VOL. XXI

1970

FASC. 1

CONTINUITY OF THE OPERATION IN A SEMILATTICE

вΥ

JOSEPH T. BORREGO (AMHERST, MASS.)

1. Introduction. By a *semilattice* we shall mean a set X together with an associative, commutative, idempotent operation \land defined on X. In a natural way \land induces a partial order on X, i.e., $x \leq y$ iff $x \land y = x$.

A topological semilattice is a semilattice X, where X is a Hausdorff space and \wedge is continuous. Topological semilattices are similar to topological lattices [6] and have attracted the attention of various authors, e.g., [1] and [2]. An example of a lattice in which \wedge is continuous but not \vee is given in [1].

In [1] and [7] various continuity properties of \leq in a topological semilattice were obtained. (Continuous relations have been studied in [4], [5], and [7].) In [3] sufficient conditions on the continuity of \leq to insure the continuity of \wedge in a compact Hausdorff space were given. The purpose of this note is to extend the results of [3] by giving necessary and sufficient conditions on the continuity of \leq to insure the continuity of \wedge in a compact Hausdorff space. The previously mentioned example in [1] shows that these conditions cannot be self-dual. However, it is clear that the results given here may be extended to the lattice case by using the conditions given here and the dual of these conditions.

The author wishes to thank Professor H. Cohen and Mr. E. E. DeVun for their helpful comments.

2. Main theorems.

THEOREM 1. Let X be a compact Hausdorff space and let \land be a semilattice operation on X such that the induced partial order \leqslant is order dense. Then \land is continuous if and only if

(i) the graph of \leqslant is closed and

(ii) $x, y \in X, x \leq y, \{y_a\}$ and $\{y'_a\}$ are nets which converge to y implies that there exists a net $\{x_a\}$ which converges to x such that $x_a \leq y_a \wedge y'_a$.

Proof. Necessity. The fact that the graph of \leq is closed if \wedge is continuous is well known. It remains only to show that (ii) holds. Let $x_a = x \wedge y_a \wedge y'_a$. Since \wedge is continuous, $\lim x_a = x \wedge \lim y_a \wedge \lim y'_a = x \wedge y = x$.

Sufficiency. Let $x, y \in X$, $\{x_a\}$ be a net which converges to $x, \{y_a\}$ be a net which converges to y, and let z be a cluster point of $\{x_a \land y_a\}$. To show that \land is continuous, it suffices to show $z = x \land y$. By selection of subnets, we may assume that $\{x_a \land y_a\}$ converges to z. Notice that since the graph of \leq is closed, $z \leq x \land y$. We shall assume that $z < x \land y$ and arrive at a contradiction. We shall divide the remainder of the proof into two cases.

Case 1: x = y. Thus, $z < x \land y = x$. From the order dense assumption there exists $z' \in X$ such that z < z' < x. By (ii) there exists a net $\{z_{\alpha}\}$ converging to z' such that $z_{\alpha} \leq x_{\alpha} \land y_{\alpha}$. Since the graph of \leq is closed, it follows that $z' \leq z$ which is a contradiction.

Case 2: $x \neq y$. Since $z < x \land y \leq y$ and $z < x \land y \leq x$, it follows from (ii) that there exist nets $\{t_a\}$ and $\{k_a\}$ converging to $x \land y$ such that $t_a \leq x_a$ and $k_a \leq y_a$. From Case 1 we see that $\{t_a \land k_a\}$ converges to $x \land y$. But since $t_a \land k_a \leq x_a \land y_a$ and since the graph of \leq is closed, $x \land y \leq z$, which is a contradiction.

Let X be a semilattice and a compact Hausdorff space and let $P = \{(x, y) | x < y\}$. Then

$$P^{(-1)} = \{(y, x) \, | \, x \leqslant y\}.$$

In Theorem 2 we shall use the work done in [4] and [5] on the continuity of relations. We shall say that $P^{(-1)}$ is upper semicontinuous and point closed iff P is closed in $X \times X$ in the case when X is compact [5]. The relation $P^{(-1)}$ is lower semicontinuous iff U, an open subset of X, implies that $\{x | \text{there exists } w \in U \text{ such that } x \leq w\}$ is open [5]. The relation $P^{(-1)}$ is continuous iff it is point-closed, upper semicontinuous and lower semicontinuous [4].

