
COLLOQU IUM MATHEMAT ICUM
VOL. 172 2023 NO. 1

A SIMPLE PROOF OF THE REAL RIESZ–THORIN INTERPOLATION
THEOREM IN THE LOWER TRIANGLE

BY

LECH MALIGRANDA (Poznań and Luleå)

Abstract. A simple proof of the real Riesz–Thorin interpolation theorem for opera-
tors of strong types (p0, q0) and (∞,∞) in the lower triangle, that is, if 0 < p0 ≤ q0 < ∞
with the best estimate of the norms is presented.

1. Introduction. The classical Riesz–Thorin interpolation theorem is
proved for Lp spaces of complex-valued functions, which is based on the
three-line theorem. It states the following (see [BS88, BL76, BK91, Fo99]):

Suppose that (Ω1, µ) and (Ω2, ν) are σ-finite measure spaces. Let 0 <
p0, p1, q0, q1 ≤ ∞ with p0 ̸= p1 and 1/p = (1 − θ)/p0 + θ/p1, 1/q =
(1−θ)/q0+θ/q1 for any 0 < θ < 1. If a linear operator T : Lp0(µ)+Lp1(µ) →
Lq0(ν)+Lq1(ν) is bounded from Lp0(µ) to Lq0(ν) and from Lp1(µ) to Lq1(ν),
then it is also bounded from Lp(µ) to Lq(ν), and

(1.1) ∥T∥Lp(µ)→Lq(ν) ≤ ∥T∥1−θ
Lp0 (µ)→Lq0 (ν) ∥T∥

θ
Lp1 (µ)→Lq1 (ν).

We can briefly say that the pair (Lp(µ), Lq(ν)) is an exact interpolation
pair with respect to the pairs (Lp0(µ), Lp1(ν)) and (Lq0(µ), Lq1(ν)), where
“exact” refers to the fact that estimate (1.1) holds without an additional
constant C as in (1.2) below.

Recall that if 0 < p0 < p1 ≤ ∞, then Lp0(µ) + Lp1(µ) is a quasi-Banach
space with the quasi-norm

∥f∥Lp0 (µ)+Lp1 (µ) = inf {∥f0∥p0+∥f1∥p1 : f = f0+f1, f0∈Lp0(µ), f1∈Lp1(µ)}.
If 1 ≤ p0 < p1 ≤ ∞, then Lp0(µ) + Lp1(µ) is a Banach space. In a similar
way the space Lq0(ν) + Lq1(ν) is defined for 0 < q0 < q1 ≤ ∞.

The theorem for Lp spaces of real-valued functions holds only if the ex-
ponents lie in the lower triangle, that is, if p0 ≤ q0 and p1 ≤ q1 (see, for
example, [GM94, MS11]).
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If at least one exponent lies in the upper triangle, estimate (1.1) is re-
placed by

(1.2) ∥T∥Lp(µ)→Lq(ν) ≤ C∥T∥1−θ
Lp0 (µ)→Lq0 (ν)∥T∥

θ
Lp1 (µ)→Lq1 (ν)

with some constantC > 1. This follows from estimates of the norm of the oper-
ator and its natural complexification, which was fully investigated in [MS11].

So we naturally come to the following question: is it possible to give a di-
rect, elementary proof of the Riesz–Thorin theorem for real-valued functions
without using complex variables?

Kruglyak [Kr07] gave a real proof with the constant C = 3+2
√
2 ≈ 5.82

(see also [BK91]). In [KM01] we presented a real proof for 1 < p0 = q0 <
p1 = q1 < ∞ with the constant C = 2(1/p0)(1−1/p1)+min(1/p0,1−1/p1) < 4.

Now, we present an elementary proof of the Riesz–Thorin interpolation
theorem using only real variable techniques, with the exact estimate of norms
(1.1) on any line segment going through the origin in the lower triangle, that
is, if 0 < p0 ≤ q0 < ∞, p1 = q1 = ∞ and 1

p = 1−θ
p0

, 1
q = 1−θ

q0
, 0 < θ < 1. The

idea of the proof comes from [LS71, Ma89].

