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to definability and definable cardinals
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Abstract. Woodin introduced an extension of the axiom of determinacy, AD, called
AD+ which includes an assertion that all sets of reals have an ∞-Borel code. An ∞-Borel
code is a pair (φ, S) where φ is a formula and S is a set of ordinals which provides a
highly absolute definition for a set of reals. This paper will use AD+ and ∞-Borel codes
to establish a property of ordinal definability analogous to a property for Σ1

1 shown by
Harrington–Shore–Slaman (2017). Under AD+, the paper will also use ∞-Borel codes to
explore the cardinality of sets below P(ω1) which Woodin (2006) began investigating
under ADR and DC. The following summarizes the main results.

Assume ZF+AD++V=L(P(R)). If H ⊆ R has the property that there is a nonempty
OD set of reals K such that H is ODz for any z ∈ K, then H is OD.

Assume ZF+ AD+ + ¬ADR + V=L(P(R)). Then there is a cardinal strictly between
|[ω1]

<ω1 | and |[ω1]
ω1 | = |P(ω1)|.

Assume ZF + AD+. Then S1 = {f ∈ [ω1]
<ω1 : sup(f) = ω

L[f ]
1 } does not inject into

ωON, the class of ω-sequences of ordinals. This implies |R| < |S1| and |[ω1]
ω| < |[ω1]

<ω1 |.
Assume ZF + AD+. Let X be a surjective image of R and let Pω1(X) = {A ⊆ X :

|A| < ω1}. If ω1 ≤ |Pω1(X)|, then ω1 ≤ |X|. If |P(ω1)| = |[ω1]
ω1 | ≤ |Pω1(X)|, then

|R ⊔ ω1| ≤ |X|.
ZF+ADR implies that the uncountable cardinals below |R× ω1| are ω1, |R|, |R⊔ ω1|,

and |R × ω1|. An elaborate structure of cardinals below |R × ω1| is described under the
assumption of ZF+ AD+ + ¬ADR + V=L(P(R)).

1. Introduction. An ∞-Borel code is simply a pair (S, φ) where S is
a set of ordinals and φ is a formula of set theory. The set of reals defined
by (S, φ) is B1

(S,φ) = {x ∈ R : L[S, x] |= φ(S, x)}. If A is a set of reals,
then one says that (S, φ) is an ∞-Borel code for A if B1

(S,φ) = A. An ∞-
Borel code for A is a highly absolute definition for A in the sense that to
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determine membership of x ∈ A, one simply needs to go into L[S, x], which
is the minimal model of ZFC containing the code S and x, and ask whether
L[S, x] |= φ(S, x). Note that for any inner model M |= ZF with S ∈ M ,
(B1

(S,φ))
M = B1

(S,φ) ∩M .
The axiom of determinacy, AD, states that certain two player games have

a winning strategy for one of the two players. Mathematics under AD is often
regarded as being more effective, uniform, or definable. Woodin [21] isolated
an extension of AD called AD+ which includes DCR, a technical statement
called ordinal determinacy, and the statement that all sets of reals have an
∞-Borel code. The existence of ∞-Borel codes strengthens the claim that
AD+ captures definable combinatorics.

It is not known if AD can prove any of the three statements in AD+.
Kechris [12] and Woodin showed that if L(R) |= AD, then L(R) |= AD+.
Moreover, Woodin showed that in natural models of AD+, i.e. those models
which satisfy ZF+AD+V=L(P(R)), more is known about the structure of
∞-Borel codes. In particular, in models of the form L(J,R) |= AD + DCR
where J is a set of ordinals, Woodin’s result that L(J,R) is a symmetric col-
lapse extension of HOD

L(J,R)
J outlines a procedure to obtain ∞-Borel codes

from definitions witnessing ordinal definability.
Under AD+, the Vopěnka forcing of nonempty OD subsets of R ordered

by ⊆ becomes a very powerful tool. In the presence of strongly absolute
definitions provided by the ∞-Borel codes, the method of the Vopěnka forc-
ing in local models of the form HOD

L[S,X]
S , where S is a fixed set of ordi-

nals and X varies over the Turing degrees, combined with the ultraproduct∏
X∈D HOD

L[S,X]
S /µ where µ is the Martin measure on Turing degrees is

especially useful for combinatorics under AD+.
For instance, similar techniques were used by Woodin to prove the per-

fect set dichotomy [2] which generalized Silver’s Π1
1 equivalence relation di-

chotomy [18], and by Hjorth [10] to prove the more general E0-dichotomy
which generalizes the E0-dichotomy of Harrington–Kechris–Louveau [8].
Woodin’s result also uses the fact that countable section uniformization for
relations on R × R holds under AD+ (see [15, 2]). Such techniques are also
used in [3] to answer a question of Foreman that there are no Suslin lines
in L(R) |= AD. In [4], the ∞-Borel codes, Vopěnka forcing, and the ultra-
product are used to show that if ⟨Eα : α < ω1⟩ is a sequence of equivalence
relations on R with all classes countable such that |R/Eα| = |R|, then the
disjoint union

⊔
α<ω1

R/Eα is in bijection with R× ω1.
This article provides some new applications of ∞-Borel codes and the

Vopěnka forcing to questions about ordinal definability and definable cardi-
nals assuming AD+ or specifically in natural models of AD+.
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Harrington, Shore, and Slaman [9] showed that ifH ⊆ R has the property
that there is a nonempty Σ1

1 K ⊆ R such that H is Σ1
1(z) for any z ∈ K,

then H is Σ1
1. In other words, if H is Σ1

1 in any parameter z from a nonempty
Σ1
1 set K, then H is actually Σ1

1 with no parameters.
One can ask if a similar phenomenon holds for other notions of lightface

definability. Ordinal definability is a strong notion of definability which is
closed under nearly any operation which does not introduce nonordinal pa-
rameters. One can ask if H ⊆ R is ODz in any parameter z from a nonempty
OD set of reals K, then is H ordinal definable with no parameters.

The answer is generally not positive under ZF since Fact 3.2 shows that
in the Sacks generic extension of the constructible universe L, the Sacks
generic real is ODz from any nonconstructible z but the Sacks generic real
is not OD. However, in natural models of AD+ the answer is positive:

Theorem 3.1. Assume ZF+ AD+ + V=L(P(R)). Let J be a set of or-
dinals. Let H ⊆ R. Let K ⊆ R be nonempty and ODJ . If H is ODJ,z for all
z ∈ K, then H is ODJ .

