Holomorphic continuation of harmonic functions

by Józef Siciak (Kraków)

Abstract. Put

 $B = \{x \in \mathbb{R}^n \colon |x| < r\}, \quad \tilde{B} = \{x + iy \in \mathbb{C}^n \colon |x|^2 + |y|^2 + 2^{\sqrt{|x|^2 |y|^2 - \langle x, y \rangle^2}} < r^2\},$

where $x|^2 = \sum_{j=1}^n x_j^2$, $\langle x, y \rangle = \sum_{j=1}^n x_j y_j$. The set \tilde{B} is called a *Lie ball* and it is an **E**. Cartan's classical domain of the fourth type.

Main result: For every function u of n real variables harmonic in B there exists a function \tilde{u} of n complex variables holomorphic in \tilde{B} such that $\tilde{u} = u$ in B (where B is identified with the set $\{x + iy \in C^n : |x| < r, y = 0\}$. Moreover, there exists a function u^* holomorphic in \tilde{B} such that u^* cannot be continued analytically beyond \tilde{B} and u^* restricted to B is harmonic.

1. Introduction. Let *h* be a function of *n* real variables harmonic in the ball $B_r = \{x \in \mathbb{R}^n : |x| < r\}$, where $|x| = [\sum x_j^2]^{1/2}$. It is well known that harmonic functions are real analytic. Therefore in a neighbourhood of $0 \in \mathbb{R}^n$

(1)
$$h(x) = \sum C_a x^a$$
, where $C_a = \frac{1}{a!} D^a h(0)$, $a = (a_1, \ldots, a_n) \in \mathbb{Z}_+^n$,

the series being convergent absolutely and uniformly. By grouping the terms of degree k one gets the following expansion

(2)
$$h(x) = \sum_{0}^{\infty} h_{k}(x), \text{ where } h_{k}(x) = \sum_{|a|=k}^{\infty} C_{a} x^{a}.$$

One may ask to what extent the grouping of the terms in (1) is essential for the convergence. The following theorems are known:

THEOREM A. [3]. If h is harmonic in the ball B_r , then the terms h_k of the series (2) are harmonic polynomials and the series converges uniformly and absolutely in B_{ρ} , whenever $0 < \rho < r$.

THEOREM B. [5]. If h is harmonic in B_r , then its multiple Taylor series expansion (1) converges uniformly and absolutely in B_{ϱ} , when $\varrho < r/\sqrt{2}$, but the series may diverge at some points of the sphere $\{|x| = r/\sqrt{2}\}$.

THEOREM C. [5]. If n = 2 and $h(x_1, x_2)$ is harmonic in the disk $\{x_1^2 + x_2^2 < r^2\}$, then the Taylor series expansion (1) converges absolutely and

uniformly on every compact subset of the square $C = \{|x_1| + |x_2| < r\}$. If h is not harmonic in any open disk of larger radius centered at the origin then (1) diverges at all points exterior to C for which $x_1x_2 \neq 0$.

In the sequel we identify \mathbb{R}^n with $\{z = x + iy \in \mathbb{C}^n : y = 0\}$. Put

(3)
$$t(z) = \left[\sum_{1}^{n} |z_{j}|^{2} + \left[\left(\sum_{1}^{n} |z_{j}|^{2}\right)^{2} - \left|\sum_{1}^{n} z_{j}^{2}\right|^{2}\right]^{1/2}\right]^{1/2}, \quad z \in \mathbb{C}^{n};$$
(4)
$$\tilde{B}_{r} = \{z \in \mathbb{C}^{n} : t(z) < r\}.$$

The domain \tilde{B}_r is identical with the so called *Lie ball* — the classical domain of the fourth type ([6]). It is obvious that t(x) = |x| for $x \in \mathbb{R}^n$. Thus $B_r \subset \tilde{B}_r$.

The purpose of this note is to prove the following

THEOREM D. If h is harmonic in B_r , then:

1° There exists a function \tilde{h} holomorphic in \tilde{B}_r such that $\tilde{h} = h$ in B_r ;

2° The multiple Taylor series (1) converges uniformly and absolutely on every compact subset of the domain

(5)
$$G_{\mathbf{r}} = \left\{ z \, \epsilon \, C^n : \sum_{1}^n |z_j|^2 + 2 \left(\sum_{j < k} |z_j|^2 |z_k|^2 \right)^{1/2} < r^2 \right\}.$$

In particular, it converges uniformly and absolutely on every compact subset of the domain

(6)
$$H_r = \left\{ z \, \epsilon \, C^n : \sum_{j=1}^n |z_j| < r \right\};$$

3° There exists a function h^* harmonic in B_r such that h^* can be continued to a holomorphic function in \tilde{B}_r , but it cannot be continued holomorphically to any larger domain $D \supset \tilde{B}_r$.

