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1. Introduction. It is expected that the conductor q of an L-function
from the extended Selberg class S♯ (see Section 2 for definitions) can attain
only certain special values. For example, it is expected that the L-functions
in S♯ with degree 2 cannot have conductor q < 1, and that the L-functions
in the Selberg class S always have q ∈ N. Both these expectations are far
from being proved at present. In particular, no absolute lower bound for the
conductor is known. It is possible, however, to estimate it in terms of other
invariants of the L-function involved, as was shown in [6].

In this paper we focus on L-functions of degree 2 in S♯ and investigate the
admissible values of their conductor q via an unexpected link with certain
continued fractions c(q,m), which we now define. Let q > 0 be given. For a
vector m = (m0, . . . ,mk) ∈ Zk+1 with some k ≥ 0 we set

(1.1) c(q,m) = mk +
1

qmk−1 +
q

qmk−2 +
q

. . . +
q

qm0

.

Here we assume that all denominators in (1.1) are non-zero. Such a vector
m is called a path for q, or simply a path.

Of course, (1.1) can be translated to the standard continued fraction
notation where all numerators are 1 and indices are in increasing order,
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[a0, . . . , ak] = a0 +
1

a1 +
1

. . . +
1

ak

, aj ∈

{
Z, 2 | j,
qZ, 2 ∤ j.

In this paper we use the notation c(q,m), as it is a better fit to our trans-
formation formula for L-functions.

The fraction c(q,m) and the path m are called proper if all mj , j =
0, . . . , k − 1, are non-zero. The proper fractions are those arising naturally
in connection with L-functions. The integer k is the length of the path, and
clearly c(q,m) = m0 for a path of length 0. The weight wq(m) of c(q,m) is
defined for a path of length k ≥ 1 as

(1.2) wq(m) = qk/2
k−1∏
j=0

|c(q,mj)|

= qk/2

∣∣∣∣∣∣∣∣∣∣∣∣∣
mk−1 +

1

qmk−2 +
q

. . . +
q

qm0

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣mk−2 +
1

. . . +
q

qm0

∣∣∣∣∣∣∣∣ · · · |m0|,

where
mj = (m0, . . . ,mj) for 0 ≤ j ≤ k.

If k = 0 we simply write wq(m) = 1. Note that the weight wq(m) does not
depend on the last entry mk, and that always wq(m) > 0. Moreover, we say
that the weight wq is unique if wq(m) = wq(n) whenever c(q,m) = c(q,n).

The main result of this paper reads as follows.

Theorem 1. If there exists F ∈ S♯ of degree 2 and conductor q, then the
weight wq is unique.

The proof of Theorem 1 is based on the properties of certain nonlinear
twists of L-functions and is given in Section 3.

We shall also prove (see Lemma 4 in Section 3) that the weight wq is
unique if and only if w(q,m) = 1 for all proper fractions of type (1.1)
representing 0, i.e. such that c(q,m) = 0. A fraction c(q,m) representing 0
is called a loop; the path m is then also called a loop. The loop c(q, (0)) is
trivial.

Examples. 1. Let q = 2/3. Then one easily checks that the fraction
c(2/3, (1,−1,−3)), which has k = 2, satisfies c(2/3, (1,−1,−3)) = 0. More-
over, using the definition (1.2) we see that w2/3((1,−1,−3)) = 1/3 ̸= 1.



Forbidden conductors of L-functions 3

Hence, in view of Theorem 1, there are no functions of degree 2 in S♯ with
conductor q = 2/3.

2. Sometimes loops can be quite long. For q = 7/2 the sequence

m = (2,−5,−1, 1,−1, 1,−1, 1,−1, 1, 2)

is a loop with k = 10 and w7/2(m) = 8. By solving the Diophantine equation

c(7/2, (m0, . . . ,mk)) = 0

for k < 10 we can see that there are no shorter loops of weight ̸= 1 for
q = 7/2. As before, we conclude that there are no functions of degree 2 in S♯

with conductor q = 7/2.
3. Choose now q =

√
3 and m = (1, 1, 1,−1, 1). A simple computation

shows that
c(
√
3,m) = 0 and w√

3(m) =
√
3 + 2 ̸= 1,

hence again there are no functions of degree 2 in S♯ with conductor q =
√
3.

4. Finally, let q = 2 and m = (1,−1, 1). In this case we have

c(2,m) = 0 and w2(m) = 1.

The last equality is not surprising, as it is well known that there exist L-
functions in S♯ of degree 2 and conductor q = 2 (see Lemma 6 with m = 4).
In fact, Theorem 1 tells us that w2(m) = 1 not only for m = (1,−1, 1) but
for every loop m = (m0, . . . ,mk) ∈ Zk+1.

As is clear from the above examples, Theorem 1 and Lemma 4 enable one
to prove non-existence of L-functions of degree 2 with a given conductor q
by producing a proper loop c(q,m) with weight wq(m) ̸= 1. This problem
is suitable for computations and, for example, in that way we obtain the
following result (see Section 4).

Corollary 1. There exist no L-functions of degree 2 in S♯ with con-
ductor of the form

q =
a

nb
with (a, b) = 1, 2 ≤ b ≤ 300, n ≥ 1

if at least one of the following conditions holds:

• b ≤ 300 and a/b < 1,
• b ≤ 150 and a/b < 3/2,
• b ≤ 100 and a/b < 2,
• b ≤ 30 and a/b < 3,
• b ≤ 9 and a/b < 4,
• a ≤ 25 and a/b < 4.

