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EXTENDING THE APPLICABILITY OF
A SEVENTH-ORDER METHOD FOR EQUATIONS

UNDER GENERALIZED CONDITIONS

Abstract. We extend the applicability of a seventh-order method for solv-
ing Banach space-valued equations. This is achieved by using generalized
conditions on the first derivative which only appears in the method. Earlier
works use conditions up to the eighth derivative to establish convergence.
Our technique is very general and can be used to extend the applicability of
other methods along the same lines.

1. Introduction. Let E1 and E2 be Banach spaces and D ⊂ E1 be an
open and convex set. We are concerned with the problem of approximating
a solution x∗ of the equation
(1.1) G(x) = 0,

where G : D ⊂ E1 → E2 is a nonlinear Fréchet differentiable operator. Inter-
ested readers can find related results in [1–19], and the references therein.

We study the local convergence of the seventh-order method defined by
(1.2)

yk = xk − 2
3G

′(xk)
−1G(xk),

zk = xk−
[
23
8 I−G′(xk)

−1G′(yk)
(
3I− 9

8G
′(xk)

−1G′(yk)
)]
G′(xk)

−1G(xk)
xk+1 = zk − (5I − 3G′(xk)

−1G′(yk))G′(xk)
−1G(xk)

for each k = 0, 1, 2, . . . .
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The advantages of using this method are given in [17]. The convergence
order was established in that work by using Taylor expansions and hypothe-
ses up to the eighth derivative and in the setting of a multidimensional
Euclidean space. Notice, however, that only the first derivative appears in
the method. Hence, method (1.2) can be used under these restrictions only
when these high-order derivatives exist. But method (1.2) may converge.
That is why it is important to drop these conditions.

The assumptions on derivatives of order up to 8 reduce the applicability
of the method. For example: Let X = Y = R, D = [−1/2, 3/2]. Define f
on D by

f(t) =

{
t3 log t2 + t5 − t4 if t ̸= 0,

0 if t = 0.

Then f(1) = 0, and

f ′′′(t) = 6 log t2 + 60t2 − 24t+ 22.

But the function f ′′′(t) is not bounded on D. Thus, the convergence of
method (1.2) is not guaranteed by the analysis in [17]. Moreover, computable
error bounds on ∥xn − x∗∥ or uniqueness results were not given there ei-
ther. We address all these problems in this paper. In particular, we only
use hypotheses on the first derivative. Moreover, the convergence is given in
a Banach space setting. Furthermore, computable error bounds as well as
the uniqueness of the solution results are provided. Hence, we extend the
applicability of the method.

Finally, our approach is so general that it can be used to extend the
applicability of other methods [1–16,18,19] in a similar way.

The local convergence analysis is developed in Section 2. Moreover, nu-
merical examples can be found in Section 3.

2. Convergence. We denote by S[z, γ] the closure of the ball S(z, γ)
centered at z ∈ E1 and of radius γ > 0.

We first introduce some real parameters and functions to be used in the
local convergenceanalysis of method (1.2). Let B = [0,∞).

Suppose the following:

(1) ξ0 : B → B is a continuous and nondecreasing (CN) function such that
the function ξ0(t)− 1 has a minimal zero ρ0 ∈ B−{0}. Set B0 = [0, ρ0).

(2) ξ : B0 → B and ξ1 : B0 → B are CN functions such that the function
η1(t)−1 has a minimal zero ρ1 ∈ B0−{0}, where η1 : B0 → B is defined
by

η1(t) =

	1
0 ξ((1− τ)t) dτ + 1

3

	1
0 ξ1(τt) dτ

1− ξ0(t)
.
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(3) The function η2(t) − 1 has a minimal zero ρ2 ∈ B0 − {0}, where η2 :
B0 → B is defined by

η2(t) =

	1
0 ξ((1− τ)t) dτ

1− ξ0(t)
+

3

8

(
3

(
ξ0(t) + ξ0(η1(t)t)

1− ξ0(t)

)2

+ 2
ξ0(t) + ξ0(η1(t)t)

1− ξ0(t)

)	1
0 ξ1(τt) dτ

1− ξ0(t)
.