Using the arguments of Woodin in the proof that L(J,R) |= ZF+ AD+

DCR is a symmetric collapse extension of HOD
L(J,R)
J , one can show that in

L(J,R), there is a set of ordinals X which “absorbs” functions of various
types. As an example, this means that for any function Φ : [ω1]

ω1 → [ω1]
<ω1

(or Φ : R×ω1 → R×ω1), there is a real e such that for all z with e ≤X z and
f ∈ [ω1]

ω1 ∩ L[X, z], Φ(f) ∈ L[X, z] and Φ ∩ L[X, z] ∈ L[X, z]. This function
absorption idea is especially useful for studying definable cardinality under
AD+ and for producing intermediate cardinalities in natural models of AD+.

It is shown in [5] that |[ω1]
<ω1 | < |[ω1]

ω1 | = |P(ω1)| by establishing
an almost everywhere continuity phenomenon for functions of the form Φ :
[ω1]

ω1 → ω1. Section 4 gives a more set-theoretic argument as well as other
conditions on cardinals κ which imply that |[κ]<κ| < |[κ]κ|. This section also
shows that in models of the form L(J,R), where J is a set of ordinals, there
is a cardinal intermediate between |[ω1]

<ω1 | and |[ω1]
ω1 |:

Theorem 4.10. Assume ZF + AD+. Let J ⊆ ON be a set of ordinals
such that V = L(J,R). Let X = (J, ωOJ) (see Section 2 for more details).
Define NJ

1 by

NJ
1 =

⊔
r∈R

((ω
L(J,R)
1 )+)L[X,r] = {(r, α) : α < ((ω

L(J,R)
1 )+)L[X,r]}.

Then the following cardinal relations hold: ¬(|NJ
1 | ≤ [ω1]

<ω1), |R × ω1| <
|NJ

1 | < |R × ω2|, |NJ
1 | < |[ω1]

ω1 |, ¬(|[ω1]
ω| ≤ |NJ

1 |), and |[ω1]
<ω1 | <

|[ω1]
<ω1 ⊔NJ

1 | < |[ω1]
ω1 |.

Intuitively, [ω1]
ω and [ω1]

<ω1 appear to be distinct subsets of P(ω1)
in terms of cardinality. It is implicit in [20] that under ZF + ADR + DC,
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|[ω1]
ω| < |[ω1]

<ω1 |. It appears that these cardinal distinctions are obtained
through an analysis of the set S1 = {f ∈ [ω1]

<ω1 : sup(f) = ω
L[f ]
1 }, defined

by Woodin. Section 5 will study S1 using ∞-Borel codes and the function
absorption idea under AD+.

In just AD, one can show that |R| ≤ |S1| and ¬(ω1 ≤ |S1|). However,
all other interesting properties of S1 appear to be only known under the
existence of ∞-Borel codes. The main property of S1 is that it does not
inject into the class of ω-sequences of ordinals.

Theorem 5.7. Assume ZF+AD+DCR and all sets of reals have ∞-Borel
codes. Then there is no injection of S1 into ωON, the class of ω-sequences
of ordinals.

This result can then be used to give the following cardinality computation
under AD+:

Theorem 5.8. Assume ZF+AD+DCR and all sets of reals have ∞-Borel
codes. Then |R| < |S1| and |[ω1]

ω| < |[ω1]
<ω1 |.

The proof of Theorem 5.7 involves finding a filter which is generic over a
model of ZFC for a forcing in this model which is countable in the real world
satisfying AD. If one would like to imitate this argument to establish similar
results on ω2, then the naturally associated forcing in a model of ZFC would
be uncountable even in the real world and hence one may not have generics
for this forcing. Thus the AD+ methods in Theorem 5.7 are not suitable for
generalization to ω2.

By its definition, S1 involves notions of constructibility which makes ∞-
Borel definition quite useful for studying properties of its cardinality. How-
ever, [ω1]

ω and [ω1]
<ω1 are purely combinatorial objects whose cardinal dis-

tinctions should be obtainable under AD alone. By establishing an almost
everywhere continuity result for functions of the form Φ : [ω1]

ϵ → ω1, where
ϵ < ω1, [7] shows in just AD that |[ω1]

ω| < |[ω1]
<ω1 |. This argument provides

the suitable template for studying combinatorics on ω2. By establishing an
almost everywhere continuity result for functions of the form Φ : [ω2]

ϵ → ω2,
where ϵ < ω2, [7] shows in AD that |[ω2]

ω| < |[ω2]
<ω1 | < |[ω2]

ω1 | < |[ω2]
<ω2 |.

More recently, [6] established these almost everywhere continuity properties
purely from combinatorial principles. Thus [6] showed that if κ is a weak
partition cardinal (i.e. it satisfies κ → (κ)<κ

2 ), then for all χ < κ, [κ]<κ

does not inject into χON, the class of length-χ sequences of ordinals, and so
|[κ]χ| < |[κ]<κ|. Hence these cardinality results apply to all the familiar weak
and strong partition cardinals of determinacy such as δ13 = ωω+1 and δ21.

Using the properties of S1, one can answer an interesting question of
Zapletal: If X is a set, let Pω1(X) = {A ⊆ X : |A| < ω1} and let PWO(X)
be the collection of A ⊆ X which are wellorderable. Zapletal asked that
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if Pω1(X) has certain cardinality properties, then what can be said about
the cardinality properties of X. A concrete question would be: If ω1 injects
into Pω1(X), does ω1 already inject into X? The following gives a positive
answer:

Theorem 6.6. Assuming ZF + AD+, for all cardinals κ < Θ and all
sets X which are surjective images of R, κ ≤ |PWO(X)| implies κ ≤ |X|.
In particular, κ ≤ |Pω1(X)| implies κ ≤ |X|.

Corollary 6.7. Assume ZF+ DCR + AD and all sets of reals have ∞-
Borel codes. Let X be a set which is a surjective image of R. Then ω1 ≤
|PWO(X)| implies ω1 ≤ |X|. In particular, ω1 ≤ |Pω1(X)| implies ω1 ≤ |X|.

One can ask what other sets Y have the property that if Y injects into
Pω1(X), then X already has a copy of Y . Note that Pω1(ω1) = [ω1]

<ω1 .
Thus for any uncountable Y ⊆ [ω1]

<ω1 such that |Y | ≠ ω1, Y injects into
Pω1(ω1), but Y does not inject into ω1. This reflection property fails for
any Y ⊆ [ω1]

<ω1 with |Y | ≠ ω1. Naturally, one can ask: If [ω1]
ω1 injects into

Pω1(X), what can be said about the cardinality of X? The following results
shows that X must contain a copy of ω1 and R:

Theorem 6.10. Assume ZF + AD + DCR and all sets of reals have ∞-
Borel codes. Let X be a set which is a surjective image of R. If |[ω1]

ω1 | ≤
|Pω1(X)|, then |R ⊔ ω1| ≤ |X|.

