COLLOQUIUM MATHEMATICUM
 VOL. 172

A SIMPLE PROOF OF THE REAL RIESZ-THORIN INTERPOLATION THEOREM IN THE LOWER TRIANGLE

BY
LECH MALIGRANDA (Poznań and Luleå)

Abstract

A simple proof of the real Riesz-Thorin interpolation theorem for operators of strong types $\left(p_{0}, q_{0}\right)$ and (∞, ∞) in the lower triangle, that is, if $0<p_{0} \leq q_{0}<\infty$ with the best estimate of the norms is presented.

1. Introduction. The classical Riesz-Thorin interpolation theorem is proved for L^{p} spaces of complex-valued functions, which is based on the three-line theorem. It states the following (see [BS88, BL76, BK91, Fo99]):

Suppose that $\left(\Omega_{1}, \mu\right)$ and $\left(\Omega_{2}, \nu\right)$ are σ-finite measure spaces. Let $0<$ $p_{0}, p_{1}, q_{0}, q_{1} \leq \infty$ with $p_{0} \neq p_{1}$ and $1 / p=(1-\theta) / p_{0}+\theta / p_{1}, 1 / q=$ $(1-\theta) / q_{0}+\theta / q_{1}$ for any $0<\theta<1$. If a linear operator $T: L^{p_{0}}(\mu)+L^{p_{1}}(\mu) \rightarrow$ $L^{q_{0}}(\nu)+L^{q_{1}}(\nu)$ is bounded from $L^{p_{0}}(\mu)$ to $L^{q_{0}}(\nu)$ and from $L^{p_{1}}(\mu)$ to $L^{q_{1}}(\nu)$, then it is also bounded from $L^{p}(\mu)$ to $L^{q}(\nu)$, and

$$
\begin{equation*}
\|T\|_{L^{p}(\mu) \rightarrow L^{q}(\nu)} \leq\|T\|_{L^{p_{0}}(\mu) \rightarrow L^{q_{0}}(\nu)}^{1-\theta}\|T\|_{L^{p_{1}}(\mu) \rightarrow L^{q_{1}}(\nu)}^{\theta} . \tag{1.1}
\end{equation*}
$$

We can briefly say that the pair $\left(L^{p}(\mu), L^{q}(\nu)\right)$ is an exact interpolation pair with respect to the pairs $\left(L^{p_{0}}(\mu), L^{p_{1}}(\nu)\right)$ and $\left(L^{q_{0}}(\mu), L^{q_{1}}(\nu)\right)$, where "exact" refers to the fact that estimate (1.1) holds without an additional constant C as in 1.2 below.

Recall that if $0<p_{0}<p_{1} \leq \infty$, then $L^{p_{0}}(\mu)+L^{p_{1}}(\mu)$ is a quasi-Banach space with the quasi-norm
$\|f\|_{L^{p_{0}}(\mu)+L^{p_{1}}(\mu)}=\inf \left\{\left\|f_{0}\right\|_{p_{0}}+\left\|f_{1}\right\|_{p_{1}}: f=f_{0}+f_{1}, f_{0} \in L^{p_{0}}(\mu), f_{1} \in L^{p_{1}}(\mu)\right\}$.
If $1 \leq p_{0}<p_{1} \leq \infty$, then $L^{p_{0}}(\mu)+L^{p_{1}}(\mu)$ is a Banach space. In a similar way the space $L^{q_{0}}(\nu)+L^{q_{1}}(\nu)$ is defined for $0<q_{0}<q_{1} \leq \infty$.

The theorem for L^{p} spaces of real-valued functions holds only if the exponents lie in the lower triangle, that is, if $p_{0} \leq q_{0}$ and $p_{1} \leq q_{1}$ (see, for example, GM94, MS11]).

[^0]Published online 27 October 2022.

If at least one exponent lies in the upper triangle, estimate (1.1) is replaced by

$$
\begin{equation*}
\|T\|_{L^{p}(\mu) \rightarrow L^{q}(\nu)} \leq C\|T\|_{L^{p_{0}}(\mu) \rightarrow L^{q_{0}}(\nu)}^{1-\theta}\|T\|_{L^{p_{1}}(\mu) \rightarrow L^{q_{1}}(\nu)}^{\theta} \tag{1.2}
\end{equation*}
$$

with some constant $C>1$. This follows from estimates of the norm of the operator and its natural complexification, which was fully investigated in [MS11].