Remark. Actually, our computations were performed for q = a/b with
a, b satisfying one of the conditions specified. The result in Corollary 1 fol-
lows from these computations observing that if q is a forbidden conductor
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then q/n is also forbidden for every integer n ≥ 1. Suppose indeed that there
exists F ∈ S♯ of degree 2 with conductor q/n. Then FG has degree 2 and
conductor q for any G ∈ S♯ of degree 0 and conductor n, a contradiction since
such functions G actually exist (see [3]). Alternatively, Proposition 1 in Sec-
tion 3 shows the link between properties of fractions c(q,m) and c(q/n,m)
without reference to L-functions. The second assertion follows from the same
computations and properties of loops described in Section 4.

Theorem 1 justifies a closer study of continued fractions of type (1.1).
There are some natural questions to ask about them. For instance, we would
like to know for which values of q the representation of a real number a in the
form a = c(q,m), with c(q,m) proper, is unique. For such, our method of
detecting forbidden conductors does not work, because, as Lemma 4 shows,
the weight is necessarily unique. So an even more interesting problem is to
find all q without the above uniqueness property. Among them, there are q’s
such that w(q) is not unique, so Theorem 1 applies. Hence the basic open
question in this direction is to describe the set of such q’s explicitly.

Theorem 2. If q > 0 is transcendental or q ≥ 4, then every real number a
can be represented as a = c(q,m) with a proper fraction c(q,m) at most in
one way. In particular, in this case the weight wq is unique.

Let L(q) denote the set of loops for a given q.

Corollary 2. If q > 0 and L(q) contains a loop of odd length, then 1/q
is an algebraic integer.

The proofs of these results do not lie particularly deep. In particular,
they do not depend on the theory of L-functions. Moreover, it shows that
the problem of the uniqueness of the weight wq is non-trivial for algebraic
q < 4 only. The latter case is far more subtle. In contrast to the proof of
Theorem 2, our proof of the following result heavily depends on L-functions,
in particular on Theorem 1 and the Hecke theory of modular forms for the
triangle groups G(λ). In passing we remark that Hecke’s theory shows the
existence of L-functions of degree 2 for every conductor q ≥ 4 (see Lemma 6).
Thus, although our method cannot detect forbidden conductors among the
values q in Theorem 2, actually there are no forbidden conductors q ≥ 4.

Theorem 3. Let q ∈ R be a positive algebraic number. The weight wq is
unique in each of the following two cases:

(i) q has a Galois conjugate which is greater than or equal to 4; in other
words, for a certain σ ∈ Gal(Q/Q) we have qσ ≥ 4;

(ii) q is a totally positive algebraic integer.

Remarks. 1. As remarked before, our proof of Theorem 3 depends on
L-functions, but its formulation does not. The case of qσ ≥ 4 also follows
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from Theorem 2. A natural problem is to give a proof of the second case,
independent of the theory of L-functions.

2. From Theorem 3, we know that the weight wq is unique for the pair
q± = (3 ±

√
5)/2 of Galois conjugate algebraic integers. From Lemma 6

applied with m = 5 we know that there exists an L-function of degree 2 in
S♯ with conductor q+. So, in that case, the uniqueness of wq+ follows from
Theorem 1. In contrast, no L-function F ∈ S♯ of degree 2 with qF = q−
is known at present, and it is not clear if it exists at all. Analyzing the
proof of Theorem 1, we see that the uniqueness of wq for q = qF follows
from consistency conditions imposed by the basic transformation formula
(see Lemma 2), and hence implicitly by the functional equation of F . Thus
the uniqueness of wq− can be interpreted as the lack of obstacles for the
existence of F ∈ S♯ of degree 2 with qF = q−.

3. All algebraic integers of the form

q = 4 cos2(πℓ/m) (m ≥ 3, 1 ≤ ℓ < m, (ℓ,m) = 1)

are totally positive. Thus for such q’s the weight wq is unique. In particular,
this shows that the set of algebraic q’s for which wq is unique is dense in the
interval (0, 4).

In the opposite direction we have the following theorem.

Theorem 4. The weight wq is not unique for

q =
4

n
cos2(πℓ/(2k + 1)), k ≥ 1, 1 ≤ ℓ < 2k + 1, (ℓ, 2k + 1) = 1, n ≥ 2.

In particular, there are no functions of degree 2 in S♯ with such conductors.

We conclude with some open problems.

1. Construct an L-function F ∈ S♯ of degree 2 with conductor qF =
(3−

√
5)/2 or show that it does not exist. Show that there exists a real q > 0

such that w(q) is unique but there is no F ∈ S♯ of degree 2 with conductor q.
2. Show that the set of q for which the weight wq is not unique is also

dense in the interval (0, 4).
3. It follows from Theorems 2 and 3 that for every q > 0 there exists a

positive integer n such that wnq is unique. The last question is whether for
every algebraic q > 0 there exists a positive integer n such that wq/n is not
unique.

2. Definitions and basic requisites. Throughout the paper we write
s = σ + it, and f(s) for f(s). The extended Selberg class S♯ consists of
non-identically-vanishing Dirichlet series

F (s) =
∞∑
n=1

a(n)

ns
,
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absolutely convergent for σ > 1, such that (s − 1)mF (s) is entire of finite
order for some integer m ≥ 0, and satisfying a functional equation of the
type

F (s)γ(s) = ωγ(1− s)F (1− s),

where |ω| = 1 and the γ-factor

γ(s) = Qs
r∏

j=1

Γ (λjs+ µj)

has Q > 0, r ≥ 0, λj > 0 and ℜ(µj) ≥ 0. The Selberg class S is, roughly, the
subclass of S♯ of the functions having, in addition, an Euler product repre-
sentation and satisfying the Ramanujan conjecture. Note that the conjugate
function F has conjugate coefficients a(n), and clearly F ∈ S♯. We refer to
the survey papers [2, 4, 10–13] for further definitions, examples and the basic
theory of the classes S♯ and S.

