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The investor problem based on the HJM model

Szymon Peszat and Dariusz Zawisza (Kraków)

Abstract. We consider a consumption-investment problem (both on a finite and an
infinite time horizon) in which the investor has access to a bond market. In our approach
prices of bonds with different maturities are described by the general HJM factor model.
We assume that the bond market consists of the whole family of rolling bonds and the in-
vestment strategy is a general signed measure distributed on all real numbers representing
time to maturity specifications for different rolling bonds. In particular, we can consider
a portfolio of coupon bonds. The investor’s objective is to maximize the time-additive
HARA utility of the consumption process. We solve the problem by means of the HJB
equation for which we prove the required regularity of solution and all required estimates
to ensure applicability of the verification theorem. Explicit calculations for affine models
are presented.

1. Introduction. The famous Merton problem of maximizing the ex-
pected utility of a consumption stream has a long tradition and has been
solved in many different settings. In the original formulation (see e.g. [28]),
we have a market with two possible investments: a safe investment (bank
account) with price dynamics

dB(t)

B(t)
= r dt, B(s) = b,

and a risky investment (stocks) with price dynamics

dP (t)

P (t)
= µ dt+ σ dW (t), P (s) = p,

where r, µ and σ are constants, and W is a real-valued Wiener process. The
investor at any time t chooses a consumption rate C(t) and can transfer
money from one investment to the other without transaction costs. Then
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the dynamics of the corresponding capital zψ,C is given by
dzψ,C(t)

zψ,C(t)
= [r(1− ψt) + µψt − C(t)] dt+ ψtσ dW (t), zψ,C(s) = z,

where ψt is the fraction of the capital invested in stocks at time t. Given a
horizon T of investments, a discount factor γ ≥ 0, α ∈ (−∞, 0) ∪ (0, 1) and
a, b ≥ 0, the goal is to find a strategy (ψ̂, Ĉ) which maximizes the satisfaction
(or reward) functional

(1.1) JT (z, s, ψ, C)

=
1

α
E
[
a

T�

s

e−γ(t−s)(C(t)zψ,C(t))α dt+ b e−γ(T−t)(zψ,C(T ))α
]
.

In the present paper, the investor has access to a market of so-called
rolling bonds U(t)(x), t ∈ [s, T ] and x ∈ [0, T ∗]. Here T ∗ is the maximal
time to maturity. Given x, the rolling bond U(·)(x) is a self-financing invest-
ment in a bond with fixed time to maturity x and therefore is a tradable
instrument (for the precise definition see Rutkowski [32] and the Appendix).
The dynamics of the rolling bonds is given by the SDE

(1.2)
dU(t)(x)

U(t)(x)
= r(t) dt− 〈σ̃(t)(x), λ(t) dt+ dW (t)〉,

where r is a (random) short rate, σ̃ is a random field, λ is a random process
taking values in Rm and W is an m-dimensional Wiener process (see (3.1)
and (3.4)).

The investment strategy ψt is a normalized signed measure on [0, T ∗].
The dynamics of the capital zψ,C has the form

(1.3)
dzψ,C(t)

zψ,C(t)
=

T ∗�

0

dU(t)(x)

U(t)(x)
ψt(dx)− C(t) dt.

The goal is to maximize the satisfaction (or reward) functional

JT (u(s)(·), zψ,C(s), s)

given by the right hand side of (1.1). We will restrict our attention to the
Heath–Jarrow–Merton factor model with rolling bonds as the basic instru-
ment. Recall that, in the HJM factor model, the short rate can be repre-
sented as r̂(t) = ϕ(t, Y (t)), where Y is a diffusion on Rn. This enables us to
solve the problem by means of the general HJB theory. In addition to the
general theory we provide calculations for the Vasicek, Cox–Ingersoll–Ross
and G2++ models. The last mentioned model has never been considered in
the context of the optimal portfolio selection problem. In our main result
we show that the corresponding HJB equation has a solution, this solution
admits a Feynman–Kac representation, and we can check the hypotheses of
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the general verification theorem. Finally, we provide formulae for the optimal
consumption rate Ĉ and the investment strategy ψ̂.

Now let us briefly recall the state of the literature and mark a few
distinctive features of our approach. There are many papers in which the
consumption-investment problem is solved under short rate dynamics and
without taking care of other HJM models (see Wachter [35], Guasoni and
Wang [19], [20], Korn and Kraft [24], Chang and Chang [9], Detemple and
Rindisbacher [12], Deelstra et al. [11], Hata et al. [21], Synowiec [33], Try-
buła [34]). Moreover, many of them focus on particular interest rate models
such as the Vasicek model or the Cox–Ingersoll–Ross model. We consider the
general factor model with rather weak assumptions on coefficients regularity,
which covers many other short term interest rate models. We consider finite
and infinite time horizon problems. It should be noticed that Guasoni and
Wang [20] provided the solution for the infinite horizon incomplete market
model and on domains for the stochastic factor being a subset of Rn. Fur-
ther, Hata et al. [21] considered the finite horizon problem with a general
factor model with factor dynamics operating on the entire Rn. Both papers
use different arguments than we do and do not take into account the delicate
nature of the bond market.

Ringer and Tehranchi [31] and Palczewski [29] considered the problem of
maximizing the utility of the terminal wealth in great generality but without
assuming any consumption stream and without introducing the concept of
rolling bond.

Many authors have considered rolling bonds with various objectives, but
in the framework limited either to a finite number of rolling bonds and very
specific affine factor dynamics (see the risk sensitive criterion of Bielecki et
al. [5], Bielecki and Pliska [6]) or to one rolling bond with one or two specific
factors. Let us mention only a few articles dedicated to the pension man-
agement problem: Battochio and Menoncin [3], Guan and Liang [17], [18],
Zhang et al. [38]. Apart from the general factor model we consider a general
normalized signed measure as the investor’s strategy, which can be useful
when dealing with a changing number of bonds available on the market.

Munk and Sørensen [26] solved the consumption investment problem
under the interest rate risk by duality methods (see Cox and Huang [10],
Karatzas et al. [23]). Their solution brings some knowledge about the in-
vestment position in general HJM models. However, they did not use rolling
bonds, did not consider the infinite horizon case and did not present any
detailed solution in the affine framework.

It is worth mentioning that our analysis is conducted in the stochastic
environment with unbounded coefficients, which allows us to develop many
technical contributions. For example, we present a novel method to prove the
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verification theorem on the infinite horizon. This should be compared with
the methods proposed for example by Nagai [27] and Guasoni and Wang [20].

The paper is organized as follows. In the next two sections we introduce
the concept of a controlled investment process and an HJM factor model.
The main result for the finite horizon case (Theorem 4.1) is formulated and
proved in Sections 4 and 5, respectively. Sections 6 and 7 are devoted to the
solution for some particular models. In Section 8 we study the infinite horizon
case (see Theorem 8.4). In the Appendix we recall the basic definitions and
properties of a bond market.