A natural conjecture would be that if [ω1]
ω1 injects into Pω1(X), then

[ω1]
ω1 already injects into X. However, an easier question may be: If [ω1]

ω1

injects into Pω1(X), does R× ω1 inject into X?
Woodin [20] showed using elaborate AD+ techniques that under ZF +

ADR + DC, the uncountable cardinals below [ω1]
ω are ω1, |R|, |R ⊔ ω1|,

|R × ω1|, and [ω1]
ω. Using a simple uniformization argument, Corollary 7.6

shows that under ZF + ADR, the uncountable cardinals below |R × ω1| are
ω1, |R|, |R ⊔ ω1|, and |R× ω1|. Woodin showed that if ADR fails, then there
may be other cardinalities below |R× ω1|.

The final section studies the uncountable cardinalities below |R× ω1| in
natural models of AD+ + ¬ADR such as L(J,R) where J is a set of ordinals
which “absorbs” all functions from R× ω1 into R× ω1. Let V denote all the
cardinals X below |R× ω1| such that ¬(ω1 ≤ X ). Fact 7.4 shows that every
cardinal Z ≤ |R×ω1| either is in V or is the disjoint union of ω1 with some
cardinality in V. Thus a complete understanding of V would elucidate the
structure of the cardinals below |R× ω1|.

Let DJ and µJ denote the J-constructible degrees and the Martin mea-
sures on J-degrees, respectively. For any F : R → ω1 which is J-invariant,
let W J

F =
⊔

r∈R ω
L[J,r]
F (r) . For any F ∈

∏
DJ
ω1/µJ , there exists an everywhere

increasing J-invariant F : R → ω1 which represents F . Let Y J
F = |W J

F | for
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any everywhere increasing J-invariant F : R → ω1 which represents F . (It
can be shown that Y J

F is independent of the choice of F .)
Woodin showed that

∏
X∈DJ

ω
L[J,X]
1 /µJ = ω1 for any set J of ordinals

and
∏

X∈DJ
ω
L[J,X]
2 = Θ if J is an “ultimate ∞-Borel code” in V = L(J,R).

For α < ω1, let Fα : R → ω1 be the constant function taking value α. It can
be shown that Fα represents the ordinal α in

∏
DJ
ω1/µJ . Thus Y J

α = |W J
Fα |

for each α < ω1.
Let Y = {Y J

F : F ∈
∏

DJ
ω1/µJ}. Then Y ⊆ V. It can be shown that

Y J
0 = Y J

1 = |R|. If F1 < F2 in the ultrapower ordering, then Y J
F1

< Y J
F2

.
Also for any Y ∈ V, there is some F ∈

∏
DJ
ω1/µJ such that Y ≤ Y J

F .
By analyzing the behavior of F ∈

∏
DJ
ω1/µJ which are successor ordinals

and limit ordinals of cofinality ω, one can show that ⟨Y J
α : α < ω1⟩ is

the length-ω1 initial segment of V. The following summarizes the results of
Section 7.

Theorem. Assume ZF + AD + DCR and V = L(J,R) where J is a set
of ordinals which absorbs functions from R× ω1 to R× ω1.

• ⟨Y J
F : F ∈

∏
DJ
ω1/µJ \ {0}⟩ is an order preserving injection of the ultra-

product ordering into Y with the injection ordering.
• Y is cofinal in V: For all X ∈ V, there is an F ∈

∏
DJ
ω1/µJ \ {0} such

that X ≤ Y J
F .

• For any X ∈ V and F ∈
∏

DJ
ω1/µJ \ {0}, either X ≤ Y J

F or Y J
F ≤ X .

• {Y J
α : α < ω1} is the length-ω1 initial segment of V: for any cardinality

X below |R×ω1| such that ¬(ω1 ≤ X ), either there exists an α < ω1 such
that X = Y J

α or for all α < ω1, Y J
α ≤ X .

A very appealing conjecture given these results is that V = Y. Let Fω1 :

R → ω1 be defined by Fω1(x) = ω
L[J,x]
1 . It can be shown that Fω1 represents

ω1 in
∏

DJ
ω1/µJ . Is Y J

ω1
= |W J

Fω1 | the ω1th cardinality in V in the sense that
for all X ∈ V such that X ≤ Y J

ω1
, there is an α ≤ ω1 such that X = Y J

α ?
The difficulty is that the behavior of cardinalities below Y J

F when F has
uncountable cofinality is not well understood.

2. Basics. This section summarizes some properties of ∞-Borel codes,
Vopěnka forcing, and the Martin measure that will be needed throughout
the paper. The reader can refer to [2] for a detailed exposition of these ideas
at least in the L(R) |= AD setting.

Definition 2.1. Let S ⊆ ON be a set of ordinals and φ be a formula of
set theory. The pair (S, φ) is called an ∞-Borel code. For any n ∈ ω, define
Bn

(S,φ) = {x ∈ Rn : L[S, x] |= φ(S, x)}.
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If A ⊆ Rn, then (S, φ) is an ∞-Borel code for A if Bn
(S,φ) = A. A set

A ⊆ Rn is said to be ∞-Borel if it has an ∞-Borel code.

Note that an ∞-Borel set of reals has a very absolute definition in the
following sense: If A ⊆ R is ∞-Borel with ∞-Borel code (S, φ), then x ∈ A
is completely determined by whether φ(S, x) holds in the minimal model of
ZFC, L[S, x], containing the code (S, φ) and the real x.

Definition 2.2. Let n > 0 and S ⊆ ON be a set of ordinals. Let nOS

denote the forcing of nonempty ODS subsets of Rn ordered by ⊆ with largest
element 1nOS

= Rn. We will write OS for 1OS .
Since there is an S-definable bijection of ODS with ON, one can transfer

nOS onto the ordinals. In this way, nOS is a forcing in HODS .

Definition 2.3. Let S be a set of ordinals. For each k ∈ ω, let bk =
{x ∈ R : x(k) = 1}. Note that bk ∈ OS . Let ẋgen = {(ǩ, bk) : k ∈ ω}. Note
that ẋgen is an OS-name which adds a real.