The degree d, the conductor q and the ξ-invariant ξF of F ∈ S♯ are
defined as

d = 2
r∑

j=1

λj , q = (2π)dQ2
r∏

j=1

λ
2λj

j , ξF = 2
r∑

j=1

(µj − 1/2) =: ηF + idθF

with ηF , θF ∈ R. In this paper we deal mainly with functions in S♯ of degree
d = 2; the subclass of such functions is denoted by S♯

2.
For σ > 1 and F ∈ S♯ with degree 2 and conductor q we consider the

nonlinear twist

(2.1) F (s, α, β) =
∞∑
n=1

a(n)

ns
e(−αn− β

√
n),

where α, β ∈ R and e(x) = e2πix. Note that, according to our notation above,
we have

F (s, α, β) = F (s, α, β) =
∞∑
n=1

a(n)

ns
e(αn+ β

√
n).

To avoid ambiguities, we also use the following notation when we consider a
nonlinear twist of the conjugate function F :

(F )(s, α, β) =
∞∑
n=1

a(n)

ns
e(−αn− β

√
n).

Thanks to the periodicity of the complex exponential, for α ∈ Z, the twist
in (2.1) reduces to the standard twist

F (s, β) =
∞∑
n=1

a(n)

ns
e(−β

√
n),

and for m ∈ Z, we have

(2.2) F (s, α+m,β) = F (s, α, β).
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Writing
nβ = qβ2/4 and a(nβ) = 0 if nβ ̸∈ N,

the spectrum of F is defined as

Spec(F ) := {β > 0 : a(nβ) ̸= 0}(2.3)

=
{
2
√

m/q : m ∈ N with a(m) ̸= 0
}
.

Moreover, for ℓ = 0, 1, . . . we write

sℓ =
3

4
− ℓ

2
and s∗ℓ = sℓ − iθF .

Lemma 1. Let β ̸= 0. Then the standard twist F (s, β) is entire if |β| ̸∈
Spec(F ), while for |β| ∈ Spec(F ) it is meromorphic on C with at most simple
poles at the points s∗ℓ . Moreover, when |β| ∈ Spec(F ) the residue of F (s, β)
at s = s∗0 does not vanish.

We refer to [5, 7] for this and other results on the standard twist. Clearly

Spec(F ) = Spec(F ),

and since θF = −θF , the possible poles of (F )(s, β) are at the points s∗ℓ =

sℓ + iθF , and s∗0 is again a simple pole.

Lemma 2. Let F ∈ S♯ be of degree 2 and conductor q, and let α > 0 and
β ∈ R. Then

(2.4) F (s, α, β) = eas+bF

(
s+ 2iθF ,

1

qα
,− β

√
q α

)
+ h(s)

with certain a ∈ R and b ∈ C, where h(s) is holomorphic for σ > 1/2.

Since the explicit values of a and b are not specified, this is a less precise
form of [8, Lemma], in the case where F is suitably normalized. Moreover,
Lemma 2 follows by similar but more straightforward arguments in the more
general case, where θF is not necessarily vanishing. We will also need an
analogous expression for negative values of the first parameter in F (s, α, β),
thus for α > 0, we consider the twist F (s,−α, β) and note that

F (s,−α, β) = (F )(s, α,−β).

Since the conductors of F and F are equal, from Lemma 2 we finally deduce
that for α > 0,

(2.5) F (s,−α, β) = eas+b(F )

(
s− 2iθF ,

1

qα
,

β
√
q α

)
+ h(s)

with certain a ∈ R and b ∈ C and a function h(s) holomorphic for σ > 1/2.
In the next section, we shall use an argument based on repeated appli-

cations of (2.4) and (2.5). Since what really matters in such an argument is
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only the value of 1/(qα) and |β/(√q α)|, to simplify notation we denote by

(2.6) F̃

(
s± 2iθF ,

1

qα
,±

∣∣∣∣ β
√
q α

∣∣∣∣)
the right hand side of both (2.4) and (2.5). Clearly, for σ > 1/2 the function
in (2.6) has the same singularities as the functions F or (F ) on the right
hand side of (2.4) or (2.5).

3. Proofs of the theorems

3.1. Some properties of fractions and weights. We start with some
initial properties of the fractions and weights in (1.1) and (1.2), and we refer
to Section 4 for a further discussion. Directly from the definitions, we see
that

(3.1) c(q,m) = mk +
1

qc(q,mk−1)
, wq(m) =

√
q |c(q,mk−1)|wq(mk−1).

Moreover, it is easy to check that for k ≥ 2, we also have

(3.2) c(q, (m0, . . . ,mj−1, 0,mj+1, . . . ,mk))

= c(q, (m0, . . . ,mj−2,mj−1 +mj+1,mj+2, . . . ,mk)).

Thus, by repeated applications of (3.2) we can transform a path m to a
proper path m∗ in such a way that c(q,m) = c(q,m∗). This process is called
zero-skipping, and the notation m∗ will also be used later on. For example,

c(q, (1, 0, 1)) = c(q, (2)) = 2 and c(q, (1, 0,−1)) = c(q, (0)) = 0.

We also note that the zero-skipping process preserves the weight, namely
wq(m) = wq(m

∗) if m and m∗ are as above, since

q3/2
∣∣∣∣mj−1 +

1

0 + q
qmj+1+

q
∗

∣∣∣∣ ∣∣∣∣0 + 1

qmj+1 +
q
∗

∣∣∣∣ ∣∣∣∣mj+1 +
1

∗

∣∣∣∣
=

√
q

∣∣∣∣mj−1 +mj+1 +
1

∗

∣∣∣∣.
Further, given two loops m = (m0, . . . ,mk) and n = (n0, . . . , nℓ) we define
the composition of m and n as

mn = (m0, . . . ,mk + n0, . . . , nℓ).

Note that mn is a path and moreover

(3.3) c(q, (m0, . . . ,mk + n0, . . . , nj)) = c(q,nj) for j = 0, . . . , ℓ.