2. Controlled processes. Let (Ω,F,P) be a probability space, and let
T ∗ ∈ (0,+∞) be the maximal time to maturity available on the market.
Given a finite time investment horizon T ∈ (0,+∞), we denote byMT the
space of all (weakly) predictable processes ψ taking values in the space of
all signed measures with finite total variation norm satisfying

T ∗�

0

ψt(dx) = 1, ∀t ∈ [0, T ],

T�

0

T ∗�

0

|〈σ̃(t)(x), λ(t)〉| ‖ψt‖Var(dx) dt < +∞,

T�

0

(T ∗�

0

‖σ̃(t)(x)‖ ‖ψt(dx)‖Var

)2
dt < +∞,

where ‖ · ‖Var stands for the total variation norm.
Let CT be the space of all non-negative predictable processes. We call

AT = MT × CT the set of admissible strategies. Let (ψ,C) ∈ AT . Let
zψ,C(t) denote the capital of an investor whose consumption rate at time
t is C(t)zψ,C(t) and who can invest in (rolling) bonds with an investment
strategy ψ. Then zψ,C satisfies (1.3). Combining (1.2) and (1.3) we obtain

(2.1)
dzψ,C(t)

zψ,C(t)
= [r(t)− C(t)] dt−

T ∗�

0

〈σ̃(t)(x)ψt(dx), λ(t) dt+ dW (t)〉.

Note that the measure ψt admits negative values. In the particular case
of

(2.2) ψt =

n∑
i=1

[η1,tiδx1 + η2,tiδx2 + · · ·+ ηli,tiδxti ]χ(ti,ti+1](t),

where (η1,ti , η2,ti , . . . , ηli,ti) are random vectors such that
∑li

k=1 ηk,ti = 1,
each point mass measure δxk corresponds to a rolling bond with fixed time
to maturity xk. Note that this setting reflects the fact that in practice on
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each time segment (ti, ti+1] we have different numbers and types of maturities
(bonds) available on the market. On the other hand, this is a convenient way
to place different coupon bonds in the portfolio. Namely, we can take

ψt =
n∑
i=1

[η1,tiψt,1 + η2,tiψt,2 + · · ·+ ηli,tiψt,li ]χ(ti,ti+1](t),

where ψt,1, ψt,2, . . . , ψt,li represent different coupon bonds and are of the
form (2.2).

3. HJM factor model. In this paper we restrict our attention to the
so-called HJM factor model. Namely, we assume that the short rate has the
form r(t) = ϕ(t, Y (t)), where

(3.1) dY (t) = [B(t, Y (t)) +Σ(t, Y (t))λ(t, Y (t))] dt+Σ(t, Y (t)) dW (t),

B : [0, T ]×Rn → Rn, λ : [0, T ]×Rn → Rm, ϕ : [0, T ]×Rn → R, Σ : [0, T ]×
Rn → Rn⊗Rm, andW = (W1, . . . ,Wm) is anm-dimensional Wiener process
defined on a filtered probability space (Ω,F, (Ft),P).

We assume that the hypotheses given below are satisfied. The first one
concerns the regularity of B, λ, and ϕ. For the existence and uniqueness
of a solution to SDE (3.1) we need at least local Lipschitz continuity in y;
unfortunately, we also need at least Hölder continuity in t and y for the
existence of a classical solution to certain PDEs with coefficients B,Σ, and ϕ,
and their Feynman–Kac representations (see e.g. Friedman [15]).

Hypothesis 1. Either

(i) the mappings B, λ are bounded and locally Lipschitz continuous with
respect to t and y, while ϕ is locally Lipschitz continuous in t and y and
satisfies the linear growth condition in y uniformly in t, or

(ii) the mappings B, ϕ, λ are Lipschitz continuous in t and y.

The second hypothesis is on boundedness, Lipschitz continuity and uni-
form ellipticity of Σ. This is our most restrictive assumption. In particular, it
does not allow us to cover directly the important Cox–Ingersoll–Ross model.
In this case we treat the problem separately and present some explicit cal-
culations together with other particular examples focused mainly on affine
models.

Hypothesis 2. The mapping Σ is bounded, Lipschitz continuous in t
and y, and there exists a constant c > 0 such that

n∑
i,j=1

(
Σ(t, y)Σ(t, y)>

)
i,j
ξiξj ≥ c‖ξ‖2, ξ, y ∈ Rn, t ∈ [0, T ].

The last hypothesis is a no-arbitrage assumption.
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Hypothesis 3. λ : [0, T ] × Rn → Rn is a bounded, locally Lipschitz
continuous mapping and

dP∗ = e
	T
0 〈λ(t,Y (t)),dW (t)〉− 1

2

	T
0 ‖λ(t,Y (t))‖2 dt dP

is a martingale measure (see e.g. Appendix).

Remark 3.1. Hypothesis 3 gives the form of the volatility coefficient σ̃
appearing in (1.2). Indeed, the price P (t, S) at time t of the zero coupon
bond with maturity S is

P (t, S) = E∗{e−
	S
t ϕ(u,Y (u)) du|Ft} = E∗{e−

	S
t ϕ(u,Y (u)) du|Y (t)}.

Hence P (t, S) = F (t, S, Y (t)), where F = F (t, S, y) is a continuous function
of t ∈ [0, T ], t ≤ S ≤ T ∗, and y ∈ Rn. Moreover, for fixed S, F (·, S, ·) ∈
C1,2([0, S]× Rn) is the unique solution to the equation

(3.2)
∂

∂t
F (t, S, y) + L0F (t, S, y)− ϕ(t, y)F (t, S, y) = 0, F (S, S, y) = 1,

where

(3.3) L0F (t, S, y)

:= 1
2 Tr

(
Σ(t, y)Σ(t, y)>D2

yyF (t, S, y)
)

+ 〈B(t, y), DyF (t, S, y)〉.
Therefore (see Appendix), the no-arbitrage condition yields

(3.4) σ̃(t)(x) = −Σ(t, Y (t))>Dy logF (t, t+ x, Y (t)).

Given a signed measure ψ on [0, T ∗] set

(3.5) A(ψ)(t, y) := Σ(t, y)>
T ∗�

0

Dy logF (t, t+ x, y)ψ(dx).

Let ψ ∈MT . Taking into account (2.1), (3.4), and (3.5), we infer that in the
HJM factor model the wealth dynamics has the form

(3.6)
dzψ,C(t)

zψ,C(t)

= [ϕ(t, Y (t))− C(t)] dt+ 〈A(ψt)(t, Y (t)), λ(t, Y (t) dt+ dW (t)〉.
In the present paper we consider finite and infinite horizon optimal con-

sumption problems. In the finite horizon case the objective of the investor is
to maximize

(3.7) JT (z, y, s, ψ, C)

=
1

α
E
[
a

T�

s

e−γ(t−s)(C(t)zψ,C(t))α dt+ b e−γ(T−t)(zψ,C(T ))α
]
,

where z and y are the values of zψ,C and Y at a given initial time s ∈ [0, T ],
γ ≥ 0 is a discount factor, α ∈ (0, 1) and a, b ≥ 0. Therefore, the investor
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can decide how to distribute his preferences between the consumption stream
and the terminal weight by controlling the parameters a and b. In fact, some
of our results hold true also for α < 0 (see Remark 5.1). Let

VT (z, y, s) := sup
(ψ,C)∈AT

JT (z, y, s, ψ, C)

be the value function. Our main result concerning the finite horizon problem
is Theorem 4.1 below.

In the infinite horizon case we assume that the functions B, Σ, λ and ϕ
do not depend on the time variable. The reward functional is

(3.8) J(z, y, ψ, C) =
1

α
E

+∞�

0

e−γt(C(t)zψ,C(t))α dt.

Here z and y are the values of zψ,C and Y at initial time 0. Our main results
concerning the infinite horizon case are formulated and proved in Section 8.

4. Main result concerning the finite horizon problem. Recall that
L0 is defined by (3.3). Let

(4.1) Lf(t, y) = L0f(t, y) + 〈Σ(t, y)λ(t, y), Dyf(t, y)〉
be the generator of the diffusion (3.1). Let

(4.2) g(t, y) :=
1

1− α

[
αϕ(t, y) +

α

2(1− α)
‖λ(t, y)‖2 − γ

]
.