Observe that if n = 2, then $H_r = G_r = \{z \in C^2 : |z_1| + |z_2| < r\}$. If n > 2, $H_r \subset G_r$ and $H_r \neq G_r$. One may easily check that $L_r \stackrel{\text{df}}{=} \{z \in C^n : |z| < r/\sqrt{2}\} \subset H_r$ and $L_r \neq H_r$. Thus we get an improvement of Hayman's Theorem B.

COROLLARY. If D is an open connected set in \mathbb{R}^n , then there exists an open connected set $\tilde{D} \subset \mathbb{C}^n$ such that every function h harmonic in D may be continued to a holomorphic function \tilde{h} in \tilde{D} .

Indeed, it suffices to put $\tilde{D} = \bigcup_{a \in D} \{z \in C^n : t(z-a) < r_a\}$, where r_a denotes the distance of a to the boundary of D.

By property 3° the Lie ball B_r may be considered as an "envelope of holomorphy" of B_r with respect to the family of harmonic functions in B_r .

The problem of determining the envelope of holomorphy of an arbitrary domain $D \subset \mathbb{R}^n$ with respect to the family of harmonic functions in D was discussed by Lelong in [7].

It is rather a point of interest that the harmonic envelope of holomorphy of B_r is one of the classical E. Cartan domains.

2. Proof of Theorem D.

Ad 1°. We shall need the following known properties of the Lie ball \tilde{B}_r (see [6]):

(i) \tilde{B}_r is a domain of holomorphy;

(ii) \tilde{B}_r is balanced, i.e. if $z \in \tilde{B}_r$, $\lambda \in C$, $|\lambda| \leq 1$, then $\lambda z \in \tilde{B}_r$;

(iii) $S_r = \{e^{i\theta}x : x \in \mathbb{R}^n, |x| = r, \theta \in \mathbb{R}\} \subset \partial \tilde{B}_r$ and for every function f holomorphic in \tilde{B}_r , continuous in the closure of \tilde{B}_r we have

$$\sup\left\{|f(z)|: z \in S_r\right\} = \sup\left\{|f(z)|: z \in \tilde{B}_r\right\},\,$$

i.e. S_r is the Bergman-Šilov boundary of \tilde{B}_r .

First we shall prove the following

LEMMA 1. If $\sum_{0}^{\infty} f_k$ is any series of homogeneous polynomials of n complex variables (deg $f_k = k$) convergent at every point $x \in B_r$, then it converges uniformly and absolutely on every compact subset of the Lie ball \tilde{B}_r . Moreover, \tilde{B}_r is the maximal domain in C^n with this property.

Proof. It is known ([2], p. 89) that, given ρ , $0 < \rho < r$, one may find M > 0 and $0 < \theta < 1$ such that

$$|f_k(x)| \leqslant M \theta^k, \quad x \in B_{\varrho}, \ k \ge 0.$$

By (iii)

$$\sup \left\{ |f_k(z)| : z \in \tilde{B}_{\varrho} \right\} = \sup \left\{ |f_k(z)| : z \in S_{\varrho} \right\} = \sup \left\{ |f_k(x)| : x \in B_{\varrho} \right\}.$$

Thus

$$|f_k(z)| \leqslant M \theta^k, \quad z \in \tilde{B}_{\varrho}, \ k \geqslant 0.$$

So the series $\sum_{0}^{\infty} f_k$ converges uniformly and absulutely in \tilde{B}_{ϱ} , $0 < \varrho < r$. Since \tilde{B}_r is a domain of holomorphy, one may find a function f holomorphic in \tilde{B}_r which cannot be continued analytically to any larger domain. Since \tilde{B}_r is balanced, f can be expanded into a series of homogeneous polynomials, $f = \sum_{0}^{\infty} f_k$, which converges uniformly and absolutely on every compact subset of \tilde{B}_r ([1]). However, this series cannot converge in any larger domain containing \tilde{B}_r , because otherwise f would be continuable beyond \tilde{B}_r . The proof of Lemma 1 is concluded. (For a different proof of Lemma 1 see [4].)

By Lemma 1 the series (2) converges uniformly and absolutely on every compact subset of \tilde{B}_r . Its sum \tilde{h} gives the required continuation of h.

Ad 2°. The domain G_r given by (5) has the following properties: (P₁) $G_r \subset \tilde{B}_r$.

(P₂) If $a \in G_r$, then the set $\{z \in C^n : |z_j| \leq |a_j|, j = 1, ..., n\}$ is contained in G_r .

