COLLOQUIUM MATHEMATICUM

A NEW CONSTRUCTION OF THE BLOCK SYSTEMS.

$$
B(4,1,25) \text { AND } B(4,1,28)
$$

By

B. ROKOWSKA (WROCEAW)

Let $B(v)$ denote a family of 4 -element subsets, called blocks, of a v-element set E such that each 2 -element subset of E is contained in exactly one block $B(v)$.

Constructions of $B(13)$ and $B(16)$ are well known: there exists exactly one $B(13)$ (projective plane $P G[2]$, [3]) and exactly one $B(16)$ (Euclidean. plane $E G$ [2], [4]).

In 1939, Bose [1] constructed $B(25), B(28)$, and $B(37)$. His results. were then used by Hanani [3] who proved that the relation

$$
v \equiv 1 \text { or } 4(\bmod 12)
$$

is a sufficient and necessary condition for the existence of $B(v)$. Pukanow [4] showed that there exist at least two non-isomorphic $B(v)$ for each. $v \geqslant 181$. Wojtas [5] proved, using essentially results of [4], that there exist at least $2[(v-1) / 720]$ non-isomorphic $B(v)$ for each $v \geqslant 781$. His. method, however, cannot be applied for small v.

In this paper we give a construction of $B(25)$ and $B(28)$ which are non-isomorphic to those in [1]; and, therefore, there are at least two $B(25)$, and $B(28)$.

In the bibliography of Steiner systems [2], compiled by Doyen and Rosa, there is a table providing numbers of non-isomorphic Steiner systems. $B(k, \lambda, v)$ for $v \leqslant 26$ and the case of $B(4,1,25)$ is there open. Thus the present paper yields an answer: the number is at least 2.
$B(25)$. In the set

$$
E=\{0,(i, j): i=1, \ldots, 6, j=1, \ldots, 4\}
$$

we construct the following blocks:

$$
\{0,(1, j),(2, j),(3, j)\},\{0,(4, j),(5, j),(6, j)\} \text { for } j=1,2,3,4 ;
$$

$$
\{(i, j),(i+3, j),(i, j+k),(i+3, j+k)\} \text { for } i=1, j=1,3, k=1, \text { or }
$$

$$
i=2, j=1,2, k=2, \text { or } i=3, j=2, k=1
$$

$\{(i, j),(i+4, j),(i, j+k),(i+4, j+k)\}$ for $i=1, j=1, k=3$, or $i=1, j=2, k=1$, or $i=2, j=1,3, k=1$, or $i=3, j=1,2, k=2$, $i+4=4 ;$
$\{(i, j),(i+5, j),(i, j+k),(i+5, j+k)\}$ for $i=1, j=1,2, k=2$, or $i=2, j=1, k=3, i+5=4$, or $i=2, j=2, k=1$, or $i=3, j=1,3$, $k=1, i+5=5$;
$\{(i, 1),(i+1,2),(i+2,3),(2 i+2,4)\}$;
$\{(i, 1),(i+2,2),(i+1,4) ;(2 i+3,3)\}$;
$\{(i, 1),(i+1,3),(i+2,4),(2 i+4,2)\}$;
$\{(i, 1),(2 i+3,2),(2 i+2,3),(2 i+4,4)\},(2 i+k) \in\{4,5,6\}$ and $2 i+k$ is taken mod 3.

In order to show that this block system is non-isomorphic to that in [1] it is sufficient to notice that it has the following property:

For each pair of blocks that contain 0 , say

$$
\left\{0, x_{1}, x_{2}, x_{3}\right\} \quad \text { and } \quad\left\{0, y_{1}, y_{2}, y_{3}\right\}
$$

one can choose two other blocks containing 0 , say

$$
\left\{0, z_{1}, z_{2}, z_{3}\right\} \quad \text { and } \quad\left\{0, t_{1}, t_{2}, t_{3}\right\},
$$

such that blocks

$$
\left\{x_{1}, y_{1}, z_{1}, t_{1}\right\}, \quad\left\{x_{2}, y_{2}, z_{2}, t_{2}\right\}, \quad\left\{x_{3}, y_{3}, z_{3}, t_{3}\right\} .
$$

belong to $B(25)$.
It is easy to see that none of the elements in the construction from [1] has that property.
$B(28)$. We take

$$
E=\{(i, j): i=1, \ldots, 7, j=1, \ldots, 4\}
$$

The set E can be written in the form of a (7×4)-matrix $A=(i, j)$ for $i=1, \ldots, 7$, and $j=1, \ldots, 4$.

Let us form a (7×3)-matrix B consisting of pairs of $I=\{1, \ldots, 7\}$ according to the following procedure.

A pair (x, y) belongs to the j-th column if $x+y \equiv j$ (mod 7), a pair (x, y) belongs to the i-th row if $|x-y| \equiv i(\bmod 7)$. Next, let C be the (6×3)-matrix :

$$
C=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 0 & 0 \\
2 & 4 & 0 & 0 & 1 & 3 \\
0 & 0 & 2 & 3 & 4 & 1
\end{array}\right)
$$

Blocks: Consider all pairs (a, b) of elements of C such that a and b belong to the same column and $a \neq 0, b \neq 0, a \neq b$. Let a be in the i-th row and in the j-th column, and b in the k-th row and in the j-th column. If (x, y) is in the i-th row and in the n-th column of B, and (z, t) in the k-th row and in the n-th column of B, then $\{x, y, z, t\} \in B(28)$, where
$\{x, y)$ are elements of the α-th row of the matrix A, and (z, t) are elements of the b-th row of the matrix A, and $i \neq k, i=1,2,3, n=1, \ldots, 7$. Moreover, in $B(28)$ we have
$\{(i, 1),(i, 2),(i, 3),(i, 4)\}$;
$\{(i, 1),(i+1,2),(i+3,4),(i+5,3)\}$;
$\{(i, 1),(i+6,2),(i+2,3),(i+5,4)\}, i=1, \ldots, 7$, and $i+k$ is taken mod 7.

It is easy to see that this construction has only 21 blocks that form 3 groups of 7 mutually disjoint blocks each, and the remaining blocks have not this property. In the construction described in [1] all blocks form 9 groups of 7 mutually disjoint blocks each.

REFERENCES

[1] R. C. Bose, On the construction of balanced incomplete block designs, Annals of Eugenics 9 (1939), p. 353-399.
[2] J. Doyen and A. Rosa, A bibliography and survey of Steiner systems, Bollettino della Uni'one Matematica Italiana 7 (1973), p. 392-419.
[3] H. Hanani, The existence and construction of balanced incomplete block design, Annals of Mathematical Statistics 32 (1961), p. 361-386.
[4] K. ٌे Pkanow, On the number of non-isomorphic block systems $B(4,1, v)$, Prace Naukowe Instytutu Matematyki Politechniki Wroclawskiej 12 (1976), p. 11-37.
[5] M. Wojtas, On non-isomorphic balanced incomplete block designs $B(4,1, v)$, Colloquium Mathematicum 35 (1976), p. 327-330.

Reçu par la Rédaction le 2. 5. 1975