Consider the linear PDE

(4.3)
∂G

∂t
+ LG+

α

1− α
〈Σλ,DyG〉+ gG+ a

1
1−α = 0, G(T, y) = b

1
1−α .

For the existence of an optimal strategy we will need the following hy-
pothesis.

Hypothesis 4. The fraction DyG(t,y)
G(t,y) is globally bounded and there is a

weakly measurable mapping ψ̂ : [0, T ]×Rn →MT such that for all t ∈ [0, T ]
and y ∈ Rn,

A(ψ̂t,y)(t, y) =
λ(t, y)

1− α
+Σ(t, y)>

DyG(t, y)

G(t, y)
.

Theorem 4.1.

(i) Assume Hypotheses 1 to 3. Then there exists a unique classical solution
G ∈ C1,2[0, T )×Rn)∩C([0, T ]×Rn) of (4.3) satisfying the exponential
growth condition |G(t, y)| ≤ A eB‖y‖. Moreover, G admits the Feynman–
Kac representation

(4.4) G(t, y) = E a
1

1−α

T�

t

e
	u
t g(k,Ỹ (k)) dk du+ E b

1
1−α e

	T
t g(k,Ỹ (k)) dk,
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where g is given by (4.2) and Ỹ solves

(4.5)

dỸ (k) =

[
B(k, Ỹ (k)) +

1

1− α
Σ(k, Ỹ (k))λ(k, Ỹ (k))

]
dk

+Σ(k, Ỹ (k)) dW (k),

Ỹ (t) = y.

(ii) Assume that additionally Hypothesis 4 holds. Then

VT (z, y, s) = G(s, y)1−αe−γszα = JT (z, y, s, ψ̂, Ĉ),

where the optimal investment policy ψ̂ and the optimal consumption Ĉ

are given by ψ̂t = ψ̂t,Y (t) and Ĉ(t) = G(t, Y (t))−1 for t ∈ [s, T ].

Theorem 4.1 is proved in Section 5.

4.1. Some auxiliary results

Remark 4.2. Given t and y, consider the following equation for a signed
measure ψ:

(4.6) A(ψ)(t, y) =
λ(t, y)

1− α
+Σ(t, y)>

DyG(t, y)

G(t, y)
,

T ∗�

0

ψ(dx) = 1.

This equation appears in Hypothesis 4. The existence of its solution is crucial
for the existence of an optimal investment strategy. Note that the right hand
side of the first equation of (4.6) is a vector in Rm. Let x = (x1, . . . , xl) ∈
[0, T ∗]l, where l is large enough. We are looking for ψ of the form

ψ =
l∑

k=1

ηk(t, y)δxk ,

where η(t, y) = (η1(t, y), . . . , ηl(t, y))> ∈ Rl. Since A(ψ)(t, y) is given by
(3.5) we have the following system of linear equations for the column vector
η(t, y): 

F(t, y,x)η(t, y) =
λ(t, y)

1− α
+Σ(t, y)>

DyG(t, y)

G(t, y)
,

l∑
k=1

ηk(t, y) = 1,

where F(t, y,x) is the m× l matrix with columns

Σ(t, y)>Dy logF (t, t+ x1, y), . . . , Σ(t, y)>Dy logF (t, t+ xm+1, y).

Here the derivative Dy logF (t, t + xk, y) is understood as a column vector.
Let

e = (1, . . . , 1).
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A solution exists provided that for the sequence x the (m+ 1)× l matrix

F(t, y,x) =

[
F(t, y,x)

e

]
has rank m + 1. Summing up, if there are l and a vector x ∈ Rl such that
for all t and y, F(t, y,x) has rank m + 1, then condition (4.6) is fulfilled.
Moreover, one can choose an optimal investment strategy in the form

ψ̂t =
l∑

k=1

ηk(t, Y (t))δxk .

Remark 4.3. Note that (3.5) has much in common with the standard
duration of the portfolio of bonds used frequently in static bond portfolio
immunization. So we might say that Theorem 4.1 gives a recipe for dynamic
portfolio immunization.

5. Proof of Theorem 4.1. First of all, note that (4.3) is a linear equa-
tion and under Hypotheses 1 and 3 it has a unique smooth classical solution
in C1,2([0, T )×Rn× [0, T ))∩C([0, T ]×Rn) (see Zawisza [36, Theorem 3.3])
such that |G(y, t)| ≤ A eB‖y‖ (the latter follows easily from Zawisza [36, Lem-
ma 3.2 and proof of Theorem 3.3]). Moreover, G admits the Feynman–Kac
representation (4.4), (4.5).

Assume that Hypothesis 4 is fulfilled. To solve the optimization problem
we will use the HJB approach. As usual we will try to find the function V
in the form

V (z, y, s) =
1

α
K(s, y) e−γszα.

Recall that α ∈ (0, 1); for α < 0 one would need to exchange sup with inf in
the HJB equation. Let us write the HJB equations for the function K:

∂K

∂t
+ LK + (αϕ− γ)K + sup

c≥0
[−αKc+ acα]

+ α sup
ψ

{
‖A(ψ)‖2(α− 1)

2
K + 〈A(ψ), λK +Σ>DyK〉

}
= 0,

with the terminal condition K(T, y) = b.
Note that

sup
c≥0

[−αKc+ acα] = a(1− α)

(
K

a

) α
α−1

and the supremum is attained at ĉ = (K/a)
1

α−1 .
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Next note that

α sup
A∈Rm

{
‖A‖2(α− 1)

2
K + 〈A, λK +Σ>DyK〉

}
=

α

2(1− α)

1

K
‖λK +Σ>DyK‖2

and the supremum equals

A :=
1

1− α

(
λ+Σ>

DyK

K

)
.

We will show that K(t, y)1−α = G(t, y), therefore Hypothesis 4 ensures that
given t and y there is a signed measure ψ̂t(dx)(y) such that

A(ψ̂t(·)(y)) =
1

1− α

(
λ(t, y) +Σ(t, y)>

DyK(t, y)

K(t, y)

)
,

T ∗�

0

ψ̂t(dx)(y) = 1.

Hence, we eventually arrive at the HJB equation

0 =
∂K

∂t
+ LK + (αϕ− γ)K + a(1− α)

(
K

a

) α
α−1

+
α

2(1− α)

1

K
‖λK +Σ>DyK‖2,

b = K(T, y).

The proof of the theorem will be completed as soon as we show that:

• G(t, y) := K(t, y)1−α satisfies (4.4).
• We have

DyK

K
= (1− α)

DyG

G
.

• We can conduct the verification reasoning for the function e−γtK(t, y)zα.

An elementary verification of the first two items is left to the reader. Hy-
pothesis 4 guarantees boundedness of DyG/G. Therefore, under Hypothe-
ses 1–3, the optimal state process can be rewritten as

zψ̂,Ĉ(t) = z e
	t
s h(Ỹ (u)) duZ(t),

where h satisfies the linear growth condition, while Z is a square integrable
martingale. Next, we can use the fact that

(5.1) E sup
s≤t≤T

eA‖Ỹ (t)‖ < +∞

(see Zawisza [36, Lemma 3.2]), which guarantees the uniform integrability
condition for a certain family of random variables and ensures that we can
use the verification theorem to prove that (ψ̂, Ĉ) is an optimal control. More
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precisely, applying the Itô formula and taking the expectation of both sides,
we get

E e−γ(S∧τn−t)V
(
zψ̂,Ĉ(S ∧ τn), Y (S ∧ τn), S ∧ τn

)
= V (z, y, t)− 1

α
E a

S∧τn�

t

e−γ(s−t)(Ĉ(s)zψ̂,Ĉ(s))α ds,

where (τn, n ∈ N) is a localizing sequence of stopping times and S < T is a
positive constant.

