Holomorphic continuation of harmonic functions

Dy Józef Siciak (Kraków)

Abstract. Put

$$
B=\left\{x \in R^{n}:|x|<r\right\}, \quad \tilde{B}=\left\{x+i y \in C^{n}:|x|^{2}+|y|^{2}+2 \sqrt{|x|^{2}|y|^{2}-\langle x, y\rangle^{2}}<r^{2}\right\}
$$

where $\left.x\right|^{2}=\sum_{j=1}^{n} x_{j}^{2},\langle x, y\rangle=\sum_{j=1}^{n} x_{j} y_{j}$. The set \tilde{B} is called a Lie ball and it is an E . Cartan's classical domain of the fourth type.

Main result: For every function u of n real variables harmonic in B there exists a function \tilde{u} of n complex variables holomorphic in \tilde{B} such that $\tilde{u}=u$ in B (where B is identified with the set $\left\{x+i y \in C^{n}:|x|<r, y=0\right\}$. Moreover, there exists a function u^{*} holomorphic in \tilde{B} such that u^{*} cannot be continued analytically beyond \tilde{B} and u^{*} restricted to B is harmonic.

1. Introduction. Let h be a function of n real variables harmonic in the ball $B_{r}=\left\{x \in R^{n}:|x|<r\right\}$, where $|x|=\left[\sum x_{j}^{2}\right]^{1 / 2}$. It is well known that harmonic functions are real analytic. Therefore in a neighbourhood of $0 \in R^{n}$
(1) $h(x)=\sum C_{a} x^{a}, \quad$ where $C_{a}=\frac{1}{a!} D^{a} h(0), \alpha=\left(a_{1}, \ldots, a_{n}\right) \in Z_{+}^{n}$,
the series being convergent absolutely and uniformly. By grouping the terms of degree k one gets the following expansion

$$
\begin{equation*}
h(x)=\sum_{0}^{\infty} h_{k}(x), \quad \text { where } h_{k}(x)=\sum_{|a|=k} C_{a} x^{a} \tag{2}
\end{equation*}
$$

One may ask to what extent the grouping of the terms in (1) is essential for the convergence. The following theorems are known:

Theorem A. [3]. If h is harmonic in the ball B_{r}, then the terms h_{k} of the series (2) are harmonic polynomials and the series converges uniformly and absolutely in B_{e}, whenever $0<\varrho<r$.

Theorem B. [5]. If h is harmonic in B_{r}, then its multiple Taylor series expansion (1) converges uniformly and absolutely in B_{e}, when $\varrho<r / \sqrt{2}$, but the series may diverge at some points of the sphere $\{|x|=r / \sqrt{2}\}$.

Theorem C. [5]. If $n=2$ and $h\left(x_{1}, x_{2}\right)$ is harmonic in the disk $\left\{x_{1}^{2}+x_{2}^{2}<r^{2}\right\}$, then the Taylor series expansion (1) converges absolutely and
uniformly on every compact subset of the square $C=\left\{\left|x_{1}\right|+\left|x_{2}\right|<r\right\}$. If h is not harmonic in any open disk of larger radius centered at the origin then (1) diverges at all points exterior to C for which $x_{1} x_{2} \neq 0$.

In the sequel we identify R^{n} with $\left\{z=x+i y \epsilon C^{n}: y=0\right\}$. Put

$$
\begin{gather*}
t(z)=\left[\sum_{1}^{n}\left|z_{j}\right|^{2}+\left[\left(\sum_{1}^{n}\left|z_{j}\right|^{2}\right)^{2}-\left|\sum_{1}^{n} z_{j}^{2}\right|^{2}\right]^{1 / 2}\right]^{1 / 2}, \quad z \in \mathbb{C}^{n}, \tag{3}\\
\tilde{B}_{r}=\left\{z \in \mathbb{C}^{n}: t(z)<r\right\} . \tag{4}
\end{gather*}
$$

The domain \tilde{B}_{r} is identical with the so called Lie ball - the classical domain of the fourth type ([6]). It is obvious that $t(x)=|x|$ for $x \in R^{n}$. Thus $B_{r} \subset \tilde{B}_{r}$.