One can formulate the analogous nOS-name ẋngen for adding an element
of Rn for all n ≥ 1.

Fact 2.4. Let S be a set of ordinals. For each x ∈ Rn, Gn
x = {p ∈ nOS :

x ∈ p} is a HODS-generic filter such that ẋngen[Gn
x] = x and HODS [G

n
x] =

HODS [x].

Fact 2.5 ([10, Theorem 2.4], [2, Fact 8.1]). Let M be a transitive inner
model of ZF. Let S ∈ M be a set of ordinals. Suppose K ∈ HODM

S is a
set of ordinals and φ is a formula. Let N be a transitive inner model with
HODM

S ⊆ N . Let p = {x ∈ R : L[K,x] |= φ(K,x)}, so p is a condition
of OM

S . Then N |= p ⊩OM
S
L[Ǩ, ẋgen] |= φ(Ǩ, ẋgen).

Definition 2.6 (Woodin, [21, Section 9.1]). AD+ consists of the follow-
ing:

(1) DCR.
(2) Every A ⊆ R is ∞-Borel.
(3) For all λ < Θ, A ⊆ R, and continuous π : ωλ→ R, π−1[A] is determined.

Models satisfying ZF+ AD+ + V=L(P(R)) are called natural models of
AD+. Woodin showed that these either are models of ADR or take the form
V = L(J,R) for a set J of ordinals:

Fact 2.7 (Woodin, [1, Corollary 3.2]). Assume ZF + AD+ + ¬ADR +
V=L(P(R)). Then there is a set J of ordinals such that V = L(J,R).

Many results about L(R) proved by Vopénka forcing can be relativized
to analogous statements about models of the form L(J,R).
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Fact 2.8 (Woodin, [1, Theorem 3.4]). Assume ZF+AD++V=L(P(R)).
Let J be a set of ordinals and A ⊆ R. If A is ODJ , then A has an ODJ

∞-Borel code.

Fact 2.9 (Woodin, [1, Theorem 2.8]). Assume ZF+AD++V=L(P(R)).
Let J be a set of ordinals. There is a set X of ordinals such that HODJ =
L[X].

Proof. See [2, Corollary 7.21] for a proof of this under AD+ V=L(R).

Woodin’s work showing that L(J,R) |= AD+DCR is a symmetric collapse
extension of HOD

L(J,R)
J gives additional information about ∞-Borel codes in

such models. In particular, it shows the existence of an ultimate ∞-Borel
code mentioned above, which will be particularly useful in this article for
“absorbing fragments of functions” in relevant models of ZFC.

Assume V = L(J,R) |= AD+DCR. For each m ≤ n < ω, let πn,m : Rn →
Rm be the projection of Rn onto Rm. One can induce a map πn,m : nOJ →
mOJ by πn,m(p) = πn,m[p], where the latter πn,m : Rn → Rm is the projection
map. These maps πn,m : nOJ → mOJ are forcing projections. Let ωOJ denote
the finite support direct limit induced by ⟨nOJ , πn,m : 1 ≤ m ≤ n < ω⟩. Let
πω,n : ωOJ → nOJ be the natural associated projection map.

Each s ∈ Rn canonically induces an nOJ -generic filter over HOD
L(J,R)
J

denoted by Gn
s . Using πω,n, let ωOJ/G

n
s refer to the associated remainder

forcing. Moreover, every G ⊆ nOJ which is nOJ -generic over HODJ adds a
generic element of Rn. For each n, let τn be the ωOJ -name for the real in
the last coordinate of the generic n-tuple of reals added by the nOJ -generic
filter induced from an ωOJ -generic filter. Let Ṙsym be the ωOJ -name for the
set {τn : n ∈ ω}. Let ẋngen be a name denoting ⟨τi : i < n⟩.

Fact 2.10 (Woodin). Suppose L(J,R) |= AD + DCR. Let s ∈ Rn, z ∈
L[J, ωOJ , s], and φ be a formula. Then L(J,R) |= φ(J, s, z) if and only if

L[J, ωOJ , s] |= 1
ωOJ/Gn

s
⊩

ωOJ/Gn
s
L(J̌ , Ṙsym) |= φ(J̌ , ẋngen, ž).

Fact 2.10 can be used to show that in L(J,R) |= AD + DCR, for any
A ⊆ R, there is an r ∈ R and a formula φ such that (J ⊕ ωOJ ⊕ r, φ) forms
an ODJ,s ∞-Borel code for A, where J ⊕ ωOJ ⊕ r is a set of ordinals that
codes these three objects in some fixed way. It also gives the following result.

Fact 2.11 (Woodin). Assume ZF+AD+DCR and there is a set J ⊆ ON

such that V = L(J,R). For each x ∈ R, HOD
L(J,R)
J,x = L[J, ωOJ , x].

A more detailed exposition of the above results can be found in [2] in
the L(R) case. It should be noted that here these results are stated for the
Vopěnka forcing O. These results were initially proved using A, which is the
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forcing of nonempty sets of reals with OD ∞-Borel codes. It was then shown
that O and A are the same.

Definition 2.12. Let x ≤Turing y indicate that x is Turing reducible to
y. Let x ≡Turing y indicate x ≤Turing y and y ≤Turing y. Let D = R/≡Turing

denote the collection of Turing degrees. For X,Y ∈ D, let X ≤ Y indicate
that there are x ∈ X and y ∈ Y such that x ≤Turing y. If X ∈ D, then the
Turing cone above X is the set {Y ∈ D : X ≤ Y }. The Martin measure µ
on D is the collection of subsets of D which contain a Turing cone.

Let J ⊆ ON be a set of ordinals. On R, define x ≤J y if and only if
x ∈ L[J, y]. Let x ≡J y if and only if x ≤J y and y ≤J x. Let DJ = R/≡J

denote the collection of J-constructibility degrees. If X,Y ∈ DJ , then let
X ≤ Y indicate that there exist x ∈ X and y ∈ Y such that x ≤J y. If
X ∈ DJ , then the J-cone above X is the set {Y ∈ DJ : X ≤ Y }. Let µJ be
the collection of subsets of DJ which contain a J-cone.

Fact 2.13 (Martin). Assume ZF+ AD. Then µ is a countably complete
ultrafilter. For any J ⊆ ON, µJ is a countably complete ultrafilter.

Fact 2.14 (Woodin, [1, Section 2.2]). Assume ZF + AD+. Then the ul-
trapower of the ordinals by Martin’s Turing cone measure,

∏
X∈D ON/µ, is

a wellordering. So also is
∏

X∈DJ
ON/µJ , the ultrapower of the ordinals by

the J-constructibility cone measure.