Condition (5.1) justifies passing to the limit under the expectation sign.
Eventually, we arrive at

V (z, y, t) =
1

α
E
[
a

T�

t

e−γ(s−t)(Ĉ(s)zψ̂,Ĉ(s))α ds+ b e−γ(T−t)(zψ̂,Ĉ(T ))α
]
.

Next, we need to show that the value function V dominates the value
for other admissible strategies. Repeating the procedure for any admissible
strategy (ψ,C), we get

E e−γ(S∧τn−t)V
(
zψ,C(S ∧ τn), Y (S ∧ τn), (S ∧ τn)

)
≤ V (z, y, t)− 1

α
E a

S∧τn�

t

e−γ(s−t)(C(s)zψ,C(s))α ds.

By the positivity of α, we can use the Fatou lemma to obtain

(5.2) V (z, y, t)

≥ 1

α
E
[
a

T�

t

e−γ(s−t)(C(s)zψ,C(s))α ds+ b e−γ(T−t)(zψ,C(T ))α
]
.

Remark 5.1. If α < 0, then Theorem 4.1(i) still holds true. We do not
know how to show that the value function V dominates the value for other
admissible strategies. The main problem is to show the convergence of the
term

E e−γ(S∧τn−t)V
(
zψ,C(S ∧ τn), Y (S ∧ τn), S ∧ τn

)
.

Remark 5.2. Assume that we additionally have the possibility to allo-
cate our resources in the stock market S(t) ∈ RN , with dynamics

dS(t) = diag(S(t))[r(t) +ΣS(t, Y (t))λ(t, Y (t))] dt+ΣS(t, Y (t)) dW (t).

Then an investment policy is a pair (ψ, π), where ψ is a signed measure on
[0, T ∗] and π ∈ RN with

T ∗�

0

ψ(dx) +
N∑
j=1

πj = 1.
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The optimal investment policy (ψ̂t, π̂t), t ∈ [0, T ], should solve the system

A(ψ̂t)(t, Y (t)) +ΣS(t, Y (t))>π̂t =
λ(t, Y (t))

1− α
+Σ(t, Y (t))>

DyG(t, Y (t))

G(t, Y (t))
.

The existence of a sequence x = (x1, . . . , xl) such that the matrix[
F(t, y,x), ΣS(t, y)>

e

]
has rank m + 1 ensures the existence of an optimal control (ψ̂, π̂) with ψ̂t
being a point measure. We are aware that the processes S and Y share the
same Wiener process and this restricts generality, but the analysis of the
space with another independent Wiener process in the dynamics of S or Y is
out of the scope of this paper. Partial results for the general problem can be
found for example in Hata et al. [21] and Zawisza [37]. But our formulation
is sufficient for example to cover the bond-stock mix problem of Brennan
and Xia [8].

6. Examples. Our assumptions allow us to consider the following im-
portant models with practical implementations. Detailed calculations for
specific affine examples of the models presented below are given in the next
section.

Example 6.1 (Consistent HJM models). We assume that the forward
rate in the Musiela parametrization is given by r(t)(x) = φ(x, Y (t)), where
φ ∈ C1,2([0, T ∗]×Rn), and Y is given by (3.1). Note that for the short rate
we have r(t) = φ(0, Y (t)). Then (see Filipović [13, Proposition 9.1]) in the
case of B and Σ independent of t, under Hypotheses 1 and 2, the consistency
condition in Hypothesis 3 holds if and only if Φ(x, y) =

	x
0 φ(u, y) du satisfies

∂Φ

∂x
(x, y) = φ(0, y) + 〈B(y), DyΦ(x, y)〉

+
1

2

n∑
i,j=1

(Σ(y)Σ(y)>)i,j

[
∂2Φ

∂yi∂yj
(x, y)− ∂Φ

∂yi
(x, y)

∂Φ

∂yj
(x, y)

]
.

Example 6.2 (Short term interest rate models). Assume that

dr(t) = B(t, r(t)) dt+Σ(t, r(t))[λ(t) dt+ dW (t)],

where B and Σ are functions satisfying Hypotheses 1 and 2 and λ is a
deterministic bounded measurable function. Then, in the framework of the
HJM factor model, we take Y = r.

Example 6.3 (Gaussian-separable HJM model, also known as Ritchken–
Sankarasubramanian model). Assume that the volatility has the form σ(t)(x)
= β(t)ν(x + t), where β and ν are deterministic functions. In this case,
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assuming some mild regularity of the function ν and f(0, t), we have

dr(t) =

[
∂f(0, t)

∂t
− f(0, t)

ν ′(t)

ν(t)
+

t�

0

β(u)ν(u) du+ r(t)
ν ′(t)

ν(t)

]
dt

+ β(t)ν(t) dW ∗(t).

Thus the problem can be easily reduced to short rate models. This can be
further generalized to the so-called Cheyette models

σ(t)(x) =

N∑
i=1

βi(t)
νi(t)

νi(x+ t)
.

For more details we refer to Beyna [4].

Example 6.4 (Quasi-Gaussian HJM model). Let

σ(t)(x) = β(t, ξ(t))ν(x+ t),

where ξ(t) is a diffusion and ν a deterministic function. Then

dr(t) =

[
∂f(0, t)

∂t
− f(0, t)

ν ′(t)

ν(t)
+

t�

0

β(u, ξ(u))ν(u) du+ r(t)
ν ′(t)

ν(t)

]
dt

+ β(t, ξ(t))ν(t) dW ∗(t).

Clearly, for ψ(r, ξ) = r and Y = (r, ξ) we have r(t) = ψ(t, Y (t)). Unfortu-
nately, the strong ellipticity condition cannot be satisfied. In order to have a
non-degenerate diffusion one can replace the term

	t
0 β(u, ξ(u))ν(u) dudt by

its ε-perturbation
t�

0

β(u, ξ(u))ν(u) dudt+ εdW̃ (t),

where W̃ is an independent Wiener process.
An example of such a model is the Cheyette HJM model with β having

the affine structure β(t, ξ) := ζ1(t)+ζ2(t)ξ, where ζ1 and ζ2 are deterministic
functions. Note that in affine models (for the definition see the next section)
taking ε → 0 is an instantaneous operation and does not need separate
justification. For more information about such models we refer to Pirjol and
Zhu [30].

7. Affine factor models. Our aim here is to present examples of mod-
els which admit explicit solutions. As in Section 4, we assume that r(t) =
ϕ(t, Y (t)), where Y is given by (3.1). We focus on affine models, i.e. models
with

(7.1)
B(t, y) := B1(t) + 〈B2(t), y〉, Σ(t, y) := Σ(t),

λ(t, y) := λ(t), ϕ(t, y) = ϕ1(t) + 〈ϕ2(t), y〉,
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where B1(t), B2(t), Σ(t), λ(t), ϕ1(t), ϕ2(t) are deterministic matrix-valued
mappings. At the end of the present section we will consider the CIR model,
which is not in fact an affine factor model.

