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DYNAMIC MODE DECOMPOSITION: AN ALTERNATIVE
ALGORITHM FOR FULL-RANK DATASETS

Abstract. Dynamic mode decomposition (DMD) is a modal decomposi-
tion technique that describes high-dimensional dynamic data using coupled
spatial-temporal modes. It combines the main features of performing princi-
pal component analysis (PCA) in space, and power spectral analysis in time.
The method is equation-free in the sense that it does not require knowledge
of the underlying governing equations and is entirely data-driven. The pur-
pose of this paper is to introduce a new algorithm for computing the dynamic
mode decomposition in the case of full rank data. The new approach is more
economical from a computational point of view, which is an advantage when
working with large datasets.

1. Introduction. The dynamic mode decomposition algorithm (DMD
method) has been established as a leading technique for identifying spa-
tiotemporal coherent structures from high-dimensional data. It can be con-
sidered to be a numerical approximation to Koopman spectral analysis, and
in this sense it is applicable to nonlinear dynamical systems (see [R09, M05]).
In recent years the popularity of the DMD method has grown, and it has
been applied for a variety of dynamical systems in many different fields, such
as video processing [GK14], epidemiology [PE15], neuroscience [BJOK16], fi-
nancial trading [MK16, [CL.16, [KG™17|, robotics [BST15], cavity flows [ST0,
SS11] and various jets [R09, [S11]. For a review of the DMD literature, we
refer the reader to [TR™14, [KB™16, BK™20]; see also [M13], (CTR12, [B13].

In the following, we begin by presenting a framework for the standard
DMD method. We then introduce and analyze an efficient algorithm, an al-
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ternative to the standard algorithm, in the case of a full-rank dataset. We
give theoretical results proving that the DMD modes obtained with the new
algorithm are the exact DMD modes of the corresponding Koopman oper-
ator. We analyze the complexity of the algorithm introduced compared to
that of the standard DMD algorithm. We show that the new algorithm is
more efficient as it requires fewer computational resources: it requires fewer
matrix multiplications as well as a smaller amount of memory when calcu-
lating the corresponding DMD matrix. As a result, it has better speed and
more economical memory usage. Then we discuss two numerical experiments
that illustrate the proposed algorithm and provide a comparison between it
and the standard algorithm.

The remainder of this work is organized as follows: in Section 2 we de-
scribe the DMD method. Section 3 proposes and discusses a novel approach
to DMD computation. A comparative analysis of the computational effi-
ciency of the proposed algorithm is discussed in Section 4. Section 5 contains
examples demonstrating the new algorithm. The conclusion is in Section 6.
Throughout the paper, we use the following notations: uppercase (Latin or
Greek) letters for matrices, lowercase bold letters for vectors, and lowercase
letters for scalars.

2. DMD method. Here we briefly consider the DMD method, which
was introduced for the first time by Schmid [SS08] in fluid mechanics. The
standard definition of DMD takes into account a sequential set of data
Z ={zo,...,2Zm}, where each zj, is in R"™. The data z; could be from measure-
ments, experiments, or simulations collected from a given nonlinear system
at time ¢;. Assume that the data are evenly spaced in time, with a time step
of At, and that the collection time begins at ty and ends at ¢,,. The method
uses the arrangement of the dataset into two large data matrices

(2.1) X =[zo,-.,2Zm-1] and Y =][z1,... 2]

The method’s main assumption is that there exists a linear (unknown)
operator A that relates zj to the subsequent zj,1,

(2.2) Zy+1 = Azk.
Expression ([2.2)) is equivalent to
(2.3) Y = AX.

Then the dynamic mode decomposition of the data matrix Z is given by the
eigendecomposition of A. The DMD modes and eigenvalues are intended to
approximate the eigenvectors and eigenvalues of A.

To approximate the operator A, one approach is to use the singular value
decomposition (SVD) of the data matrix X = UXV™ and the expression

(2.4) A=YXT =yVvE-lu*,
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where X1 is the Moore-Penrose pseudoinverse of X. It should be noted that
calculating the eigendecomposition of the nx n matrix A can be prohibitively
expensive if n is large, i.e. n > m. The algorithm below computes DMD
modes without directly calculating A by using reduced SVD of X = UXV*,
where U isn x r, S is r x r diagonal, V is m X r, and r < m.