The purpose of this note is to prove the following
Theorem D. If h is harmonic in B_{r}, then:
1° There exists a function \tilde{h} helomorphic in \tilde{B}_{r} such that $\tilde{h}=h$ in B_{r};
2° The multiple Taylor series (1) converges uniformly and absolutely on every compact subset of the domain

$$
\begin{equation*}
G_{r}=\left\{z \epsilon C^{n}: \sum_{1}^{n}\left|z_{j}\right|^{2}+2\left(\sum_{j<k}\left|z_{j}\right|^{2}\left|z_{k}\right|^{2}\right)^{1 / 2}<r^{2}\right\} . \tag{5}
\end{equation*}
$$

In particular, it converges uniformly and absolutely on every compact subset of the domain

$$
\begin{equation*}
H_{r}=\left\{z \in \boldsymbol{C}^{n}: \sum_{1}^{n}\left|z_{j}\right|<r\right\} ; \tag{6}
\end{equation*}
$$

3° There exists a function h^{*} harmonic in B_{r} such that h^{*} can be continued to a holomorphic function in \tilde{B}_{r}, but it cannot be continvued holomorphically to any larger domain $D \supset \tilde{B}_{r}$.

Observe that if $n=2$, then $H_{r}=G_{r}=\left\{z \in C^{2}:\left|z_{1}\right|+\left|z_{2}\right|<r\right\}$. If $n>2, H_{r} \subset G_{r}$ and $H_{r} \neq G_{r}$. One may easily check that $L_{r} \xlongequal{\text { df }}\left\{z \epsilon \boldsymbol{C}^{n}:|z|\right.$ $<r / \sqrt{2}\} \subset H_{r}$ and $L_{r} \neq H_{r}$. Thus we get an improvement of Hayman's Theorem B.

Corollary. If D is an open connected set in R^{n}, then there exists an open connected set $\tilde{D} \subset \boldsymbol{C}^{n}$ such that every function h harmonic in D may be continued to a holomorphic function \tilde{h} in \tilde{D}.

Indeed, it suffices to put $\tilde{D}=\bigcup_{a \in D}\left\{z \in \dot{C}^{n}: t(z-a)<r_{a}\right\}$, where r_{a} denotes the distance of a to the boundary of D.

By property 3° the Lie ball \tilde{B}_{r} may be considered as an "envelope of holomorphy" of B_{r} with respect to the family of harmonic functions in B_{r}.

The problem of determining the envelope of holomorphy of an arbitrary domain $D \subset R^{n}$ with respect to the family of harmonic functions in D was discussed by Lelong in [7].

It is rather a point of interest that the harmonic envelope of holomorphy of B_{r} is one of the classical E. Cartan domains.

2. Proof of Theorem D.

Ad 1°. We shall need the following known properties of the Lie ball \tilde{B}_{r} (see [6]):
(i) \tilde{B}_{r} is a domain of holomorphy;
(ii) \tilde{B}_{r} is balanced, i.e. if $z \in \tilde{B}_{r}, \lambda \in C,|\lambda| \leqslant 1$, then $\lambda z \epsilon \tilde{B}_{r}$;
(iii) $S_{r}=\left\{e^{i \theta} x: x \in R^{n},|x|=r, \theta \in R\right\} \subset \partial \tilde{B}_{r}$ and for every function f holomorphic in \tilde{B}_{r}, continuous in the closure of \tilde{B}_{r} we have

$$
\sup \left\{|f(z)|: z \in S_{r}\right\}=\sup \left\{|f(z)|: z \epsilon \tilde{B}_{r}\right\}
$$

i.e. S_{r} is the Bergman-Silov boundary of \tilde{B}_{r}

First we shall prove the following
Lemma 1. If $\sum_{0}^{\infty} f_{k}$ is any serics of homogeneous polynomials of n complex variables ($\operatorname{deg} f_{k}=k$) convergent at every point $x \in B_{r}$, then it converges uniformly and absolutely on every compact subset of the Lie ball \tilde{B}_{r}. Moreover, \tilde{B}_{r} is the maximal domain in \mathbf{C}^{n} with this property.