Proposition 7.1. Under the affine specification (7.1) the formula for
the optimal pair (ψ̂, Ĉ) reads

Σ(t)>
T ∗�

0

[t+x�
t

Pt,t+xP
−1
k,t+xϕ2(k) dk

]
ψt(dx) =

λ(t)

1− α
+Σ(t)>

DyG(t, Y (t))

G(t, Y (t)
,

and C(t) = G(t, Y (t))−1, where

G(t, y) := a
1

1−α

T�

t

η(t, u, y) du+ b
1

1−α η(t, T, y),

η(t, u, y) := em1,t,u+〈m2,t,u,y〉+ 1
2
σ2
t,u ,

(7.2)

m2,t,u :=
α

1− α

u�

t

Pt,uP
−1
k,uϕ2(k) dk,

m1,t,u +
1

2
σ2t,u =

u�

t

f(k, u) dk,

(7.3)

f(t, u) :=
1

2
〈m2,t,u, Σ(t)Σ(t)>m2,t,u〉+ 〈B1(t),m2,t,u〉

+
1

1− α

[
〈m2,t,u, Σ(t)λ(t)〉+

α

2(1− α)
‖λ(t)‖2 − γ

](7.4)

and Pt,k denotes the time-ordered path exponential of the matrix B(t).

Proof. Note that in the affine framework, g given by (4.2) is equal to

g(t, y) =
1

1− α

[
αϕ1(t) +

α

2(α− 1)
‖λ(t)‖2 − γ

]
+

α

1− α
〈ϕ2(t), y〉

=: g0(t) + 〈g1(t), y〉.

Moreover, the process Ỹ appearing in the Feynman–Kac representation (4.4),
(4.5) of the function G is Gaussian. Hence, for any t ≤ u, the random variable	u
t g(k, Ỹ (k)) dk has a Gaussian N (m1,t,u + 〈m2,t,s, y〉, σt,u) distribution, and
consequently we have (7.2).

On the other hand, substituting the above function G into (4.3), we infer
that the function η satisfies

− ∂η
∂t

+
1

2
Tr(ΣΣ>D2

yyη) + 〈B1 +B2y,Dyη〉

+
1

1− α
〈Σλ,Dyη〉+ g0 + 〈g1, y〉 = 0
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with η(t, t, y) = 1. Consequently,
∂

∂t
m2,t,u = B2(t)m2,t,u +

α

1− α
ϕ2(t), m2,t,t = 0,

and therefore

m2,t,u =
α

1− α

u�

t

Pt,uP
−1
k,uϕ2(k) dk,

where Pt,k denotes the time-ordered path exponential of the matrix B(t).
For the function m1,t,s + 1

2σ
2
t,s we have

∂

∂t

[
m1,t,u +

1

2
σ2t,u

]
= f(t, u), m1,t,t +

1

2
σ2t,t = 0,

where f(t, u) equals

1

2
〈m2,t,u, Σ(t)Σ(t)>m2,t,u〉+ 〈B1(t),m2,t,u〉

+
1

1− α

[
〈m2,t,u, Σ(t)λ(t)〉+

α

2(1− α)
‖λ(t)‖2 − γ

]
.

Hence

m1,t,u +
1

2
σ2t,u =

u�

t

f(k, u) dk.

Remark 7.2. It is worth stressing that in the investment-consumption
model under the affine factor assumption, the optimal portfolio weights are
not linear combinations of factors. This contrasts with the pure investment
problem (see Bielecki and Pliska [6]).

7.1. Short rate affine models. Now, let us consider more specific
examples. The model is short rate affine if the price P (t, S) at time t of the
zero coupon bond with maturity T is

(7.5) P (t, T ) = em(T−t)−n(T−t)r(t),

where m and n are deterministic functions. Moreover, it is assumed that the
short rate r is a diffusion process,

dr(t) = B(r(t)) dt+Σ(r(t))[λ(r(t)) dt+ dW (t)].

In the notation of Section 4, Y = r. We assume that B, Σ and λ satisfy
Hypotheses 1 to 3. Barski and Zabczyk [2] have proved that in affine models,
bond prices are local martingales with respect to martingale measures if and
only if B(r) = a + br and (Σ(r) = c

√
r or Σ(r) = c), where a, b, c ∈ R are

constants. Obviously, (7.5) requires additional assumptions on λ. Under the
Musiela parametrization (see Appendix), we have

P (t)(x) = em(x)−n(x)r(t) = F (t, t+ x, r(t)), F (t, t+ x, r) = em(x)−n(x)r,
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and
r(t)(x) = −m′(x) + n′(x)r(t).

Since
∂

∂r
logF (t, t+ x, r) = −n(x)

the formula for the optimal investment strategy reads

(7.6)
T ∗�

0

n(x) ψ̂t(dx) =
1

α− 1

λ(r(t))

Σ(r(t))
− DrG(t, r(t))

G(t, r(t))
.

The optimal consumption rate is given by

(7.7) Ĉ(t) = G(t, r(t))−1.

7.1.1. Vasicek model. First we will consider theVasicek model

(7.8) dr(t) = [β − κr(t)] dt+ σ[λ dt+ dW (t)],

where b, κ, λ, and σ > 0 are constants. Note that under the Vasicek model
we have

n(x) =
1− e−κx

κ
, m(x) = −β

x�

0

n(y) dy +
σ2

2

x�

0

n(u)2 du,

and
dU(t)(x)

U(t)(x)
= r(t) dt− σn(x)[λdt+ dW (t)].

Proposition 7.3. In the Vasicek model (7.8) the optimal pair (ψ̂, Ĉ) is
given by (7.6)–(7.7) where

(7.9) G(t, r) = a
α

1−α

T�

t

em1,t,u+m2,t,ur+
1
2
σ2
t,u du+ b

α
1−α em1,t,T+m2,t,T r+

1
2
σ2
t,T ,

and

σ2t,u := α2
u�

t

n(k)2σ2 dk,

m1,t,u := α

u�

t

[
n(k)

(
β +

1

(1− α)
λσ

)
+

1

2(1− α)
λ2 − γ

]
dk,

m2,t,u := αn(u− t), α := α/(1− α).

Proof. Note that equation (4.3) for G now has the form
∂G

∂t
(t, r) + L̃G(t, r) + g(r)G(t, r) + a

1
1−α = 0, G(T, y) = b

1
1−α ,

where

L̃G(t, r) =
σ2

2

∂2G

∂r2
(t, r) +

[
β − κr +

α

1− α
σλ

]
∂G

∂r
(t, r)
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and
g(r) =

1

1− α

[
αr +

α

2(1− α)
λ2 − γ

]
.

Thus

G(t, r) = E
{
a

1
1−α

T�

t

e
	u
t g(r̃(k)) dk du+ b

1
1−α e

	T
t g(r̃(k)) dk

}
,

where

dr̃(k) =

[
β − κr̃(k) +

1

1− α
λσ

]
dk + σ dW (k), r̃(t) = r.

Note that
u�

t

r̃(k) dk = n(u− t)r +

u�

t

n(k)

[
β +

1

1− α
λσ

]
dk +

u�

t

n(k)σ dW (k).

Therefore, the integral
	u
t r̃(k) dk is normally distributed, and in this case G

is given by (7.9).

Note that the optimal investment is determined by the condition
T ∗�

0

1− e−κx

κ
ψ̂t(dx) =

λ

(α− 1)σ
− DrG(t, r(t))

G(t, r(t))
,

T ∗�

0

ψ̂t(dx) = 1.

In particular, we can take ψ̂t(dx) = η̂0(t) δ0(dx) + η̂x(t) δx(dx), where x ∈
(0, T ∗] is an arbitrary fixed time to maturity. The process (η̂0(t), η̂x(t)) is
determined by

η̂x(t) =
κ

1− e−κx

[
λ

(α− 1)σ
− DrG(t, r(t))

G(t, r(t))

]
, η̂0(t) = 1− η̂x(t).

