¢ X is such that

y =1tmax(0,5)(x)- This definition is correct, since for x,x"'e¢X such that
max(0s)x) =  mmax(0,s)(x") we have.

I°if s < 0, then x = X' and then of course mtmax(0,s)(x) = tmax(0,5)(x")

20 if 0=<s, then max(0,s) =s, max(0,t+s) =t+s and then

mimax(0,t+s)(x) = mt+s(x) = nt(ns(s)) = nt(nmax(0,5)(x)) = tt(mmax(0,s)(x"))
= nt (ns(x")) = mt+s(x') = mmax(0,t+s) (x").

This means, that mmax(0,t+s)(X) does not depend on X, chosen in such
a way that mmax(0,s)(x) =y.
A simple computation gives the following equality:

(19) for u,teTO0, <s, y>¢

such that <u, t>¢ M.
Since the continuity of  follows directly from the continuity of m,
we can consider as a GSD-system.
Let us define now the sets and as follows:

(20)
{<s, x> € X: O=s and there is y¢ M such that x = ns(y)
and mu(y)e M for every 0 <u < s},

(21)
We will prove that
(22)
(23)
(24)
(25) there is a retraction
(26) there are no retractions

In order to show (22) observe that for every we have
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(@ s<0 or (b) 0<s and there exists a y¢ M such that x = ns(y) and
nu(y)e M for 0 < u < s. In case (a), we can find t < s, such that putting
u = (—=t) - (—s),we obtain =<t +u, tmax(0,t+s) (X)> = s, B
= <g, >

Remark 11. It is possible to reason another way, based on the exten-
sion of (*) for U, namely: we can find A< 0 suchthat —wWi< A+s<§<0
and then putting n = -A, we obtain neT( such that

<A+s + n mmax(0Ms+n) (X)> = <s;tmax(0,5) (x)>
=<s, TTO P <s, x>,
In case (b) we have directly from the definition of an element

ye M such that x = ns(y), and then we have an element <0,y>

such that <s, x>. Then, each element <s, x> of  is an image
by of some element <t,y>e¢ M, for some ueTO

If then (c) s =0 (and we can use the same reasoning
as in case (a) for (i) 0 <s. In this case (d), there is a se-
guence {<sn, xn>}n=L2,... convergent to <s,x>. For every n, there
is a yne M such thut n(sn, yn) = xn

Since M is relatively compact, we can choose a subsequence
of {yn}, convergent to a point the subsequence is obviously
convergent to s. Hence, in virtue of the continuity of i, we have -.mi(s,y) =x.

Then, in virtue of the obvious relation <0,y>e (closure of we
have: for every <s, x>e¢d such that s > 0, there is an element <0, y>
belonging to the closure of such that = <s, x> The proof
of (22) is completed.

Now we will prove (23). Let <s, x> be a point of This means that
(e) s =0 and xe OM+* or (f) 0 < s, x¢ M and there is a point ye M,
such that ts(y) = x, u(y) € M for 0 < u < s. In case (e), we have <s,Xx>¢ Msg,
because does not belong to the closure of
for every n > 0, n < A with some A > 0; this follows directly from the fact,
that x M*.

In case (f), x¢ Me = Mse and then also

We will prove (24). In virtue of (22) the set is empty and then

Furthermore if and only if s =0,

then if and only if s =0 and x« SnoM = Sn (Me M)

In order to prove (25) consider the mapping

which is continuous and fulfills of course the condition
and is therefore a retraction.
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Finally, suppose that there is a retraction

The mapping induces in a natural way a mapping w: S-SnadJl
= Sn(Me M) as follows: Y(x) is equal to that element ye oM for which

the pair <0, y> is the value of the mapping at the point The
mapping Y is continuous and its restriction to Sn(Me M) is the identity,

because the restriction of to the set is the identity. Hence y is
aretraction S-Sn(Me M), the existence of such a retraction is, however,
impossible in virtue of the assumptions of Theorem 111 supposed here.
This proves (26).

In order to finish the proof of Proposition 2 (and then also the proof
of Theorem VI) we shall show the equivalence (a)<> Suppose that

is fulfilled. Then, there is a <s,x>t such that for
every ¢1¢T0. This means that there is ye M such that ms(y) =x and
nu(y)eM for 0 < u <s and, moreover, ms+u(y) € M for every ueT0 such
thats +u¢ TO. Let te Tobe arbitrary fixed. Ift < s, then of course mt(y)e M.
If s < t, then puttingu = t—s,we obtain mt(y) = nu(ws(y)) = mu+s(y)d
since u+s = teT0. This means that (a) is fulfilled.

Conversely, if (o) is satisfied, then is also satisfied, since for

withy € M such that t(y) M we have obviously
for every seTo

Remark 12. It was sufficient to prove only the implication
but since the converse implication is immediate, we formulated the cor-
responding condition in the form of an equivalence.

Remark 13. All applications given in the second part of the present
paper concern questions in which corresponding sets Jf are relatively
compact, the space T is equal to [0, ) and the LAO-semigroup To is
equal to a bounded interval [O,w0); this moans that all assumptions of
Theorem VI are fulfilled in these particular problems. We underline this
fact, because in the papers [22]-[25] the retract theorem in the version
of Theorem IV' is presented and applied.

In virtue of the above remark, this form is enough to the applications
in the theory of partial differential equations. Of course, having here
the general form (Theorem 111) we will use it in the sequel. Note finally,
that the reasoning presented in the present section in the proof of the last
theorem, was used by the author previously in a special case in [25].

Remark 14. From the formal point of view, the equivalence of Theo-
rems Il and V' is trivial, since the both are true; the essence of Theorem
V1 is contained in the fact that in the case of compact sets M such that
OM = M* = Mse M' and T0 having property (S), the formally more
general Theorem 111 gives really nothing new with respect to Theorem V'
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PART 11

1. INVESTIGATIONS OF LOCAL BEHAVIOR OF SOLUTIONS
OF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

We will give an example of applications of Theorem 111 (more pre-
cisely, of a special case of Theorem 111, namely Theorem R) from Section
8 of Part I, showing that the generalizations of the classical retract theorem
for GSD-systems are useful — especially from the technical point of view —
even in the theory of ordinary differential equations. Por further comments
we refer to Section 1.4.

1.1. Notation and assumptions. Let a be a positive real number and
letf: U-Rn, where U is an open subset of Rn be a lipschitzian (vector-)
function, such that for every y0eRn, there exists a solution (necessarily
a