Corollary 2.15. Assume ZF+ AD+. Let S ⊆ ON be a set of ordinals.
Then

∏
X∈D HOD

L[S,X]
S /µ is wellfounded.

Proof. Suppose F ∈
∏

X∈D HOD
L[S,X]
S /µ. Let f be a function on D

such that [f ]µ = F . Define ϕ(f) by ϕ(f)(X) = rkHOD
L[S,X]
S (f(X)). Let

Φ :
∏

X∈D HOD
L[S,X]
S /µ →

∏
X∈D ON/µ be defined by Φ([f ]µ) = [ϕ(f)]µ.

Then Φ is a well-defined function. Moreover, it has the property that if
F ∈ G, then Φ(F ) < Φ(G). Fact 2.14 implies that

∏
X∈D HOD

L[S,X]
S /µ is

wellfounded.

3. OD in OD is OD. We will write R for ω2, which is the collection of
functions f : ω → 2.

Theorem 3.1. Assume ZF + AD+ + V=L(P(R)). Let J be a set of or-
dinals. Let H ⊆ R. Let K ⊆ R be nonempty and ODJ . If H is ODJ,z for all
z ∈ K, then H is ODJ .

Proof. For simplicity, assume J = ∅. By Fact 2.9, let X ∈ HODV be
such that HODV = L[X]. Using the constructibility ordering of L[X], let
⟨(Sα, φα) : α ∈ ON⟩ enumerate all the ∞-Borel codes in L[X] = HODV .
(This is merely the canonical constructibility enumeration of all pairs (S, φ)
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in HODV = L[X] where S is a set of ordinals and φ is a formula.) The
main observation is that for any X ∈ D, HODV = L[X] ⊆ HOD

L[X,X]
X

and therefore the sequence ⟨(Sα, φα) : α ∈ ON⟩ is definable in HOD
L[X,X]
X

uniformly (by the same formula using X as a parameter for all X ∈ D). In
particular, every ODV ∞-Borel code belongs to HOD

L[X,X]
X .

Claim 1. For any R ⊆ R, R is ODV
z for some z ∈ R if and only if there

is some ODV ∞-Borel code (S, φ) such that

R = (B2
(S,φ))z = {x ∈ R : (z, x) ∈ B2

(S,φ)}
= {x ∈ R : L[S, z, x] |= φ(S, z, x)}.

Proof. (⇒) Suppose R is ODV
z . There is some formula ς such that x ∈

R ⇔ V |= ς(z, x, ᾱ) where ᾱ is a tuple of ordinals. Let R′ = {(a, b) ∈ R2 :
ς(a, b, ᾱ)}. Then R′ is an ODV subset of R2. By Fact 2.8, there is some
(S, φ) ∈ HODV such that B2

(S,φ) = R′. Then R = (B2
(S,φ))z. (⇐) is clear.

SinceK ⊆ R is ODV ,K has an ∞-Borel code (U,ψ) ∈ HODV by Fact 2.8.
Since K ̸= ∅, let z∗ ∈ K. Let Z∗ = [z∗]≡Turing

. Throughout this argument, we
will only work on the Turing cone above Z∗.

For all X ∈ D, since (U,ψ) ∈ HODV = L[X] ⊆ L[X, X], (U,ψ) ∈
HOD

L[X,X]
X . For any X ≥ Z∗, let qX = {x ∈ RL[X,X] : L[U, x] |= ψ(U, x)}.

Note that qX is OD
L[X,X]
X . Since z∗ ∈ RL[X,X] and z∗ ∈ K, and (U,ψ) is

the ∞-Borel code for K, one has V |= L[U, z∗] |= ψ(U, z∗). Thus L[X, X] |=
L[U, z∗] |= ψ(U, z∗). Thus z∗ ∈ qX and qX ̸= ∅. Therefore, qX ∈ OL[X,X]

X .

Case I. There is a cone of X ∈ D such that there are no atoms in

OL[X,X]
X ↾qX = {p ∈ OL[X,X]

X : p ≤OL[X,X]
X

qX}.

Let Z∗∗ ∈ D with Z∗∗ ≥ Z∗ be a base of a cone for which the Case I
assumption holds. Now suppose X ∈ D with X ≥ Z∗∗.

Claim 2. There is a sequence J = ⟨Jn : n ∈ ω⟩ of dense open subsets of
OL[X,X]

X ↾qX and a sequence ⟨ϵn : n ∈ ω⟩ of ordinals such that for all h ∈ R
which are OL[X,X]

X ↾qX-generic with respect to J , the following holds:

(1) h ∈ K.
(2) h is OL[X,X]

X ↾qX-generic over HOD
L[X,X]
X [y] for all y ∈ RL[X,X].

(3) There is some m ∈ ω such that H = (B2
(Sϵm ,φϵm ))h.

Proof. Since L[X, X] |= ZFC and V |= AD, we see that ωV
1 is inaccessible

in HOD
L[X,X]
X . This can be used to show that OL[X,X]

X ↾qX is a countable
atomless forcing. In V , fix a forcing isomorphism Φ : OL[X,X]

X ↾qX → C,
where C is the Cohen forcing. (Specifically, C = (<ω2,≤C) is the forcing of
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finite binary strings ordered by ≤C which is reverse string inclusion. Note
there is generally no way to uniformly choose Φ depending on the degree X.)
Let E be the collection of all dense open subsets of OL[X,X]

X ↾qX which belong
to HOD

L[X,X]
X [y] for some y ∈ RL[X,X]. Since V |= AD, L[X, X] |= ZFC, and

HOD
L[X,X]
X [y] |= ZFC for all y ∈ RL[X,X], it follows that E is countable in V .

Let F = {Φ[D] : D ∈ E}. Then F is a countable collection of dense open
subsets of Cohen forcing C.

For each g ∈ R, let GC
g ⊆ C be the derived C-filter defined by GC

g = {g↾n :

n ∈ ω}. One says that g is C-generic with respect to F if GC
g intersects each

dense open set in F . Similarly, if J is a collection of dense open subsets of
OL[X,X]

X ↾qX , one says that a real x ∈ R is OL[X,X]
X ↾qX -generic with respect

to J if there is an OL[X,X]
X ↾qX -generic filter G ⊆ OL[X,X]

X ↾qX such that G
meets each dense open set in J and ẋgen[G] = x.