It should be noted that the solution for the simpler Merton model

dr(t) = β dt+ σ(λ dt+ dW (t))

can be derived by letting κ→ 0 in the Vasicek model. Thus, in the Merton
model, n(x) = x and m(x) = −βx2 + (σ2/6)x3. In particular, the condition
for the optimal investment is

T ∗�

0

x ψ̂t(dx) =
λ

(α− 1)σ
− DrG(t, r(t))

G(t, r(t))
,

T ∗�

0

ψ̂t(dx) = 1.

7.1.2. CIR model. Another important model worth considering is the
Cox–Ingersoll–Ross model. It does not satisfy our Hypotheses 1 and 2. How-
ever, we are able to perform some explicit calculations. In fact, we will derive
an exact formula for the solutionG to (4.3). In this way we obtain a candidate
for the value function for the corresponding control problem. We perform cal-
culations only for the case α < 0 (see Remark 5.1). For other parameters
it might happen that the value function has infinite value (see for example
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Korn and Kraft [25, Proposition 3.2]). We start by listing elementary facts
about the CIR model:

dr(t) = (β − κr(t)) dt+ σ
√
r(t)(λdt+ dW (t)),

n(x) =
sinh ρx

ρ cosh ρx+ κ
2 sinh ρx

,

m(x) =
2β

σ
log

(
eκx/2

ρ cosh ρx+ κ
2 sinh ρx

)
,

ρ =
1

2
(κ2 + 2σ2)1/2,

dU(t)(x)

U(t)(x)
= r(t) dt− σ

√
r(t)n(x)(λ dt+ dW (t)).

Usually it is assumed that 2β ≥ σ2. To obtain a closed form solution we
assume here λ(r) := λ

√
r.

Note that

dr̃(k) = [β − κ̃r̃(k)] dk + σ
√
r̃(k) dW (k), r̃(t) = r, κ̃ = κ− λσ

1− α
and

E e
	u
t

α
1−α [1+

λ2

2(1−α) ]r̃(k) dk = em̃(u−t)−ñ(u−t)r,

where

ñ(x) =
|α|

1− α

[
1 +

λ2

2(1− α)

]
sinh γ̃x

γ̃ cosh γ̃x+ κ̃
2 sinh γ̃x

,

m̃(x) =

√
|α|

(1− α)

[
1 +

λ2

2(1− α)

]
2β

σ
log

(
eκ̃x/2

γ̃ cosh γ̃x+ κ̃
2 sinh γ̃x

)
,

γ̃ =
1

2

(
κ̃2 + 2

|α|
1− α

σ2
)1/2

.

So the solution to (4.3) corresponding to the CIR model is given by

(7.10) G(t, r) = a
α

1−α

T�

t

em1,t,u+m2,t,ur du+ b
α

1−α em1,t,T+m2,t,T r,

where

m1,t,u := m̃(u− t)− γ

1− α
(u− t), m2,t,u := ñ(u− t).

Summing up, we get

Proposition 7.4. In the CIR model a candidate for the optimal pair
(ψ̂, Ĉ) is given by
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T ∗�

0

ñ(x) ψ̂t(dx) =
1

α− 1

λ(r(t))

Σ(r(t))
− DrG(t, r(t))

G(t, r(t))
, Ĉ(t) = G(t, r(t))−1,

where G(t, r) is given by (7.10).

7.1.3. Multidimensional model. It is time to present a multidimensional
model. Here we focus on the G2++ model, important for applications. Let
r(t) = Y1(t) + Y2(t), where

dY1(t) = −κ1Y1(t) dt+ σ1[λ1 dt+ dW1(t)],

dY2(t) = −κ2Y2(t) dt+ σ2
[
ρ[λ1 dt+ dW1(t)] +

√
1− ρ2 [λ2 dt+ dW2(t)]

]
,

and W1,W2 are independent Brownian motions. In other words, the short
rate is the sum of two correlated Vasicek (or Ornstein–Uhlenbeck) processes.

Proposition 7.5. In the G2++ model the optimal pair (ψ̂, Ĉ) is given
by

−
T ∗�

0

(n1(x), n2(x)) ψ̂t(dx) =
(λ1, λ2)Σ

−1

1− α
+
DyG(t, Y (t))

G(t, Y (t))
,

Ĉ(t) = G(t, Y (t))−1,

where

G(t, y) = a
1

1−α

T�

t

η(t, u, y) du+ b
1

1−α η(t, T, y),

η(t, u, y) = em1,t,u+〈m2,t,u,y〉+ 1
2
σ2
t,u ,

σ2t,u :=

[
α

1− α

]2[u�
t

(n1(k)σ1 + n2(k)σ2ρ)2 + n2(k)2σ22(1− ρ2)
]

dk,

m1,t,u :=
α

1− α

u�

t

[
n1(k)β1 + n2(k)β2 +

α

2(1− α)
‖λ‖2 + ϕ− γ

]
dk,

m2,t,u :=

(
α

1− α
n1(u− t),

α

1− α
n2(u− t)

)
,

Σ :=

[
σ1 0

ρσ2 σ2
√

1− ρ2

]
,

n1(x) :=
1− e−κ1x

κ1
, n2(x) :=

1− e−κ2x

κ2
.

Proof. Here the formula for the function G is

G(t, y) = E
{T�
t

a
1

1−α e
	u
t g(Ỹ1(k)+Ỹ2(k)) dk du+ b

1
1−α e

	T
t g(Ỹ1(k)+Ỹ2(k)) dk

}
,
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where

g(z) =
1

1− α

[
αz +

α

2(1− α)
‖(λ1, λ2)‖2 − γ

]
and

dỸ1(u) = [β1 − κ1Ỹ1(u)] du+ σ1 dW1(u),

Ỹ1(t) = y1,

dỸ2(u) = [β2 − κ2Ỹ2(u)] dt+ σ2(ρdW1(u) +
√

1− ρ2 dW2(u)),

Ỹ2(t) = y2,

β1 :=
1

1− α
λ1σ1, β2 :=

1

1− α
(λ1σ2ρ+ λ2σ2

√
1− ρ2).

Taking advantage of the Vasicek model we obtain
u�

t

(Ỹ1(k) + Ỹ2(k)) dk = n1(u− t)y1 + n2(u− t)y2 +

u�

t

n1(k)β1 dk

+

u�

t

n2(k)β2 dk +

u�

t

(n1(k)σ1 + n2(k)σ2ρ) dW1(k)

+

u�

t

n2(k)σ2
√

1− ρ2 dW2(k).

This implies the desired identities.

In particular, if we take

ψ̂t(dx) = η̂0(t) δ0(dx) + η̂x1(t) δx1(dx) + η̂x2(t) δx2(dx),

where x1, x2 ∈ (0, T ∗], then the process (η̂0(t), η̂x1(t)), η̂x2(t)) is determined
by

(η̂x1(t), η̂x2(t)) =
(λ1, λ2)Σ

−1M(x1, x2)
−1

α− 1
− DyG(t, Y (t))M(x1, x2)

−1

G(t, Y (t))
,

η̂0(t) = 1− η̂x1(t)− η̂x2(t),

where

M(x1, x2) :=

[
n1(x1) n1(x2)

n2(x1) n2(x2)

]
.