The second property is obvious. To prove (P_1) , observe that

$$ig(\sum |z_j|^2ig)^2 - \Big|\sum z_j^2\Big|^2 = \sum |z_j|^2 \sum |z_k|^2 - \sum z_j^2 \sum ar z_k^2 \ = 2 \sum_{j < k} |z_j|^2 |z_k|^2 - \sum_{j < k} (z_j^2 ar z_k^2 + ar z_j^2 z_k^2) \leqslant 4 \sum_{j < k} |z_j|^2 |z_k|^2.$$

Hence

$$t(z)^2 \leq \sum_{i} |z_j|^2 + 2 \left[\sum_{j < k} |z_j|^2 |z_k|^2 \right]^{1/2}, \quad z \in \mathbb{C}^n.$$

Therefore $G_r \subset B_r$.

Since by (P_2) the set G_r is a complete *n*-circular domain, then every function f holomorphic in G_r may be developed into a multiple Taylor series and the series converges absolutely and uniformly on every compact subset of G_r ([1]). In particular, the series (1) converges absolutely and uniformly on every compact subset of G_r .

Ad 3°. Put $H(\tilde{B}_r) = \{f \in \mathcal{O}(\tilde{B}_r) : f | B_r \text{ is harmonic in } B_r\}$, where $\mathcal{O}(\tilde{B}_r)$ denotes the space of all holomorphic functions in \tilde{B}_r . By the Harnack theorem $H(\tilde{B}_r)$ is a real Frechet space, if it is endowed with the topology of uniform convergence on compact subsets of \tilde{B}_r .

Let $\{a_k\}$ be a denumerable dense subset of \tilde{B}_r . Let ϱ_k denotes the distance of a_k to the boundary of \tilde{B}_r . For every $k, l \ge 1$, consider the domain

$$D_{kl} = \tilde{B}_r \cup \Big\{ z \in C^n \colon |z - a_k| < \varrho_k + rac{1}{l} \Big\}.$$

A function $f \in H(\tilde{B}_r)$ may be continued holomorphically beyond \tilde{B}_r if and only if there exist positive integers k, l and a function $\tilde{f} \in H(D_{kl})$ such that $\tilde{f} = f$ in \tilde{B}_r . Thus our aim is to show that

$$H(\tilde{B}_r) \smallsetminus \bigcup_{k,l=1}^{\infty} r_{kl}(D_{kl}) \neq \emptyset,$$

where r_{kl} is the continuous linear mapping defined by

$$r_{kl}: H(D_{kl}) \ge f \rightarrow f | B_r \in H(B_r).$$

By a theorem of Banach $r_{kl}(D_{kl})$ is either identical with $H(\tilde{B}_r)$ or it is a subset of the first category of $H(\tilde{B}_r)$. We shall show that the second possibility holds true. Namely, we shall show that for every point $w \in \partial \tilde{B}_r$ there exists $f \in H(\tilde{B}_r)$ such that f cannot be continued holomorphically through w.

Case 1. n = 2. One may check that in this case $t(z) = \max\{|z_1 + iz_2|, |z_1 - iz_2|\}$. Therefore $\tilde{B}_r = \{z \in C^2 : |z_1 + iz_2| < r, |z_1 - iz_2| < r\}$. Let $w \in \partial \tilde{B}_r$. Then either $|w_1 + iw_2| = r$ or $|w_1 - iw_2| = r$. Define

$$f(z) = \log \{ [re^{i\theta} - (z_1 + iz_2)] [re^{-i\theta} - (z_1 - iz_2)] \}, \quad z \in \tilde{B}_r,$$

where

$$re^{i\theta} = w_1 + iw_2$$
 if $|w_1 + iw_2| = r$,

or

$$re^{-i\theta} = w_1 - iw_2$$
 if $|w_1 - iw_2| = r$.

We take the branch of log such that $f(x) = \log |re^{i\theta} - (x_1 + ix_2)|^2$ is positive for $x \in B_r$. The function f belongs to $H(\tilde{B}_r)$ and f is not continuable through w.

Case 2. $n \ge 3$. It is known that $t(z)^2 = |x|^2 + |y|^2 + 2[|x|^2|y|^2 - \langle x, y \rangle^2]^{1/2}$, where z = x + iy, $x, y \in \mathbb{R}^n$, and $\langle x, y \rangle = \sum_{1}^{n} x_j y_j$ (see [6]). Since for every $a \in \mathbb{R}^n$, |a| = r, the function $h(x) = |a - x|^{-n+2} = [\sum_{1}^{n} (a_j - x_j)^2]^{1-n/2}$ is harmonic in B_r , it may be continued holomorphically into \tilde{B}_r . Its continuation \tilde{h} is of the form $\tilde{h}(z) = [\sum_{1}^{n} (a_j - z_j)^2]^{1-n/2}$, where the branch of the power is uniquely determined by the condition $\tilde{h} = h$ in B_r .

Now the existence of the required function f will follow from

LEMMA 2. Given $w = u + iv \in \partial B_r$ one may find $a \in \partial B_r$ such that $\sum_{j=1}^{n} (a_j - w_j)^2 = 0$, or equivalently

$$|a-u| = |v|$$
 and $\langle a-u, v \rangle = 0$.