2. Real proof of the Riesz–Thorin interpolation theorem for
0 < p0 ≤ q0 < ∞ and p1 = q1 = ∞. The proof is an extension of an
idea coming from [LS71, Ma89] (see also [Mal89]). In [Ma89, Mal89] it was
proved even more that the pair of Orlicz spaces (Lφ(µ), Lφ(ν)) is an exact
interpolation pair with respect to (L1(µ), L1(ν)) and (L∞(µ), L∞(ν)) and
not only for linear operators, but even for Lipschitz operators.

Theorem 2.1. If 0 < p0 ≤ q0 < ∞ and 1
p = 1−θ

p0
, 1

q = 1−θ
q0

with 0 <

θ < 1, then pair (Lp(µ), Lq(ν)) is an exact interpolation pair with respect to
(Lp0(µ), Lq0(ν)) and (L∞(µ), L∞(ν)). Moreover,

(2.1) ∥T∥Lp(µ)→Lq(ν) ≤ ∥T∥1−θ
Lp0 (µ)→Lq0 (ν) ∥T∥

θ
L∞(µ)→L∞(ν).

Proof. The first step is the following equality: if 0 < p0 < p < ∞, then
for all u > 0 we have

(2.2) upCp0,p =

u�

0

(u− s)p0sp−p0−1 ds =

∞�

0

(u− s)p0+ sp−p0−1 ds,

with
Cp0,p =

Γ (p0 + 1)Γ (p− p0)

Γ (p+ 1)
= B(p0 + 1, p− p0),

where Γ,B stand for Gamma and Beta functions and v+ = max(v, 0) for
v ∈ R. It is enough to see that

u�

0

(u− s)p0sp−p0−1 ds = up
1�

0

(1− t)p0tp−p0−1 dt.
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The second step is an estimate for truncation: for each x ∈ Lp0(µ) +
L∞(µ) we have

(2.3) |Tx(t)− (Tx)(α)(t)| ≤ |Tx(t)− T (x(α/M∞))(t)| ν-a.e.,

where for α > 0 the truncation is defined by x(α)(t) := min(|x(t)|, α) sgnx(t)
and M∞ = ∥T∥L∞(µ)→L∞(ν).

Indeed, if |Tx(t)| ≤ α then (2.3) is obvious. On the other hand, if
|Tx(t)| > α then since

∥T (x(α/M∞))∥L∞(ν) ≤ M∞∥x(α/M∞)∥L∞(µ) ≤ M∞
α

M∞
= α

it follows that |T (x(α/M∞))(t)| ≤ α ν-a.e. Hence,

|Tx(t)− (Tx)(α)(t)| = |Tx(t)− α sgnTx(t)|
= |Tx(t)| − α ≤ |Tx(t)| − |T (x(α/M∞)(t)|
≤ |Tx(t)− T (x(α/M∞))(t)| ν-a.e.

and estimate (2.3) is proved.
Now, if x ∈ Lp(µ) ∩ Lp0(µ), then using (2.2) twice and Fubini’s theorem

twice, with
M0 := ∥T∥Lp0 (µ)→Lq0 (ν)

we get

Cq0,q

�

Ω2

|Tx(t)|q dν =
�

Ω2

[∞�
0

(|Tx(t)| − s)q0+ sq−q0−1 ds
]
dν

=

∞�

0

[ �

Ω2

(|Tx(t)| − s)q0+ dν
]
sq−q0−1 ds

=

∞�

0

[ �

Ω2

|Tx(t)− (Tx)(s)(t)|q0 dν
]
sq−q0−1 ds [by (2.3)]