Proof. It is known ([2], p. 89) that, given $\varrho, 0<\varrho<r$, one may find $M>0$ and $0<\theta<1$ such that

$$
\left|f_{k}(x)\right| \leqslant M \theta^{k}, \quad x \in B_{e}, k \geqslant 0 .
$$

By (iii)

$$
\sup \left\{\left|f_{k}(z)\right|: z \in \tilde{B}_{e}\right\}=\sup \left\{\left|f_{k}(z)\right|: z \in S_{\mathrm{e}}\right\}=\sup \left\{\left|f_{k}(x)\right|: x \in B_{e}\right\}
$$

Thus

$$
\left|f_{k}(z)\right| \leqslant M \theta^{k}, \quad z \epsilon \tilde{B}_{e}, k \geqslant 0 .
$$

So the series $\sum_{0}^{\infty} f_{k}$ converges uniformly and absulutely in $\tilde{\boldsymbol{B}}_{\boldsymbol{e}}, 0<\varrho<r$.
Since \tilde{B}_{r} is a domain of holomorphy, one may find a function f holomorphic in \tilde{B}_{r} which cannot be continued analytically to any larger domain. Since \tilde{B}_{r} is balanced, f can be expanded into a series of homogeneous polynomials, $f=\sum_{0}^{\infty} f_{k}$, which converges uniformly and absolutely on every
compact subset of $\tilde{B}_{r}([1])$. However, this series cannot converge in any larger domain containing \tilde{B}_{r}, because otherwise f would be continuable beyond \tilde{B}_{r}. The proof of Lemma 1 is concluded. (For a different proof of Lemma 1 see [4].)

By Lemma 1 the series (2) converges uniformly and absolutely on every compact subset of \tilde{B}_{r}. Its sum \tilde{h} gives the required continuation of h.

Ad 2°. The domain G_{r} givan by (5) has the following properties: $\left(\mathrm{P}_{1}\right) G_{r} \subset \tilde{B}_{r}$.
$\left(\mathrm{P}_{2}\right)$ If $a \in G_{r}$, then the set $\left\{z \epsilon \mathbb{C}^{n}:\left|z_{j}\right| \leqslant\left|a_{j}\right|, j=1, \ldots, n\right\}$ is contained in G_{r}.

The second property is obvious. To prove (P_{1}), observe that

$$
\begin{aligned}
\left(\sum\left|z_{j}\right|^{2}\right)^{2}-\left|\sum z_{j}^{2}\right|^{2} & =\sum\left|z_{j}\right|^{2} \sum\left|z_{k}\right|^{2}-\sum z_{j}^{2} \sum \bar{z}_{k}^{2} \\
& =2 \sum_{j<k}\left|z_{j}\right|^{2}\left|z_{k}\right|^{2}-\sum_{j<k}\left(z_{j}^{2} \bar{z}_{k}^{2}+\bar{z}_{j}^{2} z_{k}^{2}\right) \leqslant 4 \sum_{j<k}\left|z_{j}\right|^{2}\left|z_{k}\right|^{2} .
\end{aligned}
$$

Hence

$$
t(z)^{2} \leqslant \sum\left|z_{j}\right|^{2}+2\left[\sum_{j<k}\left|z_{j}\right|^{2}\left|z_{k}\right|^{2}\right]^{1 / 2}, \quad z \in C^{n} .
$$

Therefore $G_{r} \subset \tilde{B}_{r}$.
Since by (P_{2}) the set G_{r} is a complete n-circular domain, then every function f holomorphic in G_{r} may be developped into a multiple Taylor series and the series converges absolutely and uniformly on every compact subset of G_{r} ([1]). In particular, the series (1) converges absolutely and uniformly on every compact subset of G_{r}.

Ad 3°. Put $H\left(\tilde{\boldsymbol{B}}_{r}\right)=\left\{f \in \mathcal{O}\left(\tilde{\boldsymbol{B}}_{r}\right): f \mid B_{r}\right.$ is harmonic in $\left.B_{r}\right\}$, where $\mathcal{O}\left(\tilde{\boldsymbol{B}}_{r}\right)$ denotes the space of all holomorphic functions in \tilde{B}_{r}. By the Harnack theorem $H\left(\tilde{B}_{r}\right)$ is a real Frechet space, if it is endowed with the topology of uniform convergence on compact subsets of \tilde{B}_{r}.

Let $\left\{a_{k}\right\}$ be a denumerable dense subset of \tilde{B}_{r}. Let ϱ_{k} denotes the distance of a_{k} to the boundary of \tilde{B}_{r}. For every $k, l \geqslant 1$, consider the domain

$$
D_{k l}=\tilde{B}_{r} \cup\left\{z \epsilon C^{n}:\left|z-a_{k}\right|<\varrho_{k}+\frac{1}{l}\right\} .
$$