Since F is countable in V , let C ⊆ R be the comeager set of reals which
are C-generic with respect to F . Let B be the collection of reals which are
OL[X,X]

X ↾qX -generic over HOD
L[X,X]
X [y] for all y ∈ RL[X,X]. By the definition

of Φ, E , and F , the forcing isomorphism Φ induces a bijection Φ̃ : B → C.
For each g ∈ C, let GΦ̃−1(g) = Φ−1[GC

g ]. Then GΦ̃−1(g) is an OL[X,X]
X ↾qX -

generic filter over HOD
L[X,X]
X [y] for all y ∈ RL[X,X]. Note that ẋgen[GΦ̃−1(g)] =

Φ̃−1(g). Since qX ∈ GΦ̃−1(g) and qX is a condition of the form mentioned in
Fact 2.5,

HOD
L[X,X]
X [GΦ̃−1(g)] |= L[U, Φ̃−1(g)] |= ψ(U, Φ̃−1(g)).

Thus
V |= L[U, Φ̃−1(g)] |= ψ(U, Φ̃−1(g)).

Since (U,ψ) is the ∞-Borel code for K, Φ̃−1(g) ∈ K. Therefore, for g ∈ C,
Φ̃−1(g) ∈ K.

By assumption,H is ODx for all x ∈ K. In particular, for each g ∈ C,H is
ODΦ̃−1(g). By Claim 1, there is some ϵ ∈ ON such that H = (B2

(Sϵ,φϵ)
)Φ̃−1(g).

Define Ψ : C → ON by letting Ψ(g) be the least such ϵ.
Under AD, a wellordered union of meager sets is meager, therefore, there

must be some ϵ ∈ ON such that Ψ−1[{ϵ}] is nonmeager. Let δ0 ∈ ON be the
least ordinal such that Ψ−1[{δ0}] is nonmeager. Suppose δξ ∈ ON has been
defined. If

⋃
α≥δξ

Ψ−1[{α}] is meager, the construction is finished. Otherwise,
again using the fact that wellordered unions of meager sets are meager un-
der AD, there is a least ordinal δξ+1 greater than δξ such that Φ−1[{δξ+1}]
is nonmeager. If ξ is a limit ordinal and δζ has been defined for all ζ < ξ,
then let δξ = sup {δζ : ζ < ξ}. Since all sets of reals have the Baire prop-
erty under AD and the topology on R has the countable chain condition,
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there must be a countable λ ∈ ON such that the construction is finished at
stage λ.

As λ is countable, one can enumerate ⟨δξ : ξ < λ⟩ by ⟨ϵn : n ∈ ω⟩. Let
D =

⋃
n∈ω Ψ

−1[{ϵn}], which is comeager by definition of λ being the ordinal
at which the construction finished.

Since D is comeager, there is a sequence ⟨In : n ∈ ω⟩ of topologically
dense open subsets of R such that

⋂
n∈ω In ⊆ D. Let Jn = {Φ−1(σ) : σ ∈ C∧

Nσ ⊆ In}, where Nσ = {f ∈ R : σ ⊆ f} is the basic open subset of
R determined by σ and recall that C = <ω2. Define J = ⟨Jn : n ∈ ω⟩
to be is a sequence of dense open subsets of OL[X,X]

S ↾qX . Note that if x is
OL[X,X]

X ↾qX -generic with respect to J = ⟨Jn : n ∈ ω⟩, then Φ̃(x) ∈ D. Since
D ⊆ C and by the observation above, Gx = GΦ̃−1(Φ̃(x)) is OL[X,X]

X ↾qX -generic

over HOD
L[X,X]
X [y] for all y ∈ RL[X,X] and x = ẋgen[Gx]. This completes the

proof of Claim 2.

We will construct a sequence of conditions in OL[X,X]
X ↾qX for as long as

possible:
Let p−1 = qX . Suppose pk has been constructed.

Subcase i. There is some y ∈ RL[X,X] and some u ≤OL[X,X]
X ↾qX

pk such
that

y /∈ H ∧HOD
L[X,X]
X [y] |= u ⊩OL[X,X]

X
L[Šϵk+1

, ẋgen, y̌] |= φϵk+1
(Šϵk+1

, ẋgen, y̌)

or

y ∈ H∧HOD
L[X,X]
X [y] |= u ⊩OL[X,X]

X
L[Šϵk+1

, ẋgen, y̌] |= ¬φϵk+1
(Šϵk+1

, ẋgen, y̌).

In this case, let pk+1 ∈ OL[X,X]
X be the least u ∈ Jk+1 according to the

canonical wellordering of HOD
L[X,X]
X .

Subcase ii. Otherwise, declare that the construction has failed at stage
k + 1.

Claim 3. The construction must fail at some stage.

Proof. Suppose the construction never fails. Then one would successfully
produce a sequence ⟨pk : k ∈ ω⟩ in OL[X,X]

X ↾qX with the properties speci-
fied above. Let Ĝ be the OL[X,X]

X ↾qX -generic filter produced by ≤QL[X,X]
X ↾qX

-

upward closing {pk : k ∈ ω}. By construction, pk ∈ Jk. Hence Ĝ is an
OL[X,X]

X ↾qX -generic filter with respect to J . Let h = ẋgen[Ĝ] be the associ-
ated OL[X,X]

X ↾qX -generic real. By Claim 2, h ∈ K, h is OL[X,X]
X ↾qX -generic

over HOD
L[X,X]
X [y] for all y ∈ RL[X,X], and there is some m ∈ ω such that
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H = (B2
(Sϵm ,φϵm ))h. However, the construction did not fail at stage m. With-

out loss of generality (the other case being similar), there is a pm with the
property that there is some y ∈ RL[X,X] such that

y /∈ H ∧HOD
L[X,X]
X [y] |= pm ⊩OL[X,X]

X
L[Šϵm , ẋgen, y̌] |= φϵm(Šϵm , ẋgen, y̌).

Thus
HOD

L[X,X]
X [y][h] |= L[Sϵm , h, y] |= φϵm(Sϵm , h, y),

and so
V |= L[Sϵm , h, y] |= φϵm(Sϵk , h, y).

Since H = (B2
(Sϵm ,φϵm ))h, this implies that y ∈ H. However, it was also

assumed that y /∈ H, a contradiction. This completes the proof of Claim 3.