So we naturally come to the following question: is it possible to give a direct, elementary proof of the Riesz-Thorin theorem for real-valued functions without using complex variables?

Kruglyak [Kr07] gave a real proof with the constant $C=3+2 \sqrt{2} \approx 5.82$ (see also [BK91]). In KM01 we presented a real proof for $1<p_{0}=q_{0}<$ $p_{1}=q_{1}<\infty$ with the constant $C=2^{\left(1 / p_{0}\right)\left(1-1 / p_{1}\right)+\min \left(1 / p_{0}, 1-1 / p_{1}\right)}<4$.

Now, we present an elementary proof of the Riesz-Thorin interpolation theorem using only real variable techniques, with the exact estimate of norms (1.1) on any line segment going through the origin in the lower triangle, that is, if $0<p_{0} \leq q_{0}<\infty, p_{1}=q_{1}=\infty$ and $\frac{1}{p}=\frac{1-\theta}{p_{0}}, \frac{1}{q}=\frac{1-\theta}{q_{0}}, 0<\theta<1$. The idea of the proof comes from [LS71, Ma89.

2. Real proof of the Riesz-Thorin interpolation theorem for

 $0<p_{0} \leq q_{0}<\infty$ and $p_{1}=q_{1}=\infty$. The proof is an extension of an idea coming from [LS71, Ma89 (see also [Mal89]). In [Ma89, Mal89] it was proved even more that the pair of Orlicz spaces $\left(L^{\varphi}(\mu), L^{\varphi}(\nu)\right)$ is an exact interpolation pair with respect to $\left(L^{1}(\mu), L^{1}(\nu)\right)$ and $\left(L^{\infty}(\mu), L^{\infty}(\nu)\right)$ and not only for linear operators, but even for Lipschitz operators.Theorem 2.1. If $0<p_{0} \leq q_{0}<\infty$ and $\frac{1}{p}=\frac{1-\theta}{p_{0}}, \frac{1}{q}=\frac{1-\theta}{q_{0}}$ with $0<$ $\theta<1$, then pair $\left(L^{p}(\mu), L^{q}(\nu)\right)$ is an exact interpolation pair with respect to $\left(L^{p_{0}}(\mu), L^{q_{0}}(\nu)\right)$ and $\left(L^{\infty}(\mu), L^{\infty}(\nu)\right)$. Moreover,

$$
\begin{equation*}
\|T\|_{L^{p}(\mu) \rightarrow L^{q}(\nu)} \leq\|T\|_{L^{p_{0}}(\mu) \rightarrow L^{q_{0}}(\nu)}^{1-\theta}\|T\|_{L^{\infty}(\mu) \rightarrow L^{\infty}(\nu)}^{\theta} . \tag{2.1}
\end{equation*}
$$

Proof. The first step is the following equality: if $0<p_{0}<p<\infty$, then for all $u>0$ we have

$$
\begin{equation*}
u^{p} C_{p_{0}, p}=\int_{0}^{u}(u-s)^{p_{0}} s^{p-p_{0}-1} d s=\int_{0}^{\infty}(u-s)_{+}^{p_{0}} s^{p-p_{0}-1} d s, \tag{2.2}
\end{equation*}
$$

with

$$
C_{p_{0}, p}=\frac{\Gamma\left(p_{0}+1\right) \Gamma\left(p-p_{0}\right)}{\Gamma(p+1)}=B\left(p_{0}+1, p-p_{0}\right),
$$

where Γ, B stand for Gamma and Beta functions and $v_{+}=\max (v, 0)$ for $v \in \mathbb{R}$. It is enough to see that

$$
\int_{0}^{u}(u-s)^{p_{0}} s^{p-p_{0}-1} d s=u^{p} \int_{0}^{1}(1-t)^{p_{0}} t^{p-p_{0}-1} d t
$$

