COLLOQUIUM MATHEMATICUM

NON-ISOMORPHIC STEINER TRIPLES WITH SUBSYSTEMS
 BY
 B. ROKOWSKA (WROCモAW)

Any family consisting of 3 -element subsets of a v-element set, with the property that each pair of the set is contained in one and only one triple of the family, is called a system of Steiner triples in the v-element set and will be denoted by $B(3,1, v)$. As has been known since long [4], a system of Steiner triples does exist if and only if

$$
v \equiv 1 \text { or } 3(\bmod 6)
$$

Let $N(v)$ be the number of all non-isomorphic systems of Steiner triples in a v-element set and let $N_{k}(v)$ be the number of all those non-isomorphic systems of Steiner triples in the v-element set which contain some $B(3,1, k)$.

The aim of the present paper is to give a lower estimate for $N_{6 i+1}(v)$ and $N_{6 i+3}(v)$ with respect to v.

In the proof we use the construction of Hanani [1] and its modification by Pukanow [2], [3]. Recall some definitions and theorems.

Let m be a positive integer and let $\tau_{0}, \tau_{1}, \ldots, \tau_{m-1}$ be mutually disjoint sets consisting of $t \geqslant m-1$ elements each. A system of $t^{2} m$-tuples such that each m-tuple has exactly one element in common with each set τ_{i} and any two m-tuples have at most one element in common will be denoted by $T(m, t)$. The set of numbers t for which there exists at least one system $T(m, t)$ will be denoted by $T(m)$. We shall also use the notation $T_{e}(m, t)(0 \leqslant e \leqslant t)$ instead of $T(m, t)$ to indicate that among the m-tuples belonging to $T(m, t)$ there are at least e disjoint sets of t mutually disjoint m-tuples. The set of numbers t for which systems $T_{e}(m, t)$ exist will be denoted by $T_{e}(m)$.

Let $t=p_{1}^{a_{1}} \ldots \cdot p_{n}^{a_{n}}$, where p_{i} are distinct primes and α_{i} are positive integers. The following assertions have been known since long (see [1]):
(A) If $p_{i}^{a_{i}} \geqslant m$ for $i=1, \ldots, n$, then $t \in T_{t}(m)$.
(B) If $p_{i}^{a_{i}} \geqslant m-1$ for $i=1, \ldots, n$, then $t \in T .(m)$.

Let w_{1}, \ldots, w_{m} be mutually disjoint sets such that each of w_{1}, \ldots \ldots, w_{m-1} consists of t elements and w_{m} consists of $t-q$ elements. A system of $t \cdot(t-q) m$-tuples and $t \cdot q(m-1)$-tuples will be called a semi-T-system, denoted by $T(m, t, q)$, if
1° each m-tuple and each ($m-1$)-tuple has exactly one element in common with each of the sets w_{i};
2^{0} every pair consisting of two ($m-1$)-tuples, or one ($m-1$)-tuple and one m-tuple, or two m-tuples has at most one element in common.

The set of all numbers t for which there exists at least one $T(m, t, q)$ will be denoted by $T(m, t)$.

The following proposition is known (see [2], Theorem 8).
(C) If there exists a system $T(m, t)$ and if $q \leqslant t$, then there exists a semi-T-system $T(m, t, q)$.

Let E be a v-element set, let $K=\left\{k_{i}\right\}_{i=1, \ldots, n}$ be a finite set of integers such that $3 \leqslant k_{i} \leqslant v$ for $i=1, \ldots, n$, and let λ be a positive integer. Each system of subsets of E such that the number of elements in each of them belongs to K, and each pair of elements of E is contained in exactly λ subsets of the system will be denoted by $B(K, \lambda, v)$. Elements of $B(K, \lambda, v)$ are called blocks. The set of numbers v for which there exists at least one $B(K, \lambda, v)$ will be denoted by $B(K, \lambda)$. If $K=\{k\}$, we write $B(k, \lambda, v)$ and $B(k, \lambda)$, and so $B(3,1, v)$ is a system of Steiner triples.

Theorem 1. Let $K_{1}=\{3,4\}$. If $u \neq 6$ and $u \equiv 0$ or $1(\bmod 3)$, then $u \in B\left(K_{1}, 1\right)$.

Proof. We.first consider the case

$$
\begin{equation*}
u=24,28,40,42,46,48,52,58,60,64 \quad \text { or } \quad u \geqslant 66 \tag{*}
\end{equation*}
$$

In that case we are able to construct semi-T-systems $T(m, t, q)$ for $m=4, t=(u+q) / 4$, and the values of q shown in Table 1. In fact, these values are chosen to satisfy $t \equiv 1(\bmod 6)$. Consequently, there exist systems $T(4, t)$ in view of (A). It follows from Table 1 that, for $u \geqslant 66$ and all q, we have $u \geqslant 3 q$ and so $q \leqslant t$. For smaller u in (*) the same can be checked by taking the corresponding q. Hence, using (C) for $m=4$, we see that there exists a semi- T-system $T_{u}=T(4, t, q)$ $(t=(u+q) / 4)$.