Algorithm 1: Exact DMD Algorithm |[TR 14|

1. Compute the SVD of X = UXV™* and substitute into :
A=YVX-lu~

2. Define the reduced-order matrix A = U*AU = U*YV XL,

3. Compute the eigendecomposition of A,
AW =W A,
where W is the eigenvector matrix and A is the diagonal matrix of eigen-
values, A = diag{\;}. Each \; is a DMD eigenvalue.

4. Compute the DMD modes
S=YVIIW.
Each column ¢; of @ is a DMD mode corresponding to A;.

The approximate dynamics of the dataset Z can then be reconstructed
as

(2.5) ZDMD(k) = @Akb,
where b = &z, and &' is the Moore-Penrose pseudoinverse of ®.
In its original form [SSO§|, the algorithm of the DMD method differs

slightly from the one described above. The only difference is that the DMD
modes (at Step 4) are computed by the formula

(2.6) o =UW.
The DMD modes calculated by Algorithm 1 are frequently referred to as
exact DMD modes because Tu et al. [TRT14| proved that these are exact

eigenvectors of the matrix A. The modes in (2.6)) are referred to as projected
DMD modes.

An alternative DMD algorithm. We recently published [N22] a new al-
gorithm for computing the DMD decomposition of A. The new algorithm
follows the same steps as in Algorithm 1. The distinctive feature is the fol-
lowing: we use the eigendecomposition of the matrix

(2.7) A=x"Uryv,

rather than of the matrix A in Algorithm 1, Step 2. Because they are similar
with a transformation matrix X', the eigenvalues of the two matrices A and A
are the same. We use the formula

(2.8) P=YVW
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for the DMD modes, where W is the eigenvector matrix of fl, ie.

(2.9) AW =WA.

It is seen that although the matrices A and A have a similar representa-
tion, the expression ([2.8)) for calculating the DMD modes is simpler than

the corresponding formula in Algorithm 1, Step 4. Therefore, the algorithm
introduced in [N22] is more efficient in terms of computational cost.

3. A new DMD algorithm for full-rank datasets. Consider two
data matrices X and Y defined by with arbitrary but the same dimen-
sions n X m, where n > m. As mentioned in the previous section, the DMD
method involves approximating the eigendecomposition of the best fit linear

operator A, which refers to

Y = AX.
In fact, the algorithms of the DMD method allow the calculation of DMD
modes and eigenvalues without direct calculation of A. The SVD of the

matrix X is used to obtain a reduced-order approximation of the matrix A,
such as

(3.1) A=U*AU =U'YV X!
defined in Algorithm 1, or
(3.2) A=3x"1UrAU X,

defined by in equivalent form. The matrices A and A have the same
order r, and the number of non-zero singular values of X within numerical
precision is r < m.

In the case that the matrix X has full rank, i.e. rank(X) = m, both A
and A will be m x m matrices.

We will assume that X is a full-rank matrix for the rest of this paper. Our
goal is to introduce a more computationally efficient algorithm for calculating
DMD modes and eigenvalues in this particular case.

Let us consider the matrix

(3.3) A=VAV*,

where V' is the m x m unitary matrix from the SVD of X = UXV™. The
matrices A and A are obviously unitarily similar, with V* being the similarity
transformation matrix.

From ([2.7)) and (3.3)), we get

(3.4) A=vy Uy,
which yields
(3.5) A=XTy,

where X is the Moore-Penrose pseudoinverse of X.



Dynamic mode decomposition 59

Let
(3.6) AW =W A

represent the eigendecomposition of A, with W columns representing eigen-
vectors and /A a diagonal matrix containing the corresponding eigenvalues.

Relations (3.2), (3.3) and (3.6] yield

(3.7) AUXV*W =UXV*W A
or equivalently

(3.8) AXW) = (XW)A.
Thus, we showed that

(3.9) =XW

is the matrix of DMD modes.
The following theorem holds.

THEOREM 3.1. Let (A, w) represent an eigenpair of A defined by (3.5)),
with A # 0. Then (X, @) is the corresponding eigenpair of A, where

p=Yw.
Proof. Let us use to express Ayp:
Ap =YVXU*Yw.
We get
Ap =Y Aw
from the previous relation and , which implies that by using ,
Ap =AYw = dp.

Furthermore, ¢ # 0, because if Yw = 0, then VX 1U*Yw = Aw = 0,
which implies A = 0. As a result, ¢ is an eigenvector of A with eigenvalue A.
The theorem is proved. m

Next, we resume the results above in the following algorithm.