The second step is an estimate for truncation: for each $x \in L^{p_{0}}(\mu)+$ $L^{\infty}(\mu)$ we have

$$
\begin{equation*}
\left|T x(t)-(T x)^{(\alpha)}(t)\right| \leq\left|T x(t)-T\left(x^{\left(\alpha / M_{\infty}\right)}\right)(t)\right| \quad \nu \text {-a.e., } \tag{2.3}
\end{equation*}
$$

where for $\alpha>0$ the truncation is defined by $x^{(\alpha)}(t):=\min (|x(t)|, \alpha) \operatorname{sgn} x(t)$ and $M_{\infty}=\|T\|_{L^{\infty}(\mu) \rightarrow L^{\infty}(\nu)}$.

Indeed, if $|T x(t)| \leq \alpha$ then 2.3 is obvious. On the other hand, if $|T x(t)|>\alpha$ then since

$$
\left\|T\left(x^{\left(\alpha / M_{\infty}\right)}\right)\right\|_{L^{\infty}(\nu)} \leq M_{\infty}\left\|x^{\left(\alpha / M_{\infty}\right)}\right\|_{L^{\infty}(\mu)} \leq M_{\infty} \frac{\alpha}{M_{\infty}}=\alpha
$$

it follows that $\left|T\left(x^{\left(\alpha / M_{\infty}\right)}\right)(t)\right| \leq \alpha \nu$-a.e. Hence,

$$
\begin{aligned}
\left|T x(t)-(T x)^{(\alpha)}(t)\right| & =|T x(t)-\alpha \operatorname{sgn} T x(t)| \\
& =|T x(t)|-\alpha \leq|T x(t)|-\left|T\left(x^{\left(\alpha / M_{\infty}\right.}\right)(t)\right| \\
& \leq\left|T x(t)-T\left(x^{\left(\alpha / M_{\infty}\right)}\right)(t)\right| \quad \nu \text {-a.e. }
\end{aligned}
$$

and estimate 2.3 is proved.
Now, if $x \in L^{p}(\mu) \cap L^{p_{0}}(\mu)$, then using (2.2) twice and Fubini's theorem twice, with

$$
M_{0}:=\|T\|_{L^{p_{0}}(\mu) \rightarrow L^{q_{0}}(\nu)}
$$

we get

$$
\begin{aligned}
C_{q_{0}, q} \int_{\Omega_{2}}|T x(t)|^{q} d \nu & =\int_{\Omega_{2}}\left[\int_{0}^{\infty}(|T x(t)|-s)_{+}^{q_{0}} s^{q-q_{0}-1} d s\right] d \nu \\
& =\int_{0}^{\infty}\left[\int_{\Omega_{2}}^{\infty}(|T x(t)|-s)_{+}^{q_{0}} d \nu\right] s^{q-q_{0}-1} d s \\
& \left.=\int_{0}^{\infty}\left[\int_{\Omega_{2}}\left|T x(t)-(T x)^{(s)}(t)\right|^{q_{0}} d \nu\right] s^{q-q_{0}-1} d s \quad[\text { by } \quad 2.3)\right] \\
& \leq \int_{0}^{\infty}\left[\int_{\Omega_{2}}^{\infty}\left|T x(t)-T\left(x^{\left(s / M_{\infty}\right)}\right)(t)\right|^{q_{0}} d \nu\right] s^{q-q_{0}-1} d s \\
& =\int_{0}^{\infty}\left\|T x-T\left(x^{\left(s / M_{\infty}\right)}\right)\right\|_{L^{q_{0}}(\nu)}^{q_{0}} s^{q-q_{0}-1} d s \\
& \leq M_{0}^{q_{0}} \int_{0}^{\infty}\left\|x-x^{\left(s / M_{\infty}\right)}\right\|_{L^{p_{0}(\mu)}}^{q_{0}} s^{q-q_{0}-1} d s \\
& =M_{0}^{q_{0}} \int_{0}^{\infty}\left[\int\left(|x(t)|-s / M_{\infty}\right)_{+}^{p_{0}} d \mu\right]^{q_{0} / p_{0}} s^{q-q_{0}-1} d s
\end{aligned}
$$