Table 1

$u(\bmod 24)$	q	$u(\bmod 24)$	q	$u(\bmod 24)$	q	$u(\bmod 24)$
0	4	6	22	12	16	18
1	3	7	21	13	15	19
3	1	9	19	15	13	21
4	0	10	18	16	12	22

Since $t \equiv 1(\bmod 6)$, for $i=1,2,3$ there exists a system $B(3,1, t)$ in w_{i}. We denote it by B_{i}.

If $q \equiv 0(\bmod 2)$, then $t-q \equiv 1$ or $3(\bmod 6)$ and we can construct $B_{4}=B(3,1, t-q)$ in w_{4}.

Putting
(**)

$$
B=T_{u} \cup \bigcup_{i=1}^{4} B_{i}
$$

we see that B is a $B\left(K_{1}, 1, u\right)$, and so the assertion of Theorem 1 follows.
If $q \equiv 1(\bmod 2)$, then $t-q \equiv 0$ or $4(\bmod 6)$ and we have to consider four cases.
(1) $t-q \equiv 4(\bmod 12)$.

By virtue of [1], we may construct $B_{4}=B(4,1, t-q)$ in w_{4} and use (**).
(2) $t-q \equiv 0(\bmod 12)$.

We adjoin to w_{4} one auxiliary element and in the ($t-q+1$)-element set we construct $B(4,1, t-q+1)$. Then we remove the adjoined element from the quadruples in which it appears and we get $B_{4}=B\left(K_{1}, 1, t-q\right)$, which has $(t-q) / 3$ triples and $[(t-q)(t-q-3)] / 12$ quadruples. Now (**) gives the result.
(3) $t-q \equiv 10(\bmod 12)$.

We adjoin to w_{4} three auxiliary elements and in the ($t-q+3$)-element set we construct $B(4,1, t-q+3)$ in such a way that the three adjoined elements are in one quadruple. Thus any other quadruple has at most one adjoined element. Removing the quadruple that contains all three adjoined elements and the adjoined elements from the quadruples in which they appear single, we get $B_{4}=\left(K_{1}, 1, t-q\right)$ which has $t-q-1$ triples and $[(t-q-1)(t-q-6)] / 12$ quadruples. We use again (**).
(4) $t-q \equiv 6(\bmod 12)$.

In this case we remove some three elements a_{1}, a_{2}, a_{3} from the set in which B_{4} should be constructed. In the remaining set there exists a system of Steiner triples $B_{0}=B(3,1, t-q-3)$ satisfying Kirkman's condition [4]. Since $t-q>6$ (in view of (*) and Table 1), B_{0} splits into more than three groups according to this condition. Let C_{1}, C_{2}, and C_{3} be any three of them. We adjoin a_{i} to every triple in C_{i}, thus getting $B_{4}=B\left(K_{1}, 1, t-q\right)$. Again ($* *$) gives the result.

It remains to consider $u<66$ distinct from the values listed in (*). For $u \equiv 1$ or $3(\bmod 6), u<66$, we construct $B(3,1, u)$.

For $u=16$ there exists $B(4,1,16)$.
For $u=18$ we construct $B(3,1, u-3)$ satisfying Kirkman's condition and we proceed as in case (4) for u instead of $t-q$, thus getting $B\left(K_{1}, 1,18\right)$.

In all cases which follow, the existence of the corresponding T-systems or semi- T-systems is guaranteed by assertion (B).

If $u=10$, we construct $T_{10}=T(4,3,2)$ and check that $\bigcup_{i=1}^{4} w_{i} \cup T_{10}$
a $B\left(K_{1}, 1,10\right)$. is a $B\left(K_{1}, 1,10\right)$.

If $u=12$, we take $T_{12}=T_{0}(3,4)$ and check that $\bigcup_{i=1} \tau_{i} \cup T_{12}$ is a $B\left(K_{1}, 1,12\right)$.

If $u=22$, we find $T_{22}=T(4,7,6)$ and in every $w_{i}(i=1,2,3)$ we take a B_{i} which is a $B(3,1,7)$. Then $\bigcup_{i=1}^{3} B_{i} \cup T_{22}$ is a $B\left(K_{1}, 1,22\right)$.

If $u=30$, we construct $T_{30}=T(4,9,6)$ and in every $w_{i}(i=1,2,3)$ we take a B_{i} which is a $B(3,1,9)$. We then put $\bigcup_{i=1}^{3} B_{i} \cup T_{30}$ to obtain a $B\left(K_{1}, 1,30\right)$.

If $u=34$, we take $T_{34}=T(4,9,2)$ and in w_{1}, w_{2}, w_{3} we find $B(3,1,9)$-systems B_{1}, B_{2}, B_{3}, respectively, whereas in w_{4} we find $B_{4}=B(3,1,7)$. Then $\bigcup_{i=1}^{4} B_{i} \cup T_{34}$ is a $B\left(K_{1}, 1,34\right)$.