8. Infinite horizon problem. Recall that in the infinite horizon case
the reward functional is given by (3.8), and the short rate has the form
r(t) = ϕ(Y (t)) where Y solves (3.1). We assume that Hypotheses 1 to 3 are
fulfilled. Moreover, in this section, ϕ as well as the coefficients B, Σ and λ
appearing in (3.1) do not depend on the time variable.
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Let
V (z, y) = sup

ψ,C
J(z, y, ψ, C)

be the value function of the investor.
We start by providing a simple example of a model that satisfies our

Hypotheses 1 to 3, but produces an infinite value function V .

Example 8.1. Consider the Merton model

dr(t) = β dt+ σ(λ dt+ dW (t)).

Choose ψ = δ0, which corresponds to the investment in the bank account
only, and fix the consumption at a constant level c > 0. Then C(t) ≡ c and

dzψ,C(t) = [r(t)− c]zψ,C(t) dt.

Thus
zψ,C(t) = z e

	t
0[r(u)−c] du,

and

J(z, r, ψ, C) =
cz

α
E

+∞�

0

e
	t
0[αr(u)−αc−γ] du dt.

Note that
t�

0

r(u) du =
(β + λ)t2

2
+ σ

t�

0

W (u) du.

Since
	t
0W (u) du has the normal distribution with variance t3/3 we have

J(z, r, ψ, C) = +∞ (see Synowiec [33]).

The HJB approach gives the following candidate for the value function V ,
optimal consumption Ĉ and investment strategy ψ̂: we can expect that

V (z, y) = G(y)
1

1−α zα,(8.1)

Ĉ(t) = G(Y (t))−1,(8.2)

and ψ̂ ∈M+∞ is such that

(8.3) A(ψ̂t) =
λ(Y (t))

1− α
+Σ(Y (t))>

DyG(Y (t))

G(Y (t))
,

where G solves the elliptic equation

(8.4) LG(y) +
α

1− α
〈Σ(y)λ(y), DyG(y)〉+ g(y)G(y) + 1 = 0.

Recall that L given by (4.1) is the generator of the diffusion defined by (3.1)
and g is given by (4.2). Finally, we can expect that G has the Feynman–Kac
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representation

(8.5) G(y) = E
+∞�

0

e
	u
0 g(Ỹ (k)) dk du,

where Ỹ solves the stochastic differential equation

dỸ (t) =

[
B(Ỹ (t)) +

1

1− α
Σ(Ỹ (t))λ(Ỹ (t))

]
dt+Σ(Ỹ (t)) dW (t)

with Ỹ (0) = y. Taking into account Example 8.1, we see that a special
care has to be taken to ensure the existence of a solution to (8.5) or to the
convergence of the integral in (8.5). Moreover, at the end we will have to
verify the assumption of the verification theorem.

Below we present a general theorem which ensures that convergence. Let
h : Rn → R be a Lipschitz continuous function. Let us consider the elliptic
equation

(8.6) LG(y) + h(y)G+ 1 = 0, y ∈ Rn.

Theorem 8.2. In addition to Hypotheses 1 to 3, suppose that there exists
a constant L2 > 0 and a function κ : [0,+∞)×N→ R decreasing in the first
argument such that

〈B(x)−B(y), x− y〉+ 1
2‖Σ(x)−Σ(y)‖2 ≤ −L2‖x− y‖2,

and

(8.7) E e
	t
0 2h(Y (u)) du ≤ κ(t, n), y ∈ B(0, n),

+∞�

0

√
tκ(t, n) dt < +∞.

Then

G(y) := E
+∞�

0

e
	t
0 h(Y (u)) du dt

is a classical, C2(Rn) solution to (8.6).

Proof. Consider the parabolic problem
∂G

∂t
(t, y)− LG(t, y)− h(y)G(t, y)− 1 = 0, G(0, y) = 0.

We have

G(t, y) = E
t�

0

e
	s
0 h(Y (k)) dk ds, Y (0) = y.

Note that
∂G

∂t
(t, y) = E e

	t
0 h(Y (k)) dk ≤

[
E e

	t
0 2h(Y (k)) dk

]1/2
.
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Therefore, by (8.7), ∂G∂t converges to 0 as t → +∞, uniformly on each ball
B(0, n).

Secondly, we need to estimate the Lipschitz constant of G in y. Let Y (·; y)
be the solution to SDE (3.1) with initial condition Y (0; y) = y. By standard
SDE estimates there exists a constant M > 0 such that for all t > 0 and
y1, y2 ∈ Rn,

E ‖Y (t; y1)− Y (t; y2)‖2 ≤Me−2L2t‖y1 − y2‖2.
Because the function h is Lipschitz continuous there exists a constant N > 0
such that

|G(t, y1)−G(t, y2)|

≤ N E
t�

0

emax {
	s
0 h(Y (k;y1)) dk,

	s
0 h(Y (k;y2)) dk}

s�

0

‖Y (k; y1)− Y (k; y2)‖ dk ds

≤ N
t�

0

[
E
s�

0

‖Y (k; y1)− Y (k; y2)‖2 dk
]1/2

×
[
E se2max {

	s
0 h(Y (k;y1)) dk,

	s
0 h(Y (k;y2)) dk}]1/2 ds.

Letting y1 → y2 and using the dominated convergence theorem we get

‖DyG(t, y)‖ ≤ N1

t�

0

[s�
0

e−2L2k dk
]1/2[

E se
	s
0 2h(Y (k;y)) dk

]1/2
ds.

Finally, for y ∈ B(0, n) we get

‖DyG(t, y)‖ ≤ N1√
2L2

+∞�

0

√
sκ(s, n) ds.

Almost the same estimates can be made for the Lipschitz constant of ∂G∂t .
In fact, ∣∣∣∣∂G∂t (t, y1)−

∂G

∂t
(t, y2)

∣∣∣∣ =
∣∣e	t0 2h(Y (k;y1)) dk − e

	t
0 2h(Y (k;y2)) dk

∣∣.
And by repetitive arguments we arrive at the estimate∣∣∣∣∂G∂t (t, y1)−

∂G

∂t
(t, y2)

∣∣∣∣ ≤ Ñ√κ(t, n) ‖y1 − y2‖, y1, y2 ∈ B(0, n).

Now we may use the Schauder estimates (see e.g. Gilbarg–Trudinger
[16, Theorem 6.2]) to prove that there exists a sequence (tn, n ∈ N) such
that G(y, tn) converges uniformly on each ball to the function G ∈ C2(Rn)
satisfying (8.6).

Remark 8.3. Condition (8.7) is not in analytic form but it can be easily
verified for example in the affine model framework.
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In the case of ϕ unbounded the use of the verification theorem needs a
justification. To do this consider an arbitrary sequence (tn, n ∈ N) of finite
time investment horizons and the corresponding sequence of value functions

Vtn(z, y) := sup
ψ,C

E
1

α

tn�

0

e−γt(C(t)zψ,C(t))α dt.

Let ((ψ̂n, Ĉn), n ∈ N) be the corresponding sequence of optimal pairs of
controls.

Theorem 8.4 (Verification theorem). Assume Hypotheses 1 to 4. Ad-
ditionally assume that there exists a sequence (tn, n ∈ N) with tn → ∞
such that Vtn(z, y)→ V (z, y), where V is given by (8.1) and G is a C2(Rn)

classical solution to (8.4). Then any pair (ψ̂, Ĉ) satisfying (8.2), (8.3) and

(8.8)
E sup

0≤k≤t
[(zψ̂,ĉk )αG

1
1−α (Yk)] < +∞, ∀t ≥ 0,

lim
t→∞

E e−γtV (zψ̂,Ĉ(t), Y (t)) = 0,

is an optimal solution for the infinite horizon optimization problem.