Indeed, since m is a loop, we have c(q, (m0, . . . ,mk+n0)) = c(q, (n0)), hence
(3.3) follows. In particular, we have

(3.4) c(q,mn) = c(q,n).
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As a consequence,

(3.5) if c(q,m) and c(q,n) are loops then so is c(q,mn).

Clearly, by zero-skipping, we may transform c(q,mn) to a proper loop with
the same weight. Finally, weight is multiplicative with respect to composition
of loops: if c(q,m) and c(q,n) are loops, then

(3.6) wq(mn) = wq(m)wq(n).

Indeed, thanks to (1.2) and (3.3) we have

wq(mn) = q(k+ℓ)/2
k−1∏
j=0

|c(q,mj)|
ℓ−1∏
j=0

|c(q, (m0, . . . ,mk + n0, . . . , nj))|

= qk/2
k−1∏
j=0

|c(q,mj)|qℓ/2
ℓ−1∏
j=0

|c(q,nj)| = wq(m)wq(n).

It can be shown that the proper loops form a group under composition (with
zero-skipping) and thus wq is a group homomorphism. The inverse of a loop
m = (m0, . . . ,mk) is (−mk, . . . ,−m0).

Lemma 3. Let q > 0. If two proper fractions satisfy c(q,m) = c(q,n),
then there is a proper loop u such that m = (un)∗. The loop u is non-zero
if and only if m ̸= n.

Proof. Let m = (m0, . . . ,mk) and n = (n0, . . . , nℓ) be such that

c(q,m) = c(q,n).

If m = n, the assertions are clear. Otherwise, u′ = (m0, . . . ,mk −nℓ,−nℓ−1,
. . . ,−n0) is a loop. Indeed,

c(q, (m0, . . . ,mk−1,mk−nℓ,−nℓ−1, . . . ,−nj+1)) = c(q,nj), j = ℓ−1, . . . , 0,

by induction, and finally c(q, (m0, . . . ,mk−1,mk −nℓ,−nℓ−1, . . . ,−n0)) = 0.
Let u = u′∗, where ∗ denotes zero-skipping, and let j be the number of times
(3.2) was applied in this operation. i.e. the largest integer such that

mk−i = nℓ−i, i = 0, . . . , j − 1.

We have j < min(k+1, ℓ+1), otherwise u would be a loop with the first or
last entry zero, which is impossible. Hence
(un)∗ = ((m0, . . . ,mk−j−1,mk−j − nℓ−j ,−nℓ−j−1, . . . ,−n0)(n0, . . . , nℓ))

∗

= ((m0, . . . ,mk−j−1,mk−j , nℓ−j+1, . . . , nℓ))
∗

= (m)∗ = m.

Lemma 4. Let q > 0. The following statements are equivalent:

(i) the weight wq is unique;
(ii) wq(m) = 1 for every proper loop m;
(iii) wq(m) = wq(n) for any non-trivial proper loops m and n.
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Proof. The implication (i)⇒(ii) follows from the convention that wq((0))
= 1 and c(q,m) = 0 = c(q, (0)) for every loop m. The implication (ii)⇒(iii)
is trivial. Now we assume (iii) and prove first (ii) and then (i). Let c(q,m)
be a non-trivial proper loop. Consider the composition mm and recall that,
thanks to (3.5), c(q,mm) is also a loop. Therefore by (3.4) and (3.6) applied
with n = m we get

wq(m) = wq(mm) = wq(m)2,

thus wq(m) = 1. This implies (ii). The equality of fractions c(q,m) = c(q,n)
implies m = un for some proper loop u, by Lemma 3. Hence

wq(m) = wq(u)wq(n) = wq(n)

by (3.6) and (ii). This proves (i).

Recall that L(q) denotes the set of loops for a given q.

Proposition 1. Let q > 0. Let m = (m0, . . . ,mk) ∈ L(q) and r, r′ be
rational numbers with rr′ > 0 such that

m′
j =

{
rmj , j ≡ k (mod 2),

r′mj , j ̸≡ k (mod 2),

are all integers. Moreover, let m′ = (m′
0, . . . ,m

′
k). Then for q′ = q

rr′ we have
m′ ∈ L(q′) and

wq′(m
′) =

{
wq(m), 2 | k,√

r/r′wq(m), 2 ∤ k.

Proof. This follows from the relation

c(q′,m′
j) =

{
rc(q,mj), j ≡ k (mod 2),

r′c(q,mj), j ̸≡ k (mod 2),

for j = 0, . . . , k.

Corollary 3. If L(q) contains a loop m of odd length, then the weight
wq/n is not unique for any integer n ≥ 2.

Proof. Let q′ = q/n. By Proposition 1 there exist m′,m′′ ∈ L(q′) with

wq′(m
′) =

√
nwq(m) and wq′(m

′′) =
√
1/nwq(m),

so at least one of wq′(m
′), wq′(m

′′) is different from 1. The corollary follows
from Lemma 4.

3.2. Proof of Theorem 1. Theorem 1 is an immediate consequence of
Lemma 4 and the following lemma.

Lemma 5. Let F ∈ S♯ be of degree 2 and conductor q. Then wq(m) = 1
for every proper loop c(q,m).
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Proof. Let β ∈ Spec(F ); we use the notation in (1.1), (1.2) and (2.6). By
repeated applications of (2.2), (2.4) and (2.5) we obtain

F (s, β) = F (s,m0, β)

= F̃

(
s± 2iθF ,

1

qm0
,± β

√
q |m0|

)
= F̃

(
s± 2iθF ,m1 +

1

qm0
,± β

√
q |m0|

)
= F̃

(
s+ 2n1iθF ,

1

qm1 +
q

qm0

,± β

q
∣∣(m1 +

1
qm0

)
m0

∣∣
)

= F̃

(
s+ 2n1iθF ,m2 +

1

qm1 +
q

qm0

,± β

q
∣∣(m1 +

1
qm0

)
m0

∣∣
)

= · · ·

= F̃

(
s+ 2nk−1iθF , c(q,m),± β

wq(m)

)
where m = (m0, . . . ,mk) and the nj ’s, j = 1, . . . , k− 1, are certain integers.