If $u=36$, we find $T_{36}=T(4,9)$ and in every $\tau_{i}(i=1,2,3,4)$ we construct a B_{i} which is a $B(3,1,9)$. Then $\bigcup_{i=1}^{4} B_{i} \cup T_{36}$ is a $B\left(K_{1}, 1,36\right)$.

If $u=54$, we find $T_{54}=T(4,15,6)$ and in w_{1}, w_{2}, w_{3} we find $B(3,1,15)$-systems B_{1}, B_{2}, B_{3}, respectively, whereas in w_{4} we find $B_{4}=B(3,1,9)$. Then $\bigcup_{i=1} B_{i} \cup T_{54}$ is a $B\left(K_{1}, 1, u\right)$.

Remark 1. Constructions used in the proof of Theorem 1 allow us to evaluate precisely the number of triples and quadruples in $B\left(K_{1}, 1, u\right)$. It is evident that we may also take values for t and q other than those used in that proof without breaking conditions $u \geqslant 3 q$ and $t \geqslant m$. We may put $t=\left(u+q_{i}\right) / 4, q_{i}=24 i+q_{0}$, where q_{0} is q taken from Table 1 according to u, and $0 \leqslant i \leqslant(u-3 q) / 72$.

Corollary 1. For u sufficiently large there are [u/72] non-isomorphic systems of blocks $B\left(K_{1}, 1, u\right)$.

Proof. Given u, we can repeat all the described constructions for q_{i} instead of q. For different q_{i} 's the resulting systems $B\left(K_{1}, 1, u\right)$ will contain different numbers of triples, and so different numbers of quadruples. In this way we get the conclusion.

For a given natural n let

$$
K_{n}=\{3,4,3 n, 3 n+1\} \quad \text { and } \quad N=\left(p_{1} \cdot \ldots \cdot p_{k}\right) \cdot(3 n+1)
$$

where p_{1}, \ldots, p_{k} are all primes less than $3 n$.
Theorem 2. For each n, if $u \equiv 0$ or $1(\bmod 3)$, and $u>3 n N$, then there exists a system of blocks $B\left(K_{n}, 1, u\right)$ in which blocks consisting of $3 n$ and $3 n+1$ elements do occur.

Proof. Let n be fixed and let u satisfy the assumption. For $m=3 n+1$, $t=(u+q) / m$, and q being the least positive integer such that

$$
\frac{u+q}{m} \equiv 1\left(\bmod p_{1} \cdot \ldots \cdot p_{k}\right) \quad \text { and } \quad t-q \neq 6
$$

we are able to construct a semi- T-system $T(m, t, q)$; denote it by T_{u}. In fact, since

$$
t \equiv 1\left(\bmod p_{1} \cdot \ldots \cdot p_{k}\right),
$$

there exists a system $T(3 n+1, t)$ in view of (A). It follows from $u>3 n N$ that $u>(m-1) \cdot q$, whence the required T_{u} exists by virtue of (C). In Table 2 we give values of q that correspond to $u \equiv 0$ or $1(\bmod 3)$ in the case where $n=2, m=7, N=210$.

Table 2

$\begin{gathered} u \\ (\bmod 210) \end{gathered}$	q	$\begin{gathered} u \\ (\bmod 210) \end{gathered}$	\boldsymbol{q}	$\begin{gathered} u \\ (\bmod 210) \end{gathered}$	q	$\begin{gathered} u \\ (\bmod 210) \end{gathered}$	q	$\begin{gathered} u \\ (\bmod 210) \end{gathered}$	\boldsymbol{q}
0	7	45	4	90	1	135	40	180	37
1	6	46	3	91	42	136	39	181	36
3	4	48	1	93	40	138	37	183	34
4	3	49	42	94	39	139	36	184	33
6	1	51	40	96	37	141	34	186	31
7	42	52	39	97	36	142	33	187	30
9	40	54	37	99	34	144	37	189	28
10	39	55	36	100	33	145	30	159	27
12	37	57	34	102	31	147	28	192	25
13	36	58	33	103	30	148	27	193	24
15	34	60	31	105	28	150	25	195	22
16	33	61	30	106	27	151	24	196	21
18	31	63	28	108	25	153	22	198	19
19	30	64	27	109	24	154	21	199	18
21	28	66	25	111	22	156	19	201	16
22	27	67	24	112	21	157	18	202	15
24	25	69	22	114	19	159	16	204	13
25	24	70	21	115	18	160	15	205	12
27	22	72	19	117	16	162	13	207	10
28	21	73	18	118	15	163	12	208	9
31	18	75	16	120	13	165	10		
33	16	76	15	121	12	166	9		
34	15	78	13	123	10	168	7		
36	13	79	12	124	9	169	6		
37	12	81	10	126	7	171	4		
39	10	82	9	127	6	172	3		
40	9	84	7	129	4	174	1		
42	7	85	6	130	3	174	42		
43	6	87	4	132	1	177	40		
		88	3	133	84	178	39		

Since $t \equiv 1(\bmod 6)$, we may construct a $B_{i}=B(3,1, t)$ in every w_{i} for $i=1, \ldots, 3 n=m-1$.