Proof. Suppose Vtn(z, y) converges to V (z, y). Choose any admissible
strategy (ψ,C) ∈ A+∞. Note that

Vtn(z, y) = E
1

α

tn�

0

e−γs(Ĉn(s)zψ̂n,Ĉn(s))α ds ≥ E
1

α

tn�

0

e−γs(C(s)zψ,C(s))α ds.

This ensures that

(8.9) V (z, y) = sup
ψ,C

E
1

α

+∞�

0

e−γs(C(s)zψ,C(s))α ds.

Now, we need only prove that the supremum in (8.9) is attained at (ψ̂, Ĉ).
Let us apply the Itô formula to obtain the dynamics of e−γtV (zψ̂,Ĉ(t), Y (t)).
We obtain

E e−γt∧τnV (zψ̂,Ĉ(t ∧ τn), Y (t ∧ τn))

= V (z, y)− E
1

α

t∧τn�

0

e−γs(Ĉ(s)zψ̂,Ĉ(s))α ds,

where {τn}n∈N is a localizing sequence of stopping times. We can now let
n→ +∞ and use the first condition of (8.8) to apply dominated convergence
on the left hand side. On the right hand side we can use the monotone
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convergence theorem. Altogether, we have

E e−γtV (zψ̂,Ĉ(t), Y (t)) = V (z, y)− E
1

α

t�

0

e−γs(Ĉ(s)zψ̂,Ĉ(s))α ds.

Consequently, by applying the second condition of (8.8), we obtain the de-
sired formula

V (z, y) = E
1

α

+∞�

0

e−γs(Ĉ(s)zψ̂,Ĉ(s))α ds.

Example 8.5 (Vasicek model). In the Vasicek model (see Section 7.1.1),
G(t, r) is given by (7.9) and consequently

(8.10) G(r) =

+∞�

0

em1,0,s+m2,0,sr+
1
2
σ2
0,s ds,

where σ0,s, m1,0,s, and m1,0,s were defined in Proposition 7.3. To ensure
convergence of the integral in (8.10) we have to assume

+∞�

0

em1,0,s+
1
2
σ2
0,s ds < +∞.

It is not difficult to find a sufficient condition for the coefficients of the model
to ensure that convergence; we leave this to the reader. However, it should
be noted that the coefficient m2,0,s is uniformly bounded and therefore the
fraction DrG

G is uniformly bounded as well.

Example 8.6 (CIR model). In the CIR model (see Section 7.1.2), G(t, r)

is given by (7.10) and consequently G(r) =
	+∞
0 em1,0,s+m2,0,sr ds. Obviously,

we should require that
	+∞
0 em1,0,s ds < +∞. Note that under this assump-

tion the quotient DrG
G is uniformly bounded.

Appendix. Short introduction to the HJM model. Let us denote
by P (t, S) the price at time t of a bond paying 1 at time S. Assume that
the forward rates f(t, S) = − ∂

∂S logP (t, S), 0 ≤ t ≤ S, are given by the Itô
equation

df(t, S) = µ(t, S) dt+ 〈ξ(t, S), dW (t)〉,

where W = (W1, . . . ,Wm) is an m-dimensional Wiener process defined on
a filtered probability space (Ω,F, (Ft),P), µ and ξ are R- and Rm-valued
processes which may depend on the forward rate f , and 〈·, ·〉 denotes the
Euclidean scalar product. We denote by ‖·‖ the corresponding norm. Clearly
P (t, S) = e−

	S
t f(t,u) du. The so-called short rate process r(t) := f(t, t) defines

the bank rate at time t.
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Let T ∈ (0,+∞) be a finite time horizon. It is well-known (see e.g. Barski
and Zabczyk [1] or the original Heath, Jarrow and Morton paper [22]) that
the model P (t, S), where t ∈ [0, T ] and t ≤ S < +∞, is free of arbitrage if
and only if there is an adapted process λ such that

P
(T�
0

‖λ(u)‖2 du < +∞
)

= 1, E E(λ) = 1,

where
E (λ) := e−

	T
0 〈λ(u), dW (u)〉− 1

2

	T
0 ‖λ(u)‖

2 du,

and the following HJM condition is satisfied:

µ(t, S) =
〈
ξ(t, S),

S�

t

ξ(t, u) du+ λ(t)
〉
, ∀0 ≤ t ≤ T, ∀t ≤ S.

Recall that dP∗ = E(λ) dP is the martingale measure; the discounted prices
P (t, S)e−

	t
0 r(s) ds, S ≤ T , are local martingales with respect to P∗. Moreover,

W ∗(t) = W (t) +
	t
0 λ(u) du is a Wiener process with respect to P∗.

For our purposes it is convenient to rewrite the prices and forward rates
in the so-called Musiela parametrization

P (t)(x) := P (t, t+ x), r(t)(x) := f(t, t+ x), x ≥ 0.

Then
P (t)(x) = e−

	x
0 r(t)(u) du, r(t)(x) = − ∂

∂x
logP (t)(x),

the short rate is given by r(t) := r(t)(0) and

r(t)(x) = r(0)(t+ x) +

t�

0

b(s)(x+ t− u) du+

t�

0

〈σ(s)(x+ t− u), dW (u)〉,

where

b(t)(x) := µ(t, t+ x), σ(t)(x) := ξ(t, t+ x), x ≥ 0.

Note that the HJM condition has the form

b(t)(x) = µ(t, t+ x) =
〈
ξ(t, t+ x),

t+x�

t

ξ(t, u) du+ λ(t)
〉

=
〈
σ(t)(x),

x�

0

σ(t)(y) dy + λ(t)
〉

= 〈σ(t)(x), σ̃(t)(x) + λ(t)〉,

where

σ̃(t)(x) :=

x�

0

σ(t)(u) du.

In general b and σ may depend on r.
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Informally, S(t)ψ(x) = ψ(x + t) is the semigroup generated by the op-
erator ∂

∂x . Thus r is the so-called mild solution to the stochastic partial
differential equation

dr =

(
∂r

∂x
+ b

)
dt+ 〈σ, dW 〉.

We can now compute the stochastic derivative of

P (t)(x) = e−
	x
0 r(t)(u) du, t ≥ 0.

We have

dP (t)(x) = P (t)(x)

[
−d

x�

0

r(t)(u) du+
1

2

∥∥∥x�
0

σ(t)(u) du

∥∥∥∥2 dt
]
.

Since, by the HJM condition,

−
x�

0

b(t)(u) du+
1

2

∥∥∥x�
0

σ(t)(u) du
∥∥∥2

= −
x�

0

〈
σ(t)(u),

u�

0

σ(t)(y) dy + λ(t)
〉

du+
1

2

∥∥∥x�
0

σ(t)(u) du
∥∥∥2

= −
〈
λ(t),

x�

0

σ(t)(u) du
〉
,

we eventually have

dP (t)(x)

P (t)(x)
= −

x�

0

∂r

∂u
(t)(u) dudt−

〈x�
0

σ(t)(u) du, λ(t) dt+ dW (t)
〉

= [−r(t)(x) + r(t)] dt− 〈σ̃(t)(x), λ(t) dt+ dW (t)〉.

The instrument P (t)(x), t ≥ 0, is called a sliding bond. After discounting
it by a bank account we get

dP̄ (t)(x)

P̄ (t)(x)
= −r(t)(x) dt− 〈σ̃(t)(x), λ(t) dt+ dW (t)〉.

The discounted sliding bonds are not tradable instruments. To work with a
portfolio process we use rolling bonds (see (1.2)).
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