≤
∞�

0

[ �

Ω2

|Tx(t)− T (x(s/M∞))(t)|q0 dν
]
sq−q0−1 ds

=

∞�

0

∥Tx− T (x(s/M∞))∥q0Lq0 (ν) s
q−q0−1 ds

≤ M q0
0

∞�

0

∥x− x(s/M∞)∥q0Lp0 (µ) s
q−q0−1 ds

= M q0
0

∞�

0

[ �

Ω1

(|x(t)| − s/M∞)p0+ dµ
]q0/p0

sq−q0−1 ds
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= M q0
0

�

Ω1

[∞�
0

(|x(t)| − s/M∞)p0+ dµ
]q0/p0

sq−q0−1ds

= M q0
0

∥∥∥ �

Ω1

(|x(t)| − s/M∞)p0+ dµ
∥∥∥q0/p0
Lq0/p0 (sq−q0−1ds)

=: A.

Because we have q0/p0 ≥ 1, using Minkowski’s inequality and substituting
s = M∞|x(t)|u we obtain

A ≤ M q0
0

{ �

Ω1

∥(|x(t)| − s/M∞)p0+ ∥Lq0/p0 (sq−q0−1ds) dµ
}q0/p0

= M q0
0

{ �

Ω1

[M∞|x(t)|�

0

(|x(t)| − s/M∞)q0sq−q0−1 ds
]p0/q0

dµ
}q0/p0

= M q0
0

{ �

Ω1

[ 1�

0

|x(t)|q0(1− u)q0(M∞|x(t)|u)q−q0 du/u
]p0/q0

dµ
}q0/p0

= M q0
0 M q−q0

∞

{ �

Ω1

|x(t)|qp0/q0 dµ
}q0/p0

Cq0,q = M
(1−θ)q
0 M θq

∞Cq0,q∥x∥
q
Lp(µ),

since 1
p = 1−θ

p0
, 1q = 1−θ

q0
and so p = q p0

q0
. Hence,

Cq0,q

�

Ω2

|Tx(t)|q dν ≤ M
(1−θ)q
0 M θq

∞Cq0,q∥x∥
q
Lp(µ),

that is,

∥Tx∥Lq(ν) ≤ M1−θ
0 M θ

∞∥x∥Lp(µ) for any x ∈ Lp(µ) ∩ Lp0(µ).

We want to prove that the last estimate is true for functions from the
entire space Lp(µ), so let x ∈ Lp(µ) and An := {t ∈ Ω1 : |x(t)| > 1/n} for
n ∈ N. Then

µ(An) ≤ np
�

An

|x(t)|p dµ ≤ np∥x∥pLp(µ) < ∞

for any n ∈ N. We have xn := xχAn ∈ Lp(µ) ∩ Lp0(µ) because by the
Hölder–Rogers inequality with p/p0 > 1,
�

An

|x(t)|p0 dµ ≤
( �

An

|x(t)|p dµ
)p0/p

µ(An)
1−p0/p ≤ ∥x∥p0Lp(µ)µ(An)

1−p0/p < ∞.

Hence,

∥x− xn∥Lp0 (µ)+L∞(µ) ≤ ∥xχΩ1\An
∥L∞(µ) ≤ 1/n → 0 as n → ∞.

By the boundedness of T from Lp0(µ)+L∞(µ) to Lq0(ν)+L∞(ν) we ob-
tain ∥Tx−Txn∥Lq0 (ν)+L∞(ν) → 0 as n → ∞ and hence there is a subsequence
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(nk) such that Txnk
→ Tx ν-a.e. as k → ∞. By the Fatou lemma,

∥Tx∥Lq(ν) ≤ lim inf
k→∞

∥Txnk
∥Lq(ν) ≤ M

p0/p
0 M1−p0/p

∞ lim inf
k→∞

∥xnk
∥Lp(µ)

≤ M
p0/p
0 M1−p0/p

∞ ∥x∥Lp(µ),

and we are done.
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