Claim 4. For all X ≥ Z∗∗, there is some p ∈ OL[X,X]
X and some ordinal ϵ

such that for all y ∈ RL[X,X], y ∈ H if and only if

HOD
L[X,X]
X [y] |= p ⊩OL[X,X]

X
L[Šϵ, ẋgen, y̌] |= φ(Šϵ, ẋgen, y̌).

Proof. By Claim 3, the construction described above must fail at some
stage k. This means that the forcing relation written above in HOD

L[X,X]
X [y]

for pk−1 and the ∞-Borel code (Sϵk , φϵk) can be used to determine member-
ship of y ∈ H for any y ∈ RL[X,X]. This completes the proof of Claim 4.

As mentioned in the proof of Claim 2, we nonuniformly selected a forcing
isomorphism Φ. The choice of Φ is irrelevant, however, since we will only need
the existence of any condition p with the above property in Claim 4.

For X ≥ Z∗∗, using the canonical wellordering of HOD
L[X,X]
X , let ⟨pXα :

α < δX⟩, where δX ∈ ON, be the canonical enumeration of OL[X,X]
X ↾qX .

We established thus far that for any y ∈ R, if one drops into a local
model HOD

L[X,X]
X [y], where X is a sufficiently strong Turing degree (i.e.

X ≥ Z∗∗ ⊕ [y]Turing), then one can determine membership of y in H by
merely two pieces of information: a condition p ∈ OL[X,X]

X and an ordinal ϵ.
Note that p is coded by an ordinal, since one can identify p with the least
ordinal α < δX such that p = pXα . Next, we will show that roughly all
this local information can be captured by just two ordinals by taking an
ultrapower by µ.

Using Claim 4, let Σα∗ : D → ON be defined by letting Σα∗(X) be
the least α such that pXα satisfies Claim 4 for some ϵ whenever X ≥ Z∗∗.
Otherwise, let Σα∗(X) = 0. Define Σϵ∗ : D → ON by letting Σϵ∗(X) be
the least ϵ satisfying Claim 4 with respect to pΣα∗ (X) whenever X ≥ Z∗∗.
Otherwise, let Σϵ∗(X) = 0.

[Σα∗ ]µ and [Σϵ∗ ]µ are ordinals since
∏

X∈D ON/µ is a wellordering by
Fact 2.14. Let α∗ = [Σα∗ ]µ and ϵ∗ = [Σϵ∗ ]µ.
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Claim 5. H is OD.

Proof. Note that for y ∈ R, y ∈ H if and only if for any Σ0, Σ1 : D → ON
such that [Σ0]µ = α∗ and [Σ1]µ = ϵ∗, for a cone of X ∈ D,

HOD
L[X,X]
X [y] |= pXΣ0(X) ⊩OL[X,X]

X
L[ŠΣ1(X), ẋgen, y̌]

|= φΣ1(X)(ŠΣ1(X), ẋgen, y̌).

The latter is ordinal definable (using the two ordinals α∗ and ϵ∗). The expres-
sion successfully defines H by the definition of α∗ = [Σα∗ ]µ and ϵ∗ = [Σϵ∗ ]µ
as well as Claim 4.

The proof is complete in the setting of Case I.

Case II. There is a cone of X ∈ D such that there is an atom in
OL[X,X]

X ↾qX .
Let Z∗∗ ≥ Z∗ be the base of a cone satisfying the Case II assumption.

Fix an X ≥ Z∗∗. Let p ≤OL[X,X]
X ↾qX

qX be an atom.

Claim 6. There is some r ∈ K ∩ HOD
L[X,X]
X . Note that r ∈ K implies

there is an ordinal ϵ such that H = (B2
(Sϵ,φϵ)

)r.

Proof. Since p ∈ OL[X,X]
X , we know that p ̸= ∅. Let r ∈ p. Let G1

r = {p ∈
OL[X,X]

X : r ∈ p}. By Fact 2.4, G1
r is an OL[X,X]

X -generic filter over HOD
L[X,X]
X

and ẋgen[G1
r ] = r. Also, p ∈ G1

r . Therefore, thinking of reals as subsets of ω,
for each n ∈ ω, n ∈ r if and only if p ⊩OL[X,X]

X
ň ∈ ẋgen since p was assumed to

be an atom and hence has no nontrivial extensions. The latter is OD
L[X,X]
X .

This shows that r ∈ HOD
L[X,X]
X . (Since r ∈ p was arbitrary, this argument

actually shows that p = {r}.) Since p ≤OL[X,X]
X

qX and p ∈ G1
r , one sees that

r ∈ qX . By definition of qX , one finds that L[U, r] |= Ψ(U, r). Since (U,ψ) is
the ∞-Borel code for K, V |= r ∈ K. Therefore, r ∈ K ∩HOD

L[X,X]
X .

Let ⟨rXα : α < δX⟩, where δX ∈ ON, be the enumeration of RHOD
L[X,X]
X

according to the canonical wellordering of HOD
L[X,X]
X . Define Σα∗ : D → ON

by letting Σα∗(X) be the least ordinal α such that rXα satisfies Claim 6 when-
ever X ≥ Z∗∗. Otherwise, let Σα∗(X) = 0. Let Σϵ∗ : D → ON be defined
by letting Σϵ∗(X) be the least ϵ ∈ ON such that H = (B2

(Sϵ,φϵ)
)rX

Σα∗ (X)

whenever X ≥ Z∗∗. Otherwise, let Σϵ∗(X) = 0.
Again, since

∏
X∈D ON/µ is a wellordering by Fact 2.14, [Σα∗ ]µ and

[Σϵ∗ ]µ are ordinals. Let α∗ = [Σα∗ ]µ and ϵ∗ = [Σϵ∗ ]µ.

Claim 7. H is OD.
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Proof. Note that for all y ∈ R, y ∈ H if and only for all Σ0, Σ1 : D → ON
such that [Σ0]µ = α∗ and [Σ1]µ = ϵ∗, for a cone of X ∈ D,

L[SΣ1(X), r
X
Σ0(X), y] |= φΣ1(X)(SΣ1(X), r

X
Σ0(X), y).

This equivalence is true by Claim 6 and the definitions of Σα∗ and Σϵ∗ . The
latter is ordinal definable (using the ordinals α∗ and ϵ∗).

The theorem has been shown in Case II as well. The entire argument is
complete.

Some assumptions beyond ZF or ZFC are necessary to prove the conclu-
sion of Theorem 3.1. The next result shows that in a Sacks forcing extension
of the constructible universe L, there is a nonempty OD set K and a real g
such that g is ODz for any z ∈ K but g is not OD.