A function $f \in H\left(\tilde{B}_{r}\right)$ may be continued holomorphically beyond \tilde{B}_{r} if and only if there exist positive integers k, l and a function $\tilde{f} \in H\left(D_{k l}\right)$ such that $\tilde{f}=f$ in \tilde{B}_{r}. Thus our aim is to show that

$$
H\left(\tilde{B}_{r}\right) \backslash \bigcup_{k, l=1}^{\infty} r_{k l}\left(D_{k l}\right) \neq \varnothing,
$$

where $r_{k l}$ is the continuous linear mapping defined by

$$
r_{k l}: H\left(D_{k l}\right) \geqslant f \rightarrow f \mid \tilde{B}_{r} \in H\left(\tilde{B}_{r}\right) .
$$

By a theorem of Banach $r_{k l}\left(D_{k l}\right)$ is either identical with $H\left(\tilde{B}_{r}\right)$ or it is a subset of the first category of $H\left(\tilde{B}_{r}\right)$. We shall show that the second possibility holds true. Namely, we shall show that for every point $w \epsilon \partial \tilde{B}_{r}$ there exists $f \in H\left(\tilde{B}_{r}\right)$ such that f cannot be continued holomorphically through w.

Case 1. $n=2$. One may check that in this case $t(z)=\max \left\{\left|z_{1}+i z_{2}\right|\right.$, $\left.\left|z_{1}-i z_{2}\right|\right\}$. Therefore $\tilde{B}_{r}=\left\{z \in C^{2}:\left|z_{1}+i z_{2}\right|<r,\left|z_{1}-i z_{2}\right|<r\right\}$. Let $w \in \partial \bar{B}_{r}$. Then either $\left|w_{1}+i w_{2}\right|=r$ or $\left|w_{1}-i w_{2}\right|=r$. Define

$$
f(z)=\log \left\{\left[\mathrm{re}^{i \theta}-\left(z_{1}+i z_{2}\right)\right]\left[r e^{-i \theta}-\left(z_{1}-i z_{2}\right)\right]\right\}, \quad z \in \tilde{B}_{r},
$$

where

$$
r e^{i \theta}=w_{1}+i w_{2} \quad \text { if }\left|w_{1}+i w_{2}\right|=r
$$

or

$$
r e^{-i \theta}=w_{1}-i w_{2} \quad \text { if }\left|w_{1}-i w_{2}\right|=r .
$$

We take the branch of \log such that $f(x)=\log \left|r e^{i \theta}-\left(x_{1}+i x_{2}\right)\right|^{2}$ is positive for $x \in B_{r}$. The function f belongs to $H\left(\tilde{B}_{r}\right)$ and f is not continuable through w.

Case 2. $n \geqslant 3$. It is known that $t(z)^{2}=|x|^{2}+|y|^{2}+2\left[|x|^{2}|y|^{2}-\langle x, y\rangle^{2}\right]^{1 / 2}$, where $z=x+i y, x, y \in R^{n}$, and $\langle x, y\rangle=\sum_{1}^{n} x_{j} y_{j}$ (see [6]). Since for every $a \in R^{n}, \quad|a|=r$, the function $h(x)=|a-x|^{-n+2}=\left[\sum_{1}^{n}\left(a_{j}-x_{j}\right)^{2}\right]^{1-n / 2}$ is harmonic in B_{r}, it may be continued holomorphically into \tilde{B}_{r}. Its continuation \tilde{h} is of the form $\tilde{h}(z)=\left[\sum_{1}^{n}\left(a_{j}-z_{j}\right)^{2}\right]^{1-n / 2}$, where the branch of the power is uniquely determined by the condition $\tilde{h}=h$ in B_{r}.

Now the existence of the required function f will follow from
Lemma 2. Given $w=u+i v \epsilon \partial \tilde{B}_{r}$ one may find $a \in \partial B_{r}$ such that $\sum_{1}^{n}\left(a_{j}-w_{j}\right)^{2}=0$, or equivalently

$$
\begin{equation*}
|a-u|=|v| \quad \text { and } \quad\langle a-u, v\rangle=0 . \tag{7}
\end{equation*}
$$

In order to prove Lemma 2 we shall first show that $\partial \tilde{B}_{r}=\Gamma$, where

$$
\Gamma=\left\{e^{i \theta}(x+i y): \theta \in R, x, y \in R^{n},|x|+|y|=r,\langle x, y\rangle=0\right\} .
$$

Indeed, let $w=e^{i \theta} z \epsilon \Gamma$. Then

$$
t\left(e^{i \theta} z\right)^{2}=t(z)^{2}=|x|^{2}+|y|^{2}+2|x||y|=(|x|+|y|)^{2}=r^{2} .
$$

Thus $w \in \partial \tilde{B}_{r}$.