$$
\begin{aligned}
& =M_{0}^{q_{0}} \int_{\Omega_{1}}\left[\int_{0}^{\infty}\left(|x(t)|-s / M_{\infty}\right)_{+}^{p_{0}} d \mu\right]^{q_{0} / p_{0}} s^{q-q_{0}-1} d s \\
& =M_{0}^{q_{0}}\left\|\int_{\Omega_{1}}\left(|x(t)|-s / M_{\infty}\right)_{+}^{p_{0}} d \mu\right\|_{L^{q_{0} / p_{0}\left(s^{q-q_{0}-1} d s\right)}}^{q_{0} / p_{0}}=: A .
\end{aligned}
$$

Because we have $q_{0} / p_{0} \geq 1$, using Minkowski's inequality and substituting $s=M_{\infty}|x(t)| u$ we obtain

$$
\begin{aligned}
A & \leq M_{0}^{q_{0}}\left\{\int_{\Omega_{1}}\left\|\left(|x(t)|-s / M_{\infty}\right)_{+}^{p_{0}}\right\|_{L^{q_{0} / p_{0}\left(s^{q-q_{0}-1} d s\right)}} d \mu\right\}^{q_{0} / p_{0}} \\
& =M_{0}^{q_{0}}\left\{\int_{\Omega_{1}}\left[\int_{0}^{M_{\infty}|x(t)|}\left(|x(t)|-s / M_{\infty}\right)^{q_{0}} s^{q-q_{0}-1} d s\right]^{p_{0} / q_{0}} d \mu\right\}^{q_{0} / p_{0}} \\
& =M_{0}^{q_{0}}\left\{\int_{\Omega_{1}}\left[\int_{0}^{1}|x(t)|^{q_{0}}(1-u)^{q_{0}}\left(M_{\infty}|x(t)| u\right)^{q-q_{0}} d u / u\right]^{p_{0} / q_{0}} d \mu\right\}^{q_{0} / p_{0}} \\
& =M_{0}^{q_{0}} M_{\infty}^{q-q_{0}}\left\{\int_{\Omega_{1}}|x(t)|^{q p_{0} / q_{0}} d \mu\right\}^{q_{0} / p_{0}} C_{q_{0}, q}=M_{0}^{(1-\theta) q} M_{\infty}^{\theta q} C_{q_{0}, q}\|x\|_{L^{p}(\mu)}^{q},
\end{aligned}
$$

since $\frac{1}{p}=\frac{1-\theta}{p_{0}}, \frac{1}{q}=\frac{1-\theta}{q_{0}}$ and so $p=q \frac{p_{0}}{q_{0}}$. Hence,

$$
C_{q_{0}, q} \int_{\Omega_{2}}|T x(t)|^{q} d \nu \leq M_{0}^{(1-\theta) q} M_{\infty}^{\theta q} C_{q_{0}, q}\|x\|_{L^{p}(\mu)}^{q}
$$

that is,

$$
\|T x\|_{L^{q}(\nu)} \leq M_{0}^{1-\theta} M_{\infty}^{\theta}\|x\|_{L^{p}(\mu)} \quad \text { for any } x \in L^{p}(\mu) \cap L^{p_{0}}(\mu)
$$

We want to prove that the last estimate is true for functions from the entire space $L^{p}(\mu)$, so let $x \in L^{p}(\mu)$ and $A_{n}:=\left\{t \in \Omega_{1}:|x(t)|>1 / n\right\}$ for $n \in \mathbb{N}$. Then

$$
\mu\left(A_{n}\right) \leq n^{p} \int_{A_{n}}|x(t)|^{p} d \mu \leq n^{p}\|x\|_{L^{p}(\mu)}^{p}<\infty
$$

for any $n \in \mathbb{N}$. We have $x_{n}:=x \chi_{A_{n}} \in L^{p}(\mu) \cap L^{p_{0}}(\mu)$ because by the Hölder-Rogers inequality with $p / p_{0}>1$,

$$
\int_{A_{n}}|x(t)|^{p_{0}} d \mu \leq\left(\int_{A_{n}}|x(t)|^{p} d \mu\right)^{p_{0} / p} \mu\left(A_{n}\right)^{1-p_{0} / p} \leq\|x\|_{L^{p}(\mu)}^{p_{0}} \mu\left(A_{n}\right)^{1-p_{0} / p}<\infty
$$