If c(q,m) is a non-trivial proper loop, then the above equation reduces,
essentially, to the equality of two standard twists; more precisely, it becomes

F (s, β) = F̃

(
s+ 2nk−1iθF ,±

β

wq(m)

)
.

Since β ∈ Spec(F ), both sides must have a simple pole at s = s∗0 and hence by
Lemma 1 we have β/wq(m) ∈ Spec(F ) as well. Moreover, Lemma 1 implies
that s∗0 + 2nk−1iθF must be either s∗0 or s∗0. Thus the opposite implication
holds as well, namely if β/wq(m) ∈ Spec(F ) then β ∈ Spec(F ). Therefore

β ∈ Spec(F ) ⇐⇒ β/wq(m) ∈ Spec(F ).

This, in view of the shape of Spec(F ) in (2.3), implies that wq(m) = 1, and
the lemma follows.

3.3. Proof of Theorem 2 and its corollary. For a proper path m =
(m0, . . . ,mk) we define the rational function

(3.7) R(x,m) = mk +
1

xmk−1 +
x

. . . +
x

xm0

.

Moreover, we define the polynomials Pℓ(x,m) and Qℓ(x,m), 0 ≤ ℓ ≤ k,
inductively as

(3.8) P0(x,m) ≡ m0, Q0(x,m) ≡ 1,
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and for 1 ≤ ℓ ≤ k,

(3.9) Pℓ(x,m) = mℓxPℓ−1(x,m)+Qℓ−1(x,m), Qℓ(x,m) = xPℓ−1(x,m).

Then we have

(3.10) R(x,m) =
Pk(x,m)

Qk(x,m)
.

By a trivial induction we show that

(3.11) degPℓ = degQℓ, 0 ≤ ℓ < k.

Now we show that two rational functions of the above type, say R(x,m)
and R(x,n) with m = (m0, . . . ,mk) and n = (n0, . . . , nℓ), coincide if and
only if m = n. Sufficiency is trivial, and so is necessity for k = ℓ = 0.
Suppose first that k, ℓ > 0. Then

(3.12) R(x,m) = mk +
1

xR(x,mk−1)
and R(x,n) = nl +

1

xR(x,nℓ−1)
.

By (3.11) we have R(x,m) ≍ 1 and R(x,n) ≍ 1 as |x| → ∞. Thus (3.12)
gives

mk = nℓ +O(1/|x|)
as |x| → ∞ and hence mk = nℓ. Again by (3.12) we have R(x,mk−1) =
R(x,nℓ−1), therefore by induction we conclude that R(x,m) = R(x,n) im-
plies m = n. Finally, if k > 0 and ℓ = 0 (or vice versa) then

R(x,m) = mk +
1

xR(x,mk−1)
= n0,

a contradiction proving our assertion in this case as well.
After this preparation we can conclude the proof. Suppose that a real

number a has two different representations as a proper fraction with tran-
scendental parameter q. Then

a = R(q,m) = R(q,n)

for two different proper paths m = (m0, . . . ,mk) and n = (n0, . . . , nℓ). Since
the rational functions R(x,m) and R(x,n) are distinct, we deduce that the
polynomial

H(x) := Pk(x,m)Ql(x,n)− Pℓ(x,n)Qk(x,m) ∈ Z[x]
is not identically vanishing and moreover H(q) = 0. This is impossible if q
is transcendental.

Suppose now q ≥ 4 and suppose m = (m0, . . . ,mk) is the shortest non-
zero proper path such that |c(q,m)| ≤ 1/2. We have |m0| ≥ 1, so k ̸= 0.
Since |c(q,mk−1)| > 1/2, we have∣∣∣∣ 1

qc(q,mk−1)

∣∣∣∣ < 1

2
.
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From mk = c(q,m) − 1
qc(q,mk−1)

we obtain |mk| < 1, contradicting mk ̸= 0.
Therefore there is no non-zero proper path m such that |c(q,m)| ≤ 1/2.
In particular, there is no non-zero proper loop. The assertion follows from
Lemma 3.

To prove the corollary we note that, by Theorem 2, the number q is
algebraic. Let

anx
n + · · ·+ a1x+ a0

be its minimal polynomial, where a0, . . . , an are integers with gcd(a0, . . . , an)
= 1. For k = 2l + 1 we have P2l+1(x,m) = xl(1 + xH(x)), where H(x) is
some polynomial with integer coefficients depending on m. If L(q) contains
a loop of length k, we have P2l+1(x,m) = 0. This implies that the minimal
polynomial of q divides 1 + xH(x). Hence |a0| = 1.

3.4. Proof of Theorem 3. We need two further lemmas.

Lemma 6. Let q ∈ R. Suppose that either q = 4 cos2(π/m) for some
m ≥ 3, or q ≥ 4. Then there exists an L-function in S♯ with degree 2 and
conductor q.

Proof. From the classical Hecke theory we know that there are non-trivial
automorphic forms f for the Hecke trangle group G(λ) if λ ≥ 2 or λ =
2 cos(π/m) with integer m ≥ 3 (see e.g. [1]). The corresponding normalized
L-function Lf satisfies the functional equation(

λ

2π

)s

Γ

(
s+

k − 1

2

)
Lf (s) = ω

(
λ

2π

)1−s

Γ

(
1− s+

k − 1

2

)
Lf (1− s),

where ω = ±1. We cannot claim that Lf belongs to S♯ because conjugation of
Lf (1−s) is missing in the above functional equation. This however can easily
be repaired. Without loss of generality we may assume that Lf (s) has at least
one coefficient with non-zero real part, otherwise we consider iLf (s). Then
F (s) := Lf (s) +Lf (s) has real coefficients, satisfies a functional equation of
the right type and is not identically zero. Thus it belongs to S♯, has degree 2
and its conductor equals λ2; therefore the lemma follows.