It is easily seen that $t-q \equiv 0$ or $1(\bmod 3)$. Hence,
(i) if m and u are both even or both odd, then $t-q \equiv 1$ or $3(\bmod 6)$ and we may construct a $B_{m}=B(3,1, t-q)$ in w_{m};
(ii) if m is odd and u is even, or conversely, then $t-q \equiv 0$ or $4(\bmod 6)$.

Thus, since $t-q \neq 6$, we can apply Theorem 1 to construct a B_{m} $=B\left(K_{1}, 1, t-q\right)$ in w_{m}. In both cases, (i) and (ii), we state that $T_{u} \cup \bigcup_{i=1}^{m} B_{i}$ is a $B\left(K_{n}, 1, u\right)$ and that it contains blocks of $m-1$ or m elements since each T_{u} consists of such blocks only.

But it is easily seen that $u>3 n N$ implies $q<t$, whence $B\left(K_{n}, 1, u\right)$ contains blocks of $3 n$ and blocks of $3 n+1$ elements as well.

Remark 2. If $n=2$, Theorem 2 is valid for $u \geqslant 505$ instead of $u>3 n N$ $=1260$.

We omit the proof.
Remark 3. We have to be more careful in the sequel when constructing systems $B\left(K_{n}, 1, u\right)$ in the proof above.

Let $S \subset U$ be any sets and let $B(3,1, k)$ and $B\left(K_{n}, 1, u\right)$ be constructed in S and U, respectively. If for every block $a \in B(3,1, k)$ there exists $\beta \in B\left(K_{n}, 1, u\right)$ such that $\alpha \subset \beta$, then $B(3,1, k)$ is said to be a 3 -subsystem of $B\left(K_{n}, 1, u\right)$. We may assert that every $B\left(K_{n}, 1, u\right)=T_{u} \cup \cup B_{i}$ contains two disjoint blocks β_{1} and β_{2} belonging to T_{u} and such that in no 3 -subsystem of $B\left(K_{n}, 1, u\right)$ there is a triple $\{x, y, z\}$ common with β_{1} or β_{2}. This can be done in the following way. If there exists a triple

$$
\{x, y, z\} \in B(3,1, s) \cap \beta_{1}
$$

where $B(3,1, s)$ is a 3 -subsystem of $B\left(K_{n}, 1, u\right)$, then we can renumber elements of w_{1} in a way that if

$$
w_{1} \cap \beta_{1}=x \in\{x, y, z\}
$$

then we replace x by a certain x_{1} such that

$$
\dot{x} \notin\left\{x_{1}, y, z\right\} \in B(3,1, s) .
$$

This renumbering concerns only the system $B(3,1, t)$ constructed in w_{1}, whereas all T-blocks remain unchanged. We may do the same for β_{2}. Details completing the proof can be found in [3].

A system of blocks $B(3,1, u)$ is said to be prime if it has no subsystems. A system of blocks $B(3,1, u)$ is said to be 1-prime if it has no subsystem $B(3,1, d)$, where $d \equiv 1(\bmod 6)$.

Now we construct $B(3,1,2 u+1)$ by applying the method of Hanani ([1], Theorem 5.5). Let, namely,

$$
E_{1}=\{1, \ldots, u\} \quad \text { and } \quad E_{2}=\{u+1, \ldots, 2 u\}
$$

In E_{1} we construct $B\left(K_{n}, 1, u\right)$. Then we shift it for u, thus obtaining a $B\left(K_{n}, 1, u\right)$ in E_{2}. For every block

$$
\left\{x_{1}, \ldots, x_{k}\right\} \in B\left(K_{n}, 1, u\right) \quad\left(k \in K_{n}\right)
$$

we can construct a system of Steiner triples $B(3,1,2 k+1)$ in the set

$$
\left\{x_{1}, \ldots, x_{k}, x_{1}+u, \ldots, x_{k}+u, 2 u+1\right\}
$$

in a way such that the union of all these systems is a system of Steiner triples in $\{1, \ldots, 2 u, 2 u+1\}$. We have

$$
\begin{equation*}
B(3,1,2 u+1)=\bigcup B(3,1,2 k+1) \tag{1}
\end{equation*}
$$

where the union is taken over all blocks in $B\left(K_{n}, 1, u\right)$. Then, as is easily seen, we deduce
(a) If a triple in some $B(3,1,2 k+1)$ contains the element $2 u+1$, then it must be of the form $\left\{x_{i}, x_{i}+u, 2 u+1\right\}$. Hence every triple not containing $2 u+1$ is of the form $\left\{y_{1}, y_{2}, y_{3}\right\}$, where $\left|y_{i}-y_{j}\right| \neq u$ for i, j $=1,2,3$.