The following remark, due to Strother [4] will be useful in Theorem 2:

Remark. The following are equivalent:

(a) $P^{(-1)}$ is lower semicontinuous.

(b) If $x \leq y$ and $\{y_a\}$ is a net converging to y, then there exists a net $\{x_a\}$ converging to x such that $x_a \leq y_a$ for all a.

THEOREM 2. Let X be a compact Hausdorff space and let \wedge be a semilattice operation on X. Then \wedge is continuous if and only if \wedge is continuous on the diagonal of $X \times X$ and $P^{(-1)}$ is continuous, where P is the graph of the induced partial order. Proof. Necessity. The only part of the necessity which is not clear is the fact that $P^{(-1)}$ is lower semicontinuous. Let $(x, y) \in P$ and $\{y_a\}$ be a net converging to y. Define $x_a = x \wedge y_a$. It follows from the continuity of \wedge that $\{x_a\}$ converges to x and thus, by Strother's remark, it follows that $P^{(-1)}$ is lower semicontinuous.

The sufficiency follows from Strother's remark in the same manner as Case 2 of Theorem 1.

The following is an example of a semilattice X in which $P^{(-1)}$ is continuous but \wedge is not continuous on the diagonal of $X \times X$.

EXAMPLE. Let X be the part of the plane bounded by x = -1, x = 1, y = 1, and y = 0 together with its boundary. Let $A = \{(x, y) \in X | x < 0\}$, $B = \{(x, y) \in X | x = 0\}$, and $C = \{(x, y) \in X | x > 0\}$. Define $(x_1, y_1) \leq (x_2, y_2)$ if and only if one of the following holds:

(1) $(x_1, y_1), (x_2, y_2) \in A, x_2 \leq x_1 \text{ and } y_1 \leq y_2.$

(2) $(x_1, y_1), (x_2, y_2) \in B$ and $y_1 \leq y_2$.

(3) $(x_1, y_1), (x_2, y_2) \in C, x_1 \leq x_2 \text{ and } y_1 \leq y_2.$

(4) $(x_1, y_1) \epsilon B$, $(x_2, y_2) \epsilon A \cup C$ and $y_1 \leq |x_2|$.

Then \wedge is not continuous at ((0, 1), (0, 1)).

Let X be a Hausdorff space with a semilattice operation \wedge and let $P = \{(x, y) | x \leq y\}$. In [3] P is said to be *strongly continuous* iff the boundary of P is contained in the diagonal of $X \times X$. Another formulation of this definition given in [3] is that P is strongly continuous iff, when x < y, there are open neighborhoods U and V of x and y, respectively, such that every point of U is less than every point of V. The next proposition established a connection between strongly continuity and lower semicontinuity.

PROPOSITION 3. Strong continuity of P implies $P^{(-1)}$ is lower semicontinuous.

Proof. Suppose U is an open subset of X. Let $V = \{x \mid \text{there exists} y \in U \text{ with } x \leq y\}$. It suffices to show that V is open. If $x \in V$, then there is $y \in U$ such that $x \leq y$. If x = y, then $x \in U \subset V$. If x < y, then by the definition of strong continuity there are open neighborhoods V' and U' of x and y, respectively, such that $U' \subset U$ and every element of V' is less than every element of U'. Thus $x \in V' \subset U$.

REFERENCES

- L. W. Anderson and L. E. Ward, Jr., One-dimensional topological semilattices, Illinois Journal of Mathematics 5 (1961), p. 182-186.
- [2] D. R. Brown, Topological semilattices on the two-cell, Pacific Journal of Mathematics 15 (1965), p. 35-46.
- [3] J. V. Deshpandé, On the continuity of a partial order, Proceedings of the American Mathematical Society 19 (1968), p. 383-386.

J. T.	BO	RREGO)
-------	----	-------	---

- [4] W. L. Strother, Continuous multi-valued functions, Boletim da Sociedade de Mathemática de São Paulo 10 (1955), p. 87-120.
- [5] A. D. Wallace, Relation theory, lecture notes, University of Florida, 1964.
- [6] Two theorems on topological lattices, Pacific Journal of Mathematics 7 (1957), p. 1239-1241.
- [7] L. E. Ward, *Partially ordered topological spaces*, Proceedings of the American Mathematical Society 5 (1954), p. 144-161.

UNIVERSITY OF MASSACHUSETTS AMHERST, MASS., USA

Reçu par la Rédaction le 30. 12. 1968

52