Lemma 7. Let α be a totally positive algebraic integer with all conjugates
smaller than 4. Then there exist positive integers m and ℓ satisfying m ≥ 3,
1 ≤ ℓ < m, (ℓ,m) = 1 and α = 4 cos2(πℓ/m).

Proof. Let β :=
√
α. Then β is a totally real algebraic integer with

all Galois conjugates smaller than 2 in absolute value. By the Kronecker
theorem, β = 2 cos(πℓ/m) for certain positive coprime integers ℓ and m
(see [9, Theorem 2.5]). Thus α = 4 cos2(πℓ/m). Since 0 < α < 4, we have
m ≥ 3. Moreover, by the periodicity of cos2 x, we can assume that 1 ≤ ℓ < m,
and the lemma follows.
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Let q ∈ Q be a positive algebraic number and suppose m = (m0, . . . ,mk)
∈ Zk+1 is a non-trivial loop for q, namely

mk +
1

qmk−1 +
q

. . . +
q

qm0

= 0.

Then for every σ ∈ Gal(Q/Q) we have

mk +
1

qσmk−1 +
qσ

. . . +
qσ

qσm0

= 0

so that m is a loop for qσ as well. Moreover, it is easy to check that wq(m) = 1
if and only if wqσ(m) = 1. Hence we conclude that the weights wq and wqσ

are simultaneously unique or not.
We can now complete the proof of Theorem 3. If qσ ≥ 4 for a certain

σ ∈ Gal(Q/Q) then by Lemma 6 there exists an L-function in S♯
2 with

conductor qσ, and the weight wqσ is unique by Theorem 1. Consequently,
wq is unique as well, thus proving (i). To show (ii) we assume that q is a
totally positive algebraic integer with all conjugates in the interval (0, 4).
By Lemma 7 this means that q = 4 cos2(πℓ/m) for certain m ≥ 3 and
1 ≤ ℓ < m, (m, ℓ) = 1. Let σ ∈ Gal(Q/Q) map exp(2πiℓ/m) to exp(2πi/m).
Then qσ = 4 cos2(π/m). According to Lemma 6 there exists an L-function
in S♯

2 with such a conductor, thus wqσ is unique according to Theorem 1.
Consequently, wq is unique as well, and the proof is complete.

3.5. Proof of Theorem 4. We need the following explicit expression
for the polynomials Pℓ(x,m) defined in the proof of Theorem 2. The proof
of this expression is by a straightforward induction, which we omit.

Lemma 8. Let k ≥ 1 and m = (m0, . . . ,m2k). Then

P2k−1(x,m) = xk−1
k∑

j=0

( ∑
A∈I(2k−1,2j−1)

∏
i∈A

mi

)
xj ,

P2k(x,m) = xk
k∑

j=0

( ∑
A∈I(2k,2j)

∏
i∈A

mi

)
xj ,

where I(h, j) denotes the set of subsets {a0, . . . , aj} of {0, . . . , h} such that
a0 < · · · < aj and ai ≡ i (mod 2) for every i = 0, . . . , j.
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Let k and ℓ be as in Theorem 4 and

(3.13) q = 4 cos2(πℓ/(2k + 1)) =

(
e

(
ℓ

4k + 2

)
+ e

(
− ℓ

4k + 2

))2

.

By Corollary 3 it suffices to show that L(q) contains a loop of odd length.
Let

m = (m0, . . . ,m2k−1), mj = (−1)j , j = 0, . . . , 2k − 1.

By Lemma 8 we have

q−k+1P2k−1(q,m)

=
k∑

j=0

( ∑
A∈I(2k−1,2j−1)

∏
i∈A

(−1)i
)(

e

(
ℓ

4k + 2

)
+ e

(
− ℓ

4k + 2

))2j

=
k∑

j=0

(−1)j |I(2k − 1, 2j − 1)|
j∑

m=−j

(
2j

j +m

)
e

(
ℓm

2k + 1

)

=

k∑
m=−k

e

(
ℓm

2k + 1

) k∑
j=|m|

(−1)j |I(2k − 1, 2j − 1)|
(

2j

j +m

)
.

The subsets {a0, . . . , a2j−1} ∈ I(2k− 1, 2j− 1) correspond one-to-one to the
subsets

{b0, . . . , b2j−1} ⊆ {0, . . . , k + j − 1}

by the mapping bi = (ai + i)/2, so |I(2k − 1, 2j − 1)| =
(
k+j
2j

)
. Hence from

the identity
m∑
i=0

(−1)i
(
n− i

n− 2i

)(
n− 2i

m− i

)
= 1, n ≥ 0, 0 ≤ 2m ≤ n,

which can be shown by induction, it follows that

q−k+1P2k−1(q,m) =

k∑
m=−k

e

(
ℓm

2k + 1

) k∑
j=|m|

(−1)j
(
k + j

2j

)(
2j

j +m

)

=

k∑
m=−k

e

(
ℓm

2k + 1

) k−|m|∑
j=0

(−1)k−j

(
2k − j

2k − 2j

)(
2k − 2j

k −m− j

)

= (−1)k
k∑

m=−k

e

(
ℓm

2k + 1

)
= 0.

Thus for q as in (3.13) there exists an integer vector m of odd length 2k− 1
with P2k−1(q,m) = 0; however, m may not be a path for q.