For our purposes we must consider the summands in (1) to further conditions:
(β) Each $B(3,1,2 k+1)$ is prime or 1 -prime; if $k \equiv 0(\bmod 3)$, then it is prime.
(γ) If a triple $\left\{x_{i}, x_{j}, x_{k}\right\}$ belongs to $B\left(K_{n}, 1, u\right)$, then it belongs to the corresponding $B(3,1,7)$.

Condition (β) can be satisfied according to [7], Lemma 1 and Remark 2, whereas (γ) can be required without breaking (β), since every system of Steiner triples in a 7 -element set is prime.

Lemma 1. Any subsystem of $B(3,1,2 u+1)$ not containing $2 u+1$ is a 3-subsystem of $B\left(K_{n}, 1, u\right)$.

Proof. We define a set of isomorphisms of $B\left(K_{n}, 1, u\right)$ in the following way. We choose any r elements x_{1}, \ldots, x_{r} from $E=\{1, \ldots, u\}$ and replace every $x_{j}(1 \leqslant j \leqslant r)$ by $x_{j}+u$. Denote by $B^{i}\left(1 \leqslant i \leqslant 2^{u}\right)$ the : resulting systems, isomorphic to $B\left(K_{n}, 1, u\right)$. Let $T=\left\{x_{1}, \ldots, x_{k}\right\}$ be a block belonging to some B^{i}. Then we set $\bar{x}_{i}=x_{i}+\dot{u}$ if $x_{i} \leqslant u$ and $\bar{x}_{i}=x_{i}-u$ if $x_{i}>u$, and put $\bar{T}=\left\{\bar{x}_{1}, \ldots, \bar{x}_{k}\right\}$. Hence every summand in (1) is a system of Steiner triples in the set $T \cup \bar{T} \cup\{2 u+1\}$. If S is a subsystem of $B(3,1,2 u+1)$ constructed in a set not containing $2 u+1$ (such a subsystem may exist or not), then we infer from (α) that every triple in S is a subset of a block in some B^{i}. Thus Lemma 1 is proved.

Lemma 2. There is exactly one element b in E such that any triple from $B(3,1,2 u+1)$ not containing b generates together with b a subsystem which is prime or 1-prime.

Proof. Now, $b=2 u+1$. If $\{x, y, z\} \in B(3,1,2 u+1), x, y, z \neq 2 u+1$, then there exists exactly one system $B\left(3,1,2 k_{0}+1\right)$ such that $\{x, y, z\} \in B\left(3,1,2 k_{0}+1\right)$, where $B\left(3,1,2 k_{0}+1\right)$ is a summand of (1) and a subsystem of $B(3,1,2 u+1)\left(k \in K_{n}\right)$. If this $B\left(3,1,2 k_{0}+1\right)$ is prime, then it is the subsystem generated in $B(3,1,2 u+1)$ by the set $\{x, y, z, 2 u+1\}$ and the assertion follows. If $B\left(3,1,2 k_{0}+1\right)$ is 1 -prime, then this set generates either the whole of $B\left(3,1,2 k_{0}+1\right)$ or a subsystem thereof. In both cases the generated subsystem is 1 -prime, and so the assertion is satisfied.

Now, we show that, for every $x \in E$, if $x \neq 2 u+1$, then there exists a triple $\{p, r, s\} \in B(3,1,2 u+1)$ such that in $B(3,1,2 u+1)$ there is neither a prime nor 1 -prime subsystem containing triples with x and the triple $\{p, r, s\}$.

Let β_{1} and β_{2} be two blocks described in Remark 3. Denote by β_{1}^{i} and β_{2}^{i} their images under the mappings defined in the proof of Lemma 1 . Let $B_{0}=B(3,1,2 k+1)$ be a system of triples in the set $\beta_{1} \cup \bar{\beta}_{1} \cup\{2 u+1\}$. If $x \in \beta_{1} \cup \bar{\beta}_{1}$, then we may choose an arbitrary triple $\{p, r, s\}$ in B_{0} not containing $2 u+1$. To see this we first have to prove that $\{p, r, s\}$ does not belong to any 3 -subsystem of $B\left(K_{n}, 1, u\right)$. In fact, among the isomorphisms just mentioned, there is one such that $\{p, r, s\} \notin \beta_{1}$. But then it cannot belong to any 3 -subsystem of the corresponding B^{i}. If, for some j, $\{p, r, s\} \notin \beta_{1}^{j}$, then $p \notin \beta_{1}^{j}$, say. But then p does not enter into any block in B^{j}, and so it is trivial that $\{p, r, s\}$ does not belong to any subsystem of B^{j}. Thus the latter is true for every B^{i}, especially for the original system $B\left(K_{n}, 1, u\right)$. According to Lemma $1,\{p, r, s\}$ does not belong to any subsystem of $B(3,1,2 u+1)$ in which $2 u+1$ does not occur. Hence any subsystem to which the triple $\{p, r, s\}$ belongs must contain a block with the element $2 u+1$. Observe that B_{0} is prime on account of Remark 1 in [7]. Hence any subsystem in which there occur elements p, r, s contains the whole B_{0} as a proper subsystem, and so it is not prime. It also cannot be 1 -prime, since $k \equiv 0(\bmod 3)$. If $x \in \beta_{1} \cup \bar{\beta}_{1}$, then $x \notin \beta_{2} \cup \bar{\beta}_{2}$ and the proof runs as before.