(4) The function ξ0(η2(t)t) − 1 has a minimal zero r1 ∈ B0 − {0}. Let r =
min {ρ0, r1} and B1 = [0, r).

(5) The function η3(t) − 1 has a minimal zero ρ3 ∈ B1 − {0}, where η3 :
B1 → B is defined by

η3(t) =

[	1
0 ξ((1− τ)η2(t)t) dτ

1− ξ0(η2(t)t)

+
(ξ0(t) + ξ0(η2(t)t))

	1
0 ξ1(τη2(t)t) dτ

(1− ξ0(t))(1− ξ0(η2(t)t))

+
3(ξ0(t) + ξ0(η1(t)t))

	1
0 ξ1(τη2(t)t) dτ

2(1− ξ0(t))2

]
η2(t).

The parameter ρ defined by

(2.1) ρ = min {ρm : m = 1, 2, 3}

will be shown in Theorem 2.1 to be a radius of convergence for method (1.2).
Let B2 = [0, ρ). Then

0 ≤ ξ0(t) < 1,(2.2)
0 ≤ ξ0(η2(t)t) < 1,(2.3)
0 ≤ ηm(t) < 1(2.4)

for m = 1, 2, 3 and each t ∈ B2.
The following conditions are needed for functions ηm as previously de-

fined, and x∗ a simple solution of the equation G(x) = 0.

(h1) For each v ∈ D,

∥G′(x∗)
−1(G′(v)− G′(x∗))∥ ≤ ξ0(∥v − x∗∥).

Set D0 = S[x∗, ρ0] ∩D.

(h2) For each v, u ∈ D0,

∥G′(x∗)
−1(G′(v)− G′(u))∥ ≤ ξ(∥v − u∥),

∥G′(x∗)
−1G′(v)∥ ≤ ξ1(∥v − x∗∥).

(h3) S[x∗, ρ] ⊂ D.
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Next, we prove a local convergence result utilizing conditions (h1)–(h3)
as well as the preceding notation.

Theorem 2.1. Suppose that conditions (h1)–(h3) hold. Then

lim
n→∞

xn = x∗ provided x0 ∈ S(x∗, ρ).

Proof. The following items are proven by induction:

{xn} ⊂ S(x∗, ρ),(2.5)
∥yn − x∗∥ ≤ η1(qn)qn ≤ qn < r,(2.6)
∥zn − x∗∥ ≤ η2(qn)qn ≤ qn,(2.7)
qn+1 ≤ η3(qn)qn ≤ qn,(2.8)

where qn = ∥xn − x∗∥ and ρ is given in (2.1). Let y ∈ S(x∗, ρ) − {x∗}. By
condition (h1) and (2.1), we get

(2.9) ∥G′(x∗)
−1(G′(y)− G′(x∗))∥ ≤ ξ0(∥y − x∗∥) ≤ ξ0(ρ) < 1.

Thus, G′(y)−1 ∈ L(E1, E) by a perturbation lemma for invertible linear
operators [10] attributed to Banach, and

(2.10) ∥G′(y)−1G′(x∗)∥ ≤ 1

1− ξ0(∥y − x∗∥)
.

The values y0 and z0 are also well defined by the first two substeps of the
scheme (1.2) for n = 0. Then, we can write
(2.11) y0 − x∗ = x0 − x∗ − G′(x0)

−1G(x0) + 1
3G

′(x0)
−1G(x0)

= G′(x0)
−1G′(x∗)

1�

0

G′(x∗)
−1

(
G′(x∗ + τ(x0 − x∗))− G′(x0)

)
dτ (x0 − x∗)

+ 1
3G

′(x0)
−1G(x0),

and
(2.12)
z0 − x∗ = x0 − x∗ − G′(x0)

−1G(x0)
−

(
15
8 I − 3G′(x0)

−1G′(y0) +
9
8(G

′(x0)
−1G′(y0))

2
)
G′(x0)

−1G(x0)
= x0 − x∗ − G′(x0)

−1G(x0)
− 3

8 [3G
′(x0)

−1(G′(y0)− G′(x0))
2

− 2G′(x0)
−1(G′(y0)− G′(x0))]G′(x0)

−1G′(x0).