Now let n = (n0, . . . , n2j−1) ∈ Z2j be such that P2j−1(q,n) = 0 with
the smallest possible j. In view of (3.7) and (3.10) (see also Proposition 2
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in the next section), if n is not a path for q we have Pi(q,n) = 0 for some
i < 2j−1, and i is even by the minimality of j. It follows from (3.8) and (3.9)
that Qi(q,n) ̸= 0, and moreover Pi+1(q,n) = Qi(q,n). Hence i+1 < 2j− 1,
so i < 2j − 3. Further, we have

Qi+1(q,n) = 0, Pi+2(q,n) = ni+2qQi(q,n) = cP0(q,n
′),

Qi+2(q,n) = qQi(q,n) = cQ0(q,n
′),

where n′ = (ni+2, . . . , n2j−1) and c = qQi(q,n) ̸= 0. Consequently, using
(3.9) again, we have

Pi+2+h(q,n) = cPh(q,n
′) for h = 1, . . . , 2j − i− 3,

and in particular
P2j−1(q,n) = cP2j−i−3(q,n

′).

Hence P2j−i−3(q,n
′) = 0, contrary to the minimality of j. Therefore n is a

path, and also a loop, of odd length; the theorem now follows.

4. Computations. With the aid of machine computations we have been
able to find loops of weight ̸= 1 for rational q = a/b, (a, b) = 1, 0 < q < 4,
in each of the following cases:

• a ≤ 25, arbitrary b;
• b ≤ 300 and q < 1;
• b ≤ 150 and q < 3/2;
• b ≤ 100 and q < 2;
• b ≤ 30 and q < 3;
• b ≤ 9.

An excerpt from the results is shown in Tables 1 and 2. Complete results
and the Python scripts needed to reproduce them are available online at
https://maciejr.web.amu.edu.pl/computations/conductors.

In our computations we make use of some observations that we state here
without complete proofs.

Proposition 2. A vector m ∈ Zk+1 is a path for a given q if and only
if Pl(q,m) ̸= 0 for all 0 ≤ l < k. In that case m is a loop if and only if
Pk(q,m) = 0. Moreover, wq(m) = |q−k/2Qk(q,m)|.

Corollary 4. For q > 0 the set L(q) contains a loop of length 1 if and
only if q = 1/b for some positive integer b. In that case the weight wq is not
unique unless q = 1.

Proof. Loops of length 1 are solutions of P1(q, (m0,m1)) = 0, i.e.
m0m1q + 1 = 0, so q needs to be of the above form. In that case (b,−1)
is a loop of weight

√
b.

https://maciejr.web.amu.edu.pl/computations/conductors
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Table 1. Examples of loops for q = a/b with b ≤ 4

q m wq(m)

1
2

(1,−2)
√

1
2

3
2

(−1, 1,−2) 1
2

5
2

(−1, 1,−1, 1, 2) 1
4

7
2

(2, 1,−1, 1,−1, 1,−1, 1,−1,−5, 2) 1
8

1
3

(1,−3)
√

1
3

2
3

(1,−1,−3) 1
3

4
3

(−1, 1,−3) 1
3

5
3

(−1, 1,−1,−1,−3) 1
9

7
3

(−1, 1,−1, 2,−1,−1, 3) 1
27

8
3

(1,−1, 1,−1, 6) 1
9

10
3

(2,−1, 1,−1, 1,−1, 1,−5, 15) 1
81

11
3

(−1,−1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−30, 1,−8) 1
243

1
4

(1,−4)
√

1
4

3
4

(−1, 1, 4) 1
4

5
4

(−1, 1,−4) 1
4

7
4

(1,−1, 1, 2,−2) 1
8

9
4

(−1, 1,−1, 2, 2) 1
8

11
4

(−1, 1,−1, 1,−2,−1, 4) 1
32

13
4

(1,−1, 1,−1, 1,−1, 36) 1
64

15
4

(−2, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−6, 11,−1, 8,−1) 1
4096

Corollary 5. For q > 0 the set L(q) contains a loop of length 2 if and
only if q = 1/u+ 1/v for some non-zero integers u, v, with u ̸= −v. In that
case the weight wq is not unique unless q = 1 or q = 2. In particular, the
weight is not unique whenever q = 2/b for some integer b ≥ 3.

Proof. Loops of length 2 are solutions of

P2(q, (m0,m1,m2)) = m0m1m2q
2 + (m0 +m2)q = 0,

which implies that q is of the required form. Conversely, for q = 1/u + 1/v
the sequence m = (u,−1, v) is always a loop and wq(m) = |u/v|, which is
̸= 1 unless v = u. Suppose v = u, so q = 2/u. If 2 |u, the assertion follows
from Corollary 4. Otherwise, unless q = 2, we have u = 2l + 1 for some
positive integer l and there is a loop m′ = (1,−l,−2l − 1) of weight 1

2l+1 .

Proposition 3. Let m = (m0, . . . ,mk) be a path for some q = a/b,
where a and b are coprime positive integers. Let

uj/vj = ac(q,mj), j = 0, . . . , k,
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be reduced fractions, in particular uk = 0 and vk = 1 if m ∈ L(q). Then
for arbitrary εj = ±1, j = 0, . . . , k, and for every positive b′ satisfying
b′ ≡ εjεj+1b (mod uj), j = 0, . . . , k − 1, the sequence m′ = (m′

0, . . . ,m
′
k),

where m′
0 = ε0m0 and

m′
j+1 = εj+1mj+1 +

εj+1b− εjb
′

uj
vj , j = 0, . . . , k − 1,

satisfies c(q′,m′) = c(q,m) and wq′(m
′) = (b/b′)k/2wq(m), where q′ = a/b′.

Proof. It suffices to show that ac(q′,m′
j) = εjuj/vj for j = 0, . . . , k.