Lemma 3. Let K consist of numbers k_{1}, \ldots, k_{r} such that every system $B\left(3,1,2 k_{j}+1\right)(1 \leqslant j \leqslant r)$ is a summand of (1). Then every subsystem of $B(3,1,2 u+1)$ in (1) constructed in a set of $2 k+1$ elements $(k \in K)$ and containing $2 u+1$ is identical with one of the summands $B(3,1,2 k+1)$.

Proof. There must be a triple t in S not containing $2 u+1$. Such a triple is of the form $\left\{x_{i}, x_{j}, x_{s}+u\right\}$ or $\left\{x_{i}, x_{j}+u, x_{s}+u\right\}$. Since the pair x_{i}, x_{j} belongs to exactly one element of $B\left(K_{n}, 1, u\right), t$ belongs to exactly one summand $B(3,1,2 k+1), B_{0}$ say. But t together with the element $2 u+1$ generates the whole of $S=B_{0}$, as well as the whole B_{0}, since both these systems are prime.

In Corollary 1 we obtained $d=[u / 72]$ non-isomorphic systems $\bar{B}_{1}, \ldots, \bar{B}_{d}$ of blocks $B\left(K_{1}, 1, u\right)$ such that any two systems \bar{B}_{i} and \bar{B}_{j}, $i \neq j$, have distinct numbers of 3 -element blocks and each \bar{B}_{i} contains at least one 4 -element block. Let \tilde{B}_{i} be a system of triples $B(3,1,2 u+1)$ constructed for \bar{B}_{i} following the method of Hanani.

Lemma 4. There are at least $d=[u / 72]$ non-isomorphic systems $B(3,1,2 u+1)$. Each of these systems contains subsystems $B(3,1,7)$ and $B(3,1,9)$, and so for $v=2 u+1$ we get

$$
N_{7}(v) \geqslant\left[\frac{v-1}{144}\right] \quad \text { and } \quad N_{9}(v) \geqslant\left[\frac{v-1}{144}\right] .
$$

Proof. We have (see [1])

$$
\tilde{B}_{i}=\bigcup B_{i}(3,1,2 k+1) \quad(k=3 \text { or } 4)
$$

By virtue of Lemma 3 any system \tilde{B}_{i} has no subsystems constructed in 7 -element sets containing $2 u+1$ other than those which occur as summands in the equality above. Hence the number of such systems is equal to the number of triples in \bar{B}_{i}, and so it is different for various values of i. Consequently, \tilde{B}_{i} and \tilde{B}_{j} are not isomorphic if $i \neq j$.

We may apply Lemma 4 to the construction of systems $\bar{B}_{l i}$ in the proof of Theorem 1. Let u satisfy the assumption of that Theorem and let q and $t=(u+q) / 4$ be chosen correspondingly to u. This choice determines sets $w_{i}(i=1,2,3)$ and we have at least $[(t-1) / 144]$ non-isomorphic systems $B(3,1, t)$ in every w_{i} (Lemma 4 for $\left.v=t\right)$. Hence we obtain $[(t-1) / 144]^{3}$ systems \bar{B}_{k}. There are [u/72] possibilities of choosing q (hence t) for u (cf. Remark 1). Thus we get $\left[(t-1)^{3} / 144\right][u / 72]$ different systems \bar{B}_{k}.

Since $u=4 t-q$, we can find, for u sufficiently large, a constant M_{1} such that there are at least $h=M_{1} \cdot u^{4}$ different systems \bar{B}_{k}. We number them $\bar{B}_{1}, \ldots, \bar{B}_{h}$ and transfer the numeration into the triple systems $B(3,1,2 u+1)$, thus getting $\tilde{B}_{1}, \ldots, \tilde{B}_{h}$.

Theorem 3. If $i \neq j$, then $\tilde{\boldsymbol{B}}_{i}$ is non-isomorphic to $\tilde{\boldsymbol{B}}_{j}$.
Proof. Let. $\tilde{B}_{k}(k=1, \ldots, h)$ contain b_{i} subsystems $B(3,1,7)$ constructed in a set, an element of which is $2 u+1$. We consider two cases.
(a) $b_{i} \neq b_{j}$. Since \tilde{B}_{i} and \tilde{B}_{j} have distinct numbers of subsystems constructed in 7 -element sets containing $2 u+1$, they are not isomorphic.
(b) $b_{i}=b_{j}$. Every system $B(3,1, t)$ produced in w_{1} or w_{2} or w_{3} is a 3 -subsystem of $B\left(K_{1}, 1, u\right)$ and, by (γ), it is also a subsystem of $B(3,1,2 u+1)$.