Using (2.1), (2.4) (for m = 1, 2), conditions (h2), (2.10) (for y = x0, y0),
(2.11), (2.12), and the triangle inequality we obtain in turn

(2.13) ∥y0 − x∗∥ ≤
(
	1
0 ξ((1− τ)q0) dτ +

1
3

	1
0 ξ1(τq0) dτ)q0

1− ξ0(q0)

≤ η1(q0)q0 ≤ q0 < ρ,
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and

(2.14) ∥z0 − x∗∥ ≤
[	1

0 ξ((1− τ)q0) dτ

1− ξ0(q0)

+
3

8

(
3

(
(ξ0(q0) + ξ0(∥y0 − x∗∥))

1− ξ0(q0)

)2

+ 2
(ξ0(q0) + ξ0(∥y0 − x∗∥))

1− ξ0(q0)

)	1
0 ξ1(τq0) dτ

1− ξ0(q0)

]
q0

≤ η2(q0)q0 ≤ q0,

proving y0, z0 ∈ S(x∗, ρ) ⊂ D (by condition (h3)) and the estimates (2.6) and
(2.7), respectively. Moreover, by condition (h2), estimates (2.13), (2.14), the
triangle inequality, and the third substep of method (1.2) for n = 0 defining
x1 we have

(2.15) x1 − x∗ = z0 − x∗ − G′(z0)
−1G(z0)

+ G′(z0)
−1(G′(x0)− G′(z0))G′(x0)

−1G(z0)
− 3

2G
′(x0)

−1(G′(x0)− G′(y0))G′(x0)
−1G(z0).

Hence, it follows that

(2.16) q1 ≤
[	1

0 ξ((1− τ)∥z0 − x∗∥) dτ
1− ξ0(∥z0 − x∗∥)

+
(ξ0(q0) + ξ0(∥z0 − x∗∥))

(1− ξ0(q0))(1− ξ0(∥z0 − x∗∥))

1�

0

ξ1(τ∥z0 − x∗∥) dτ

+
3

2

(ξ0(q0) + ξ0(∥y0 − x∗∥))
1− ξ0(q0)

1�

0

ξ1(τ∥z0 − x∗∥) dτ
]
∥z0 − x∗∥

≤ η3(q0)q0 ≤ q0,

proving that x1 ∈ S(x∗, ρ) and estimates (2.5) and (2.8) hold for n = 1 and
n = 0, respectively. Hence, items (2.5)–(2.8) hold for n = 0. Then, replace
x0, y0, z0, x1 by xj , yj , zj , xj+1, respectively in the preceding calculations to
complete the induction for items (2.5)–(2.8). It follows from the estimation

(2.17) qj+1 ≤ λqj < ρ,

where λ = η3(q0) ∈ [0, 1), that xj+1 ∈ S(x∗, ρ) and limj→∞ xj = x∗.

Next, a result is given concerning the uniqueness of the solution x∗.

Proposition 2.2. Suppose:

(1) x∗ ∈ S(x∗, r) ⊂ D is a simple solution of the equation G(x) = 0 for some
r > 0, and condition (h1) holds.
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(2) There exists ρ∗ ≥ r such that

(2.18)
1�

0

ξ0(τρ∗) dτ < 1.

Set D1 = S[x∗, ρ∗]∩D. Then x∗ is the only solution of the equation G(x) = 0
in D1.

Proof. Let T =
	1
0 G

′(v + τ(x∗ − v)) dτ for some v ∈ D1 with G(v) = 0.
Then it follows from (h1) and (2.18) that

(2.19) ∥G′(x∗)
−1(T − G′(x∗))∥ ≤

1�

0

ξ0(τ∥v − x∗∥) dτ

≤
1�

0

ξ0(τρ∗) dτ.

Hence, T−1 ∈ L(E1, E) and from the identity 0 = G(v)−G(x∗) = T (v−x∗),
we conclude v = x∗.