Now let $w \in \partial \tilde{B}_{r}$. We want to show that $w \in \Gamma$, i.e. we are about to find $z=x+i y \in C^{n}$ and $\theta \in R$ such that $w=e^{i \theta} z,|x|+|y|=r$ and $\langle x, y\rangle$ $=0$. It is obvious that $w \in \Gamma$ if $\langle u, v\rangle=0$. So assume $\langle u, v\rangle \neq 0$ and put $e^{i \theta}=\alpha+i \beta$ and $z=(\alpha-i \beta)(u+i v)=(\alpha u+\beta v)+i(\alpha v-\beta u)$. Thus

$$
\begin{aligned}
\langle x, y\rangle=\left(\alpha^{2}-\beta^{2}\right)\langle u, v\rangle+\alpha \beta\left(|v|^{2}\right. & \left.-|u|^{2}\right) \\
& =\langle u, v\rangle \cos 2 \theta-\frac{1}{2} \sin 2 \theta\left(|u|^{2}-|v|^{2}\right)
\end{aligned}
$$

Therefore if θ satisfies

$$
\begin{equation*}
\cot 2 \theta=\frac{|u|^{2}-|v|^{2}}{2\langle u, v\rangle} \tag{8}
\end{equation*}
$$

then $w=e^{i \theta} z$ and $\langle x, y\rangle=0$. Since $r=t(w)=t\left(e^{i \theta} z\right)=|x|+|y|$, we see that $w \in \Gamma$. Thus $\partial \tilde{B}_{r}=\Gamma$.

Let w be a fixed point of $\partial \tilde{B}_{r}$. Take $z=x+i y \in C^{n}$ and $\theta \epsilon R$ such that $w=e^{i \theta} z,\langle x, y\rangle=0$ and $|x|+|y|=r$. Put $a=\cos \theta, \beta=\sin \theta$. Then $u=\alpha x-\beta y, v=\beta x+\alpha y$. We need find $a \in R^{n}$ such that $|a|$ $=r,\langle a-u, v\rangle=0$ and $|a-u|^{2}=|v|^{2}$. The last two equations may be written in the following equivalent form:

$$
\begin{aligned}
\beta\langle a, x\rangle+a\langle a, y\rangle & =a \beta r(|x|-|y|), \\
-2 \alpha\langle a, x\rangle+2 \beta\langle a, y\rangle & =r\left[(|x|-|y|)\left(\beta^{2}-\alpha^{2}\right)-r\right] .
\end{aligned}
$$

Therefore $\langle a, x\rangle=a r|x|,\langle a, y\rangle=-\beta r|y|$. Hence
(i) if $x=0$ (resp. $y=0$), $\beta=0$ (resp. $\alpha=0$), we can take for a any vector orthogonal to y (resp. x), $|a|=r$;
(ii) if $x=0$ (resp. $y=0$), $\beta \neq 0$ (resp. $a \neq 0$) we may take for a any vector such that the angle between a and y is equal to $\theta+\frac{\pi}{2}$ (resp. the angle between a and x is equal θ), $|a|=r$;
(iii) if $|x||y| \neq 0$, we may put $a=r\left(\frac{\alpha}{|x|} x-\frac{\beta}{|y|} y\right)$.

Added in proof. The author has recently found that the points 1° and 3° of Theorem D were earlier obtained by a different method and in a more general context by C. O. Kiselman (Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France 97 (4) (1969), p. 329-356).

References

[1] H. Behnke und P. Thullen, Theorie der Funktionen mehrerer komplexer Veränderlichen, Springer-Verlag 1970.
[2] J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math. 39 (1971), p. 77-112.
[3] M. Brelot, Éléments de la théorie olassique du potentiel, Paris 1965.
[4] L. Druzikowski, Effective formula for the crossnorm in the complexified unitary spaces, Zeszyty Nauk. Uniw. Jagiello., Prace Mat. 16 (1974) (to appear).
[5] W. K. Hayman, Power series expansions for harmonic functions, Bull. London Math. Soc. 2 (1970), p. $152-158$.
[6] L. K. Hua, Harmonical analysis of functions of several complex variables in classical domains, Moscow 1959 (Russian).
[7] P. Lelong, Prolongement analytique et singularités complexes des fonctions harmoniques, Bull. Soc. Math. Belg. 7 (2) (1965), p. 10-23.

Reģ par la Rédaction le 18. 1. 1973