The assumption $b_{i}=b_{j}$ implies that the value of q, hence of t, is the same for \bar{B}_{i} as for \bar{B}_{j} (see the proof of Corollary 1). Hence \bar{B}_{i} contains
a 3 -subsystem $B(3,1, t), B_{0}$ say, constructed in one of the rows $w_{1}-w_{3}$ which is not isomorphic to any 3 -subsystem of \bar{B}_{j} constructed in one of these rows. We must show that \bar{B}_{j} contains no 3 -subsystem isomorphic to B_{0}.

Let T be a 3 -subsystem constructed in a set E_{0} which is not entirely contained in one of the rows. The intersection $E_{0} \cap w_{i}$ consists of an odd number of elements. In fact, it cannot consist of two elements, for the third element in the corresponding triple in $B\left(K_{1}, 1, u\right)$ would then belong to T_{u} in ($* *$); which is impossible since every triple in T_{u} consists of elements taken from various rows. Neither can $\left|E_{0} \cap w_{i}\right|$ be an even number greater than 2. To show this consider the subsystem S generated in $B\left(K_{1}, 1, u\right)$ by $E_{0} \cap w_{i}$. This is a subsystem both of B_{0} and of the system $B(3,1, t)$ constructed in w_{i}. So S is a system of Steiner triples in $E_{0} \cap w_{i}$ which implies that $\left|E_{0} \cap w_{i}\right|$ is odd. As E_{0} is also odd, so must be the number of i 's such that $\left|E_{0} \cap w_{i}\right| \neq 0$. If there are i_{1}, i_{2}, i_{3}, then

$$
\left|w_{i_{1}} \cap E_{0}\right|=\left|w_{i_{2}} \cap E_{0}\right|=\left|w_{i_{3}} \cap E_{0}\right| .
$$

Hence $\left|\mathscr{E}_{0}\right| \equiv 0(\bmod 3)$. Since $t \equiv 1(\bmod 6)$, there is no isomorphism between B_{0} and T. A 3 -subsystem B_{0} cannot be isomorphic to any subsystem of \tilde{B}_{j} containing the distinguished element $2 u+1$. On the other hand, Lemma 1 shows that any other subsystem of \bar{B}_{j} is a subsystem of \tilde{B}_{j} and so is non-isomorphic to B_{0} by the preceding argument. So \tilde{B}_{i} and \tilde{B}_{j} are not isomorphic.

Since there are at least $M_{1}: u^{4}$ different systems \bar{B}_{k}, Theorem 3 yields immediately

Corollary 2. For a sufficiently small $M>0$ and for $k=7$ or 9 we have $\overrightarrow{\lambda_{k}}(v) \geqslant M \cdot v^{4}$.

Theorem 4. For every i there exist $M_{i}, m_{i}>0$, and v_{i} such that, for $v \geqslant v_{i}$ and $\boldsymbol{j}=1$ or 3 ,

$$
\begin{equation*}
N_{6 i+j}(v) \geqslant M_{i} \cdot v^{m_{i}} . \tag{2}
\end{equation*}
$$

Proof. We prove by induction that (2) holds for $m_{i}=\left(3^{i}+3^{i-1}\right) \cdot i$!. For $i=1$ this follows from Corollary 2. Let us suppose that (2) holds for $i=n$. We can construct $B\left(K_{n+1}, 1, u\right)$ using the method described in the proof of Theorem 2. Thus we form a $B(3,1, t)$ in every w_{i}. By the inductive assumption this can be done in $M_{n} \cdot t^{\left(3^{n}+3^{n-1}\right) n!}$ essentially different manners, and so as many non-isomorphic systems are obtained. Hence we can construct

$$
\left(M_{n} \cdot t^{\left.\left(3^{n}+3^{n-1}\right) n!\right)^{3 n+3}=C_{1} \cdot t^{\left(3^{n+1}+3^{n}\right)(n+1)!} \quad\left(C_{1}=M^{3 n+3}\right), ~ . ~}\right.
$$

different systems of type $B\left(K_{n+1}, 1, u\right)$. Since $t=(u+q) /(3 n+4), q<t$, this number can be expressed as

$$
C_{2} \cdot u^{\left(3^{n+1}+3^{n}\right)(n+1)!}
$$

There are precisely as many systems \bar{B}_{s}. We number them $\bar{B}_{1}, \ldots, \bar{B}_{r}$. On every \bar{B}_{s} we construct $\tilde{B}_{s}=B(3,1,2 u+1)$ using Hanani's method. (We use here the expression "on \bar{B}_{s} " in order to stress the difference between the construction of \tilde{B}_{s} starting from \bar{B}_{s} and the construction of a Steiner system "in a set".) Putting $v=2 u+1$ we have

$$
r=\dot{M}_{n+1} \cdot v^{\left(3^{n+1}+3^{n}\right)(n+1)!} .
$$

Every $\tilde{\boldsymbol{B}}_{s}$ contains both a subsystem constructed on a ($3 n+3$)-element block from T_{u} and a subsystem formed on a ($3 n+4$)-element block from T_{u}, so every \tilde{B}_{s} contains Steiner triple systems formed from $6 n+7$ and $6 n+9$ elements. Hence Theorem 4 will be proved if we show that \tilde{B}_{s} are non-isomorphic to each other.