Remark 2.3. (a) Notice that only condition (h1) is used in Proposi-
tion 2.2. But if we suppose that all the conditions (h1)–(h3) hold, then we
can set r = ρ.

(b) Given (h1) and the estimate

∥G′(x∗)
−1G′(x)∥ = ∥G′(x∗)

−1(G′(x)− G′(x∗)) + I∥
≤ 1 + ∥G′(x∗)

−1(G′(x)− G′(x∗))∥ ≤ 1 + ξ0(∥x− x∗∥)
the second condition in (h2) can be dropped and ξ1 can be replaced by

ξ1(t) = 1 + ξ0(t)

or
ξ1(t) = 2,

since t ∈ [0, ρ0).
(c) The results obtained here can be used for operators G satisfying au-

tonomous differential equations [1–4] of the form

G′(x) = P (G(x))
where P is a continuous operator. Then, since G′(x∗) = P (G(x∗)) = P (0), we
can apply the results without actually knowing x∗. For example, let G(x) =
ex − 1. Then we can choose P (x) = x+ 1.

(d) Let ξ0(t) = K0t and ξ(t) = Kt. In [2,3] we showed that ρA = 2
2K0+K

is a convergence radius of Newton’s method

(2.20) xn+1 = xn − G′(xn)
−1G(xn) for each n = 0, 1, 2, . . .

under conditions (h1) and (h2). It follows from the definition of ρ in (2.1)
that it cannot be larger than the convergence radius ρA of the second order
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Newton’s method (2.20). As already noted in [2,3], ρA is at least as large as
the convergence radius given by Rheinboldt [15],

(2.21) ρR =
2

3K1
,

where K1 is the Lipschitz constant on D. The same value for ρR was given
by Traub [18]. In particular, for K0 < K1 we have

ρR < ρA

and
ρR/ρA → 1/3 as K0/K1 → 0.

That is, the radius of convergence ρA is at most three times larger than
Rheinboldt’s.

3. Numerical examples. We compute the radius of convergence for
three examples.

Example 3.1. Consider the nonlinear system

x2 + y − 2 = 0,

x+ y2 − 2 = 0.

The associated nonlinear mapping G : R2 → R2 is defined by

G(x, y) =
[
G1(x, y)

G2(x, y)

]
where G1(x, y) = x2+y−2 and G2(x, y) = x+y2−2. Notice that x∗ = (1, 1)T .
Set D = S(x∗, 1/2). We use the max norm for matrices. By the definition of
the mapping G, we have

G′(x, y) =

[
∂G1/∂x ∂G1/∂y

∂G2/∂x ∂G2/∂y

]
=

[
2x 1

1 2y

]
so G′(x∗) =

[
2 1
1 2

]
and G′−1(x∗) = 1

3

[
2 −1
−1 2

]
. In view of these calculations,

conditions (h1)–(h3) are satisfied if we set ξ0(t) = ξ(t) = 2t, and ξ1(t) = 2.
Then, by the definition of η1, η2, η3 and the radius ρ given by (2.1), we obtain

ρ1 = 0.2222, ρ2 = 0.6494, ρ = ρ3 = 0.2141.

Example 3.2. Let E = E1 = C[0, 1], D = S[0, 1] and define the operator
G : D → E2 by

(3.1) G(ψ)(x) = ψ(x)− 5

1�

0

xθψ(θ)3 dθ.
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Then we obtain

G′(ψ(ξ))(x) = ξ(x)− 15

1�

0

xθψ(θ)2ξ(θ) dθ for each ξ ∈ D.

Thus, we get x∗ = 0, so that we can take ξ0(t) = 7.5t, ξ(t) = 15t, and
ξ1(t) = 2. Then the radii are

ρ1 = 0.022222, ρ2 = 0.01894838, ρ = ρ3 = 0.01546.

Example 3.3. In the academic example of the introduction, we take
ξ0(t) = ξ(t) = 96.6629073t and ξ1(t) = 2. Then the radii are

ρ1 = 0.00229894, ρ2 = 0.00158586, ρ = ρ3 = 0.00128222.
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