Algorithm 2: DMD Algorithm for full-rank dataset

1. Define A = XY, where X1 is the pseudoinverse of X.
2. Compute the eigendecomposition of A
AW = WA, where W is the eigenvector matrix and A is the diagonal
matrix of eigenvalues A = diag{\;}. Each \; is a DMD eigenvalue.
3. Compute the DMD modes
d=YW.
Each column ¢; of @ is a DMD mode corresponding to A;.
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According to Theorem the modes generated by Algorithm 2 are the
eigenvectors of the Koopman operator A.

Application of the new algorithm. DMD theory initially focused on full-
rank, sequential time series with n > m. Since the method was introduced,
it has found applications in many different fields. This presumes, in practice,
that in some cases the inverse relationship is also valid, namely the number
of measurements m taken in time may be greater than the dimension of
spatial measurements n, i.e. n < m.

The following options are available:

e When the high-dimensional dynamics of the data have some underlying
low-dimensional structure, it may be possible to capture the key dynamics
of the data with relatively few DMD modes. In this case, the rank of the
dataset is equal to the number of DMD modes.

e In some datasets, there are linear dependencies among the measurements
(snapshots), i.e. the rank of the dataset is too low, and the DMD fails to
fully capture the dynamics of the system. The solution of this rank mis-
match is by rearranging the dataset in modified (augmented) data matri-
ces inspired by the Hankel matrix constructed in the eigenvalue realization
algorithm (ERA); see [TR14].

Algorithm 2 has the advantage of being more cost-effective than standard
DMD algorithms when used on a full-range dataset. This type of data occurs
in various fields, including neuroscience [BJOKI6|, finance [MK16, [CL16]
and others [PET5] [BST15].

4. Computational cost and memory requirement. Table[]] gives a
brief summary of the main matrices in the two algorithms considered. The
representations of the corresponding reduced-order approximations of the
Koopman operator are shown, as are the formulas for calculating the DMD
modes in the two cases.

Table 1. Reduced matrices (A and A) and DMD modes (& and &)

Algorithm 1 Algorithm 2
Reduced matrix A=U*YVYX ' A=Xx'y
DMD modes S=YVE'W d=YW

The reduced-order approximation matrices A and A have similar struc-
tures, especially when the SVD of X is used to compute the pseudoinverse
matrix Xt (in Algorithm 2). However, as shown in Table 1} the matrix ¢ has
a simpler structure than @. Three matrices are required in Algorithm 2 to be
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stored and three matrix multiplications performed, while in Algorithm 2, it is
necessary to store only two matrices and perform one matrix multiplication.

To estimate the computational cost for the two algorithms considered, we
will ignore the comparable computations and focus on the different ones. We
can assume that in Algorithm 1, the SVD of X is equivalent to computing
the pseudoinverse matrix of X in Algorithm 2. The computational costs for
the reduced matrices and DMD modes for the two algorithms are shown in
Table B

Table 2. Computational costs

Computation cost of Algorithm 1 Algorithm 2
Reduced matrix (A and A) O (m® + (n+ 1)m?) O (nm?)
DMD modes (® and &) O (m® + (n+ 1)m?) O (nm?)
Total cost O (2m® +2(n + 1)m?) O (2nm?)

While Algorithm 1 requires three matrix multiplications each for the
calculation of the matrices A and &, Algorithm 2 requires one matrix multi-
plication for the corresponding matrices A and @; see Golub and Van Loan
[GL96, Chapter 1].

From the memory point of view, the following matrices require the same
amount of memory for both algorithms: the data matrix Y, the reduced
matrix (A and A), and the eigenvectors matrix (W and W). The floating-
point numbers that must be stored for both algorithms are shown in Table 3]

Table 3. Memory requirements for DMD mode matrices

Matrix Algorithm 1 Algorithm 2
Y nm nm
V, nm —
>t m —
Total memory  (2n+ 1)m nm

The matrices A, A, W, W require the storage of m? floating-point num-
bers. The difference in the required memory for the two algorithms is deter-
mined by the matrices needed to calculate the DMD modes.

5. Illustrative examples. To demonstrate the algorithm introduced in
Section 3, let us look at a simple example of a standing wave signal. Also,
our objective is to compare the results with the results of the standard DMD
algorithm (Algorithm 1).