Indeed, we have u0/v0 = am0 = ε0am
′
0 and

uj+1

vj+1
=

amj+1uj + abvj
uj

= ±
am′

j+1ε0uj + ab′vj

ε0uj

for j = 0, . . . , k − 1.
Corollary 6. Let m = (m0, . . . ,mk) and n = (n0, . . . , nl) be such that

c(q,m) = c(q,n) for some q = a/b, where (a, b) = 1.
Let uj/vj = ac(q,mj) for j = 0, . . . , k − 1 and xj/yj = ac(q,nj) for j =
0, . . . , l − 1 be reduced fractions and let N be a positive integer such that

uj |N, j = 0, . . . , k − 1, and xj |N, j = 0, . . . , l − 1.

If k ̸= l, then wq′ is non-unique for every q′ = a/b′ such that

(4.1) b′ ≡ ±b (mod N), b′ ̸=
(
wq(m)

wq(n)

)2/(k−l)

b.

If k = l and wq(m) ̸= wq(n), then wq′ is non-unique for every q′ = a/b′

such that
b′ ≡ ±b (mod N).

Table 2. Examples of families of loops of weight ̸= 1 for q′ = a/b′ where b′ ≡ ±b
mod N), b ̸= b′′, and N = na. For each family we list the data necessary to apply
Corollary 6: a, the residue b, the modulus N , and the paths (denoted m and n in the
corollary). The possible exceptional value of b′ in (4.1) is denoted as b′′ here.

a b N b′′ m n

3 1 3 1 (−1, 0, 2) (1)

4 1 4 1 (−1, 0, 2) (1)

5 1 5 1 (−1, 0, 2) (1)

5 2 10 2 (−2, 0, 3) (1)

5 3 10 none (−1, 1,−1,−1,−3) (0)

It also follows from Proposition 1 with r = r′ = −1 and the fact that wq

is a group homomorphism that m = (m0, . . . ,mk) is a loop with weight ̸= 1
if and only if (−m0, . . . ,−mk) and (mk, . . . ,m0) are such loops.
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The computations for q = a/b employed several methods, depending on
the case being considered; below is the list of the methods. In the complete
table available online, each example of loop is labelled with the number of
the method by which it was obtained. This number also corresponds to the
script number.

1. The case q = 1/b was handled using Corollary 4.

2. For a = 3, . . . , 25 and b relatively prime to a in all possible congru-
ence classes mod na, starting with n = 1, a search for paths satisfying the
assumptions of Corollary 6, with N = an, was performed. (The cases a = 1
and a = 2 follow from Corollaries 4 and 5 respectively.) Examples of paths
and congruence classes that we have found are shown in Table 2. Exceptions
(asserted in the corollary) were noted and later handled by subsequent meth-
ods, with the results stored in the full version of Table 1 (online). Whenever
appropriate paths were not found, classes modulo a higher modulus had to
be considered, either by incrementing n, or by splitting the current class
mod an to classes mod ann′ with the smallest possible n′. The decision to
increment n or split the class was based on how many residue classes mod an
were already successfully handled. Covering the next case, a = 26, with the
current algorithm would probably require around two months of machine
time.

3. For a given q = a/b all possible loops of a given length may be found
by solving the diophantine equation Pk(q, (m0, . . . ,mk)) = 0 in non-zero,
integer mj . This was mainly done recursively by

• finding an upper bound M for min |mj |,
• checking all possible cases of i = 0, . . . , k, |mi| = min |mj | ≤ M ,
• substituting possible values |mi| ≤ M and then solving each case.

For example, for q = 26/23 and length 6 the equation to solve is

23 · 133m0m1m2m3m4m5m6 + 22 · 132 · 23(m0m1m2m3m4 +m0m1m2m3m6

+m0m1m2m5m6 +m0m1m4m5m6 +m0m3m4m5m6 +m2m3m4m5m6)

+ 2 · 13 · 232(m0m1m2 +m0m1m4 +m0m1m6 +m0m3m4 +m0m3m6

+m0m5m6 +m2m3m4 +m2m3m6 +m2m5m6 +m4m5m6)

+ 233(m0 +m2 +m4 +m6) = 0.

This implies min |mj | ≤ 2, which reduces to mj ∈ {1, 2} for at least one
j ∈ {0, 1, 2, 3}. Each of these 8 substitutions produces an equation in 6 vari-
ables (of degree 6) which can be solved by applying the same method recur-
sively. Ultimately we reach 3384779 subcases involving a quadratic equation
in two variables, for which a dedicated algorithm was used. Searching for
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longer loops requires solving much more complex equations, e.g., those cor-
responding to length 10 would not fit on one page.

The computational complexity of this method is hard to estimate.
Roughly, it behaves like (1 + q−1)k!, but it is much less regular. The unique
feature of this method is that it also allows us to prove that loops of a given
length do not exist, and thus that a loop of the next possible length (e.g.,
found with another method) has the smallest possible length.

This method was applied for 3 ≤ a ≤ b ≤ 300 and loops of length 2, 4
and, sometimes, longer loops. Results for a given q also showed the existence
of loops of weight ̸= 1 for other q, in accordance with Propositions 1 and 3,
allowing us to avoid the direct application of the method for many of the
smaller q, where the computation time would be particularly long.

4. Where previous methods were unsuccessful, loops of weight ̸= 1 were
found by examining sequences constructed using the following simple heuris-
tic:

• start with m0 = 1 or m0 = b;
• given m0, . . . ,mk, consider several possible values of mk+1 such that

|c(q, (m0, . . . ,mk+1))| < C

for some fixed C > 0;
• if more than N paths were generated (where N is around 107) discard

those with largest numerators.

Direct application of method 3 allows us to exclude the existence of loops
of a given length and weight ̸= 1 for a given q. This way we were able to
check that many of the results in the full table available online are optimal,
in the sense that there are no shorter loops of weight ̸= 1 for such q.
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