Hence,

$$
\left\|x-x_{n}\right\|_{L^{p_{0}}(\mu)+L^{\infty}(\mu)} \leq\left\|x \chi_{\Omega_{1} \backslash A_{n}}\right\|_{L^{\infty}(\mu)} \leq 1 / n \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

By the boundedness of T from $L^{p_{0}}(\mu)+L^{\infty}(\mu)$ to $L^{q_{0}}(\nu)+L^{\infty}(\nu)$ we obtain $\left\|T x-T x_{n}\right\|_{L^{q_{0}}(\nu)+L^{\infty}(\nu)} \rightarrow 0$ as $n \rightarrow \infty$ and hence there is a subsequence
$\left(n_{k}\right)$ such that $T x_{n_{k}} \rightarrow T x \nu$-a.e. as $k \rightarrow \infty$. By the Fatou lemma,

$$
\begin{aligned}
\|T x\|_{L^{q}(\nu)} & \leq \liminf _{k \rightarrow \infty}\left\|T x_{n_{k}}\right\|_{L^{q}(\nu)} \leq M_{0}^{p_{0} / p} M_{\infty}^{1-p_{0} / p} \liminf _{k \rightarrow \infty}\left\|x_{n_{k}}\right\|_{L^{p}(\mu)} \\
& \leq M_{0}^{p_{0} / p} M_{\infty}^{1-p_{0} / p}\|x\|_{L^{p}(\mu)}
\end{aligned}
$$

and we are done.
Acknowledgements. This research was supported by grant 0213/S/ GR/2154 from the Poznań University of Technology.

REFERENCES

[BS88] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988.
[BL76] J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Springer, Berlin, 1976.
[BK91] Yu. A. Brudnyi and N. Kruglyak, Interpolation Functors and Interpolation Spaces, Vol. I, North-Holland, Amsterdam, 1991.
[Fo99] G. B. Folland, Real Analysis: Modern Techniques and Their Applications, 2nd ed., Wiley, New York, 1999.
[GM94] J. Gasch and L. Maligranda, On vector-valued inequalities of the MarcinkiewiczZygmund, Herz and Krivine type, Math. Nachr. 167 (1994), 95-129.
[KM01] A. Yu. Karlovich and L. Maligranda, On the interpolation constant for Orlicz spaces, Proc. Amer. Math. Soc. 129 (2001), 2727-2739.
[Kr07] N. Kruglyak, An elementary proof of the real version of the Riesz-Thorin theorem, in: Interpolation Theory and Applications, Contemp. Math. 445, Amer. Math. Soc., Providence, 2007, 179-182.
[LS71] G. G. Lorentz and T. Shimogaki, Interpolation theorems for the pairs of spaces $\left(L^{p}, L^{\infty}\right)$ and $\left(L^{1}, L^{q}\right)$, Trans. Amer. Math. Soc. 159 (1971), 207-221.
[Ma89] L. Maligranda, Some remarks on Orlicz's interpolation theorem, Studia Math. 95 (1989), 43-58.
[Mal89] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Mathematics 5, Univ. Estadual de Campinas, Campinas, 1989.
[MS11] L. Maligranda and N. Sabourova, Real and complex operator norms between quasiBanach $L^{p}-L^{q}$ spaces, Math. Inequal. Appl. 14 (2011), 247-270.

[^1]
[^0]: 2020 Mathematics Subject Classification: Primary 46E30; Secondary 46B70, 47A30.
 Key words and phrases: Banach spaces, L^{p} spaces, interpolation of operators, norms of linear operators.
 Received 25 July 2022; revised 25 September 2022.

[^1]: Lech Maligranda
 Institute of Mathematics
 Poznań University of Technology
 Piotrowo 3A
 60-965 Poznań, Poland
 and
 Department of Engineering Sciences and Mathematics
 Luleå University of Technology
 97187 Luleå, Sweden
 E-mail: lech.maligranda@gmail.com