Let $R_{v}^{(s)}$ denote the class of subsystems S_{λ} of \tilde{B}_{s} occurring in the union in (1) and corresponding to triples constructed on the line w_{v}. Let further $E_{v}^{(s)}$ be the set of elements contained in the triples in $\bigcup S_{\lambda}$. Since the lines w_{v} are disjoint, we have

$$
E_{v_{1}}^{(s)} \cap E_{v_{2}}^{(s)}=\{2 u+1\} \quad \text { for } v_{1} \neq v_{2} .
$$

We claim that $\bigcup_{v=1}^{3 n+4} R_{v}^{(s)}$ exhausts all those subsystems in \tilde{B}_{s} which are of type $B(3,1,7)$ and are constructed in sets containing the element $2 u+1$. Suppose that Σ is another system of this kind, not contained in $3 n+1$
$\cup R_{v}^{(s)}$. Then we can find two elements occurring in Σ and belonging to $v=1$ different lines w_{v}. But such elements determine a block $\beta \in T_{u}$ (see (**)) to which they belong.

Let T be a summand in (1) of type $B(3,1,2 k+1)$ that correspond to β. Systems Σ and T then contain a common triple. Moreover, the element $2 u+1$ belongs to both of them. That common triple and $2 u+1$ generate together the whole of Σ. Since $n>1$ and since β contains at least $3 n+3$ elements, T is formed from at least 19 elements, whence $T \neq \Sigma$. It follows that Σ is a proper subsystem of T, which is impossible because of (β).

Fix an $R_{v}^{(s)}$. In view of (γ) in every $S_{\lambda} \in R_{v}^{(s)}$ there is exactly one triple belonging to $B\left(K_{n+1}, 1, u\right)$. All these triples form a set which is identical with the system B_{v} of type $B(3,1, t)$ constructed in w_{v}. Let S be annother triple system in a t-element subset of $E_{v}^{(s)}$ not containing $2 u+1$. For any $s \in[1, u], S$ cannot contain both x_{s} and $x_{s}+u$, since, otherwise, S had to contain the triple $\left\{x_{s}, x_{s+u}, 2 u+1\right\}$. Hence, if x_{s} belongs to w_{v}, then exactly one of the elements x_{s} and x_{s+u} occur in S. Denoting it by φ we have a welldefined mapping $B_{v} \rightarrow S$ which is obviously an isomorphism.

If $s^{\prime} \neq s$, and if $B_{v} \in \tilde{B}_{s}$ and $B_{v}^{\prime} \in \tilde{B}_{s}$ are the corresponding triple systems $B(3,1,7)$, constructed on the line w_{n}, then B_{v} and B_{μ}^{\prime} are non-isomorphic for any $\mu, v \in[1,3 n+3]$. Since, as we have just shown, the system
$B_{v}\left(B_{v}^{\prime}\right)$ exhausts up to an isomorphism all triple systems formed in t-element subsets of $E_{v}^{(s)}\left(E_{v}^{\left(s^{\prime}\right)}\right)$ and not containing $2 u+1, \tilde{\boldsymbol{B}}_{s}$ and $\tilde{\boldsymbol{B}}_{s^{\prime}}$ are non-isomorphic systems, which completes the proof of Theorem 4.

REFERENCES

[1] H. Hanani, The existence and construction of balanced incomplete block design. Annals of Mathematical Statistics 32 (1961), p. 361-386.
[2] K. Pukanow, On the number of nonisomorphic configuration $O(4,2,1, v)$, Prace Naukowe Instytutu Matematyki i Fizyki Teoretycznej Politechniki Wrocławskiej 9 (1973), p. 45-47.
[3] - On the number of non-isomorphic block systems $B(4,1, v)$, II, ibidem 12 (1976), p. 11-37.
[4] D. K. Ray-Chaudhuri and R. M. Wilson, Solution of Kirkman's school-girl problem, American Mathematical Society, Proceedings of Symposia in Pure Mathematics 19 (1972), p. 187-204.
[5] M. Reiss, Über eine Steinersche combinatorische Aufgabe, Journal für die reine and angewandte Mathematik 56 (1859), p. 326-344.
[6] B. Rokowska, On the number of non-isomorphic Steiner triple Colloquium Mathematicum 27 (1973), p. 149-160.
[7] - On the number of different triple systems, Prace Naukowe Instytutu Matematyki j. Fizyki Teoretycznej Politechniki Wrocławskiej 6(1972), p. 41-57.
[8] - Some remarks on the number of different triple systems of Steiner, Colloquium Mathematicum 22 (1971), p. 317-323.

Rȩu par la Rédaction le 2\%. 5. 1974;
en version modifiée le 12. 5. 1976