In order to prove Lemma 2 we shall first show that $\partial \tilde{B}_r = \Gamma$, where

$$\Gamma = \{e^{i\theta}(x+iy)\colon \ \theta \in R, x, y \in R^n, \ |x|+|y| = r, \langle x, y \rangle = 0\}.$$

Indeed, let $w = e^{i\theta} z \epsilon \Gamma$. Then

$$t(e^{i\theta}z)^2 = t(z)^2 = |x|^2 + |y|^2 + 2|x||y| = (|x| + |y|)^2 = r^2.$$

Thus $w \in \partial B_r$.

(7)

J. Siciak

Now let $w \in \partial \tilde{B}_r$. We want to show that $w \in \Gamma$, i.e. we are about to find $z = x + iy \in \mathbb{C}^n$ and $\theta \in \mathbb{R}$ such that $w = e^{i\theta}z$, |x| + |y| = r and $\langle x, y \rangle = 0$. It is obvious that $w \in \Gamma$ if $\langle u, v \rangle = 0$. So assume $\langle u, v \rangle \neq 0$ and put $e^{i\theta} = a + i\beta$ and $z = (a - i\beta)(u + iv) = (au + \beta v) + i(av - \beta u)$. Thus

$$egin{aligned} &\langle x,y
angle = (a^2-eta^2)\,\langle u,v
angle + aeta(|v|^2-|u|^2)\ &= \langle u,v
angle \cos 2 heta - rac{1}{2}\sin 2 heta(|u|^2-|v|^2)\,. \end{aligned}$$

Therefore if θ satisfies

(8)
$$\cot 2\theta = \frac{|u|^2 - |v|^2}{2\langle u, v \rangle},$$

then $w = e^{i\theta}z$ and $\langle x, y \rangle = 0$. Since $r = t(w) = t(e^{i\theta}z) = |x| + |y|$, we see that $w \in \Gamma$. Thus $\partial \tilde{B}_r = \Gamma$.

Let w be a fixed point of $\partial \tilde{B}_r$. Take $z = x + iy \in C^n$ and $\theta \in R$ such that $w = e^{i\theta}z$, $\langle x, y \rangle = 0$ and |x| + |y| = r. Put $a = \cos \theta$, $\beta = \sin \theta$. Then $u = ax - \beta y$, $v = \beta x + ay$. We need find $a \in R^n$ such that |a| = r, $\langle a - u, v \rangle = 0$ and $|a - u|^2 = |v|^2$. The last two equations may be written in the following equivalent form:

$$egin{aligned} η\langle a,x
angle+a\langle a,y
angle&=aeta r(|x|-|y|),\ &-2a\langle a,x
angle+2eta\langle a,y
angle&=r[(|x|-|y|)(eta^2-a^2)-r]. \end{aligned}$$

Therefore $\langle a, x \rangle = ar |x|, \langle a, y \rangle = -\beta r |y|$. Hence

(i) if x = 0 (resp. y = 0), $\beta = 0$ (resp. a = 0), we can take for a any vector orthogonal to y (resp. x), |a| = r;

(ii) if x = 0 (resp. y = 0), $\beta \neq 0$ (resp. $a \neq 0$) we may take for a any vector such that the angle between a and y is equal to $\theta + \frac{\pi}{2}$ (resp. the angle between a and x is equal θ), |a| = r;

(iii) if
$$|x| |y| \neq 0$$
, we may put $a = r \left(\frac{a}{|x|} x - \frac{\beta}{|y|} y \right)$.

Added in proof. The author has recently found that the points 1° and 3° of Theorem D were earlier obtained by a different method and in a more general context by C. O. Kiselman (Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France 97 (4) (1969), p. 329-356).

References

- [1] H. Behnke und P. Thullen, Theorie der Funktionen mehrerer komplexer Veränderlichen, Springer-Verlag 1970.
- [2] J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math. 39 (1971), p. 77-112.

[3] M. Brelot, Éléments de la théorie classique du potentiel, Paris 1965.

- [4] L. Drużkowski, Effective formula for the crossnorm in the complexified unitary spaces, Zeszyty Nauk. Uniw. Jagiello., Prace Mat. 16 (1974) (to appear).
- [5] W. K. Hayman, Power series expansions for harmonic functions, Bull. London Math. Soc. 2 (1970), p. 152–158.
- [6] L. K. Hua, Harmonical analysis of functions of several complex variables in classical domains, Moscow 1959 (Russian).
- [7] P. Lelong, Prolongement analytique et singularités complexes des fonctions harmoniques, Bull. Soc. Math. Belg. 7 (2) (1965), p. 10-23.

Reçu par la Rédaction le 18. 1. 1973