EXAMPLE 5.1 (Standing waves). It is known that the standard DMD
algorithm is not able to represent a standing wave in the data [TR™14]. For
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example, if only measurements of a single sine or cosine wave are collected,
DMD fails to capture periodic oscillations in the data. To demonstrate this,
we perform the DMD method on a single measurement

x(t) = cos(t).
In this case, the X matrix only contains a single row
X = [Il o ... a:n_ﬂ

and the DMD algorithm only returns a single eigenvalue, which is unable to
capture the oscillation in the data; see Figure [T}

1

T
Data
DMD

0.8~ — — = Augmented Exact DMD [
— — — Augmented full-rank DMD|

0.6

0.4

0.2

State
5}
T

_1 I I I I I
0 1 2 3 4 5 6
Time

Fig. 1. Example of DMD, augmented exact DMD and augmented full-rank DMD on a
standing wave example x(¢) = cos(t)

In fact, for DMD to capture a standing wave, two complex conjugate
eigenvalues corresponding to the sine and cosine pair are required. To solve
this issue, we construct two augmented data matrices (shift-stacked data
matrices):

(5.1) Xoug — 1 Ty ... xn_g]

_[xg T3 ... Tp_q
Tro I3 ... Tp-1

r3 T4 ... Ip

Since Xy contains two linearly independent rows, i.e. it is a full-rank ma-
trix, it has two (conjugate pair complex) DMD eigenvalues. We used both
of the aforementioned algorithms to represent x(t); see Figure . We can say
that the new algorithm (Algorithm 2) produces the same result as the exact
DMD procedure (Algorithm 1).

Note. For Algorithm 2, the corresponding augmented matrices Xaug
and Y, are the transposed matrices of Xy,¢ and Ya,g defined in 1} i.e.
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Xang = XDy and Yayg = Y. Thus, A = XJugVaug defined by (3.5) is a
2 X 2 matrix.

EXAMPLE 5.2 (Example case from finance). We can demonstrate the
rank deficiency problem with an example from finance. We can use the
DMD method to discover evolutionary patterns in the commodities mar-
ket. In particular, if we consider the evolution in the price of only one type
of commodity, we will get the rank related issue. In fact, this problem is
quite similar to the standing wave problem.

Consider the price evolution of Brent crude oil for the period 1.2.2022 —
28.2.2022, which contains 20 trading days; see Fig

115

Real Price
DMD rank 2 (r=2)
~..+-. DMD rank 10 (r=10)

110~ 1

105 . =

usb

100~ . N

95
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31.1.22 7222 14.2.22 21.2.22 25.2.22 1.3.22
Time period: 1.2.2022 - 28.2.2022

Fig. 2. Brent crude oil price for the period 1.2.2022 — 28.2.2022

Similarly to Example the data matrix X has a single row
X = [901 2 ... 9620],

where each x; represents the closing price on that day. In order to overcome
the rank mismatch issue, we construct augmented data matrices

r1 T2 x2 z3
T2 X3 v xs3 T4

Xaug = ) aug — )
Ts Ts4l .- T19 Ts+1 Ts42 ... X20

where we can choose s such that 10 < s < 18, which ensures that the
matrices Xaug and Yaue will be such that the number of rows will be greater
than the number of columns. For each value of s, the matrix X, has full
rank.
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We used Algorithm 2 to perform the DMD method on augmented data
matrices Xaug and Yy, for each s. The results show that the best approxima-
tion of the real data is obtained at X,ys’s highest rank, which is rank(X,ug)
= 10 obtained for s = 10. The two approximations for rank(X,u.) = 2 and
rank(Xaue) = 10 are shown in Figure

Execution times for Algorithm 1 and Algorithm 2 are computed with
the dataset of this example. Table [4] presents a comparison between the two
algorithms.

Table 4. Execution time (in sec.)

Standard DMD  Alternative DMD
Number of cycles (k)  (Algorithm 1) (Algorithm 2)

k = 1000 0.1933 0.1324
k = 10000 1.6319 0.9783

6. Conclusion. The goal of this study was to present a new approach to
computing approximate DMD modes and eigenvalues. We have introduced
and analyzed a new algorithm, an alternative procedure for executing the
DMD decomposition in the case of a full-rank dataset. We have demonstrated
the performance of the presented algorithms with numerical examples. Based
on the results, we can conclude that the introduced approach gives identical
results to those of the exact DMD method.
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