Fact 3.2. Let S denote the Sacks forcing of perfect trees. Let G ⊆ S be
an S-generic filter over L.

In L[G], let K = RL[G] \ RL be the collection of nonconstructible reals.
This is an OD set of reals. Let g ∈ RL[G] be the S-generic real over L derived
from G. Then g is ODz for any z ∈ K, but g is not OD.

Proof. A perfect tree is a subset p of <ω2 with the property that for all
σ, τ ∈ <ω2, if σ ⊆ τ and τ ∈ p, then σ ∈ p, and for all σ ∈ p, there exists a
τ ⊇ σ such that τ 0̂, τ 1̂ ∈ p. Let S consist of the collection of perfect trees.
Define p ≤S q if and only if p ⊆ q. The largest element is 1S = <ω2. Sacks
forcing is S = (S,≤S, 1S). If p ∈ S, then set [p] = {f ∈ ω2 : (∀n)(f↾n ∈ p)}.
If r ∈ R, then let GS

r = {p ∈ S : r ∈ [p]}. If GS
r is an S-generic filter over L,

then one says that r is an S-generic real over L. See [11, Chapter 15] for the
basic facts about the Sacks forcing S.

Fix a Sacks generic filter G ⊆ S over L. Work in L[G]. Let g be the Sacks
generic real derived from G, i.e. {g} =

⋂
p∈G[p].

Let K = RL[G] \ RL be the collection of nonconstructible reals. The
set K is OD. Using a fusion argument, one can reconstruct g from any
nonconstructible real z (that is, z ∈ K) using only parameters in L. (This is
the argument used in [11, Theorem 15.34] to show that g is a real of minimal
constructibility degree. It also shows that every element of K is itself an
S-generic real for some S-generic filter over L.) So g is ODz for any z ∈ K.

However, g is not OD. Suppose otherwise. Then there must be some
formula φ and some ordinal ϵ such that g is the unique solution v ∈ L[G]
to L[G] |= φ(v, ϵ). Therefore, there is some q ∈ G such that L |= q ⊩S
φ(ẋgen, ϵ̌) where ẋgen is the canonical S-name for the generic real added
by an S-generic filter. Since q is still a perfect tree in L[G], [q]L[G] must
contain a nonconstructible real h with h ̸= g. As mentioned above, by the
fusion argument of [11, Theorem 15.34], h is also S-generic over L. Let GS

h =
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{p ∈ S : h ∈ [p]} be the S-generic filter over L derived from h such that
ẋgen[G

S
h] = h. Note that GS

h ∈ L[G] and q ∈ GS
h. Thus L[GS

h] |= φ(h, ϵ).
Since [11, Theorem 15.34] implies every nonconstructible real in L[G] has
minimal constructibility degree, L[G] = L[GS

h]. Hence L[G] |= φ(h, ϵ) and
h ̸= g. This contradicts g being the unique solution in L[G] to φ(v, ϵ).

4. Cardinals below [ω1]
ω1. This section will show under AD+ that

|[ω1]
<ω1 | < |[ω1]

ω1 | = |P(ω1)|. In L(R), a cardinality intermediate between
|[ω1]

<ω1 | and |[ω1]
ω1 | will be isolated.

The argument for Theorem 4.5 showing that |[ω1]
<ω1 | < |[ω1]

ω1 |, pre-
sented below using Fact 4.1, was suggested by Neeman and is simpler than
the original argument. The original argument will be presented later and
is required in other settings involved, absorbing a fragment of an arbitrary
injection into a suitable ZFC model. This idea is a powerful technique for
studying cardinalities under AD+ and especially for producing an interme-
diate cardinality under AD+ + ¬ADR.

Fact 4.1. Assume ZF. Suppose κ is a cardinal which is inaccessible in
any inner model of ZFC. Then |[κ]<κ| < |[κ]κ|.

Proof. Suppose there was an injection Φ : [κ]κ → [κ]<κ. Consider Φ̂ ⊆
[κ]κ × κ defined by (f, α) ∈ Φ̂ ⇔ α ∈ Φ(f). (Here [κ]<κ is identified as a
subset of κ.) Note that if f ∈ L[Φ̂], then Φ(f) ∈ L[Φ̂].

Identify the predicate Φ with Φ̂. Then L[Φ] |= ZFC and L[Φ] |= “Φ is
an injection”. By Cantor’s theorem, L[Φ] |= |[κ]κ| = 2κ > κ. However, since
L[Φ] thinks κ is inaccessible, L[Φ] |= |[κ]<κ| = |2<κ| = κ. Then within L[Φ],
Φ induces an injection of 2κ into κ, which is not possible.

Fact 4.2. Assume ZF. Suppose κ is a cardinal such that there is a κ-
complete nonprincipal ultrafilter on κ. Let M be any inner model of ZFC.
Then κ is inaccessible in M .

Proof. Let µ be a κ-complete measure on κ. It is clear that κ is regular
in M .

Suppose κ is not a strong limit cardinal in M . Then there is a δ < κ such
that M |= |P(δ))| ≥ κ. Since M |= ZFC, one can find a length-κ sequence
of distinct subsets of δ, ⟨Aα : α < κ⟩.

For each β < δ, let C0
β = {α < κ : β /∈ Aα} and C1

β = {α < κ : β ∈ Aα}.
As C0

β ∪C1
β = κ and µ is a measure, there is some iβ ∈ 2 such that Ciβ

β ∈ µ.

Let A = {β : iβ = 1}. Since µ is κ-complete and δ < κ, C =
⋂

β<δ C
iβ
β ∈ µ.

Since µ is nonprincipal, let α0, α1 ∈ C with α0 ̸= α1. Then Aα0 = Aα1 = A.
This contradicts ⟨Aα : α < κ⟩ being a sequence of distinct subsets of δ.
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Fact 4.3 ([16, Theorem 3.2]). Assume ZF. Let κ be a cardinal. Let η < κ
be a limit ordinal. The partition relation κ→ (κ)η+η

2 implies that the η-club
filter on κ, W η

κ , is a normal κ-complete ultrafilter on κ.

Fact 4.4. Assume ZF+ AD.

(Solovay) ω1 → (ω1)
ω1
2 and therefore ω1 is measurable.

(Martin) ω2 → (ω2)
α
2 , for each α < ω2, and therefore ω2 is measurable.

([13]) Suppose A ⊆ R. Let δA be the least ordinal such that Lδ(A,R) ≺1

L(A,R). Then δA → (δA)
δA
2 and hence δA is measurable.

Theorem 4.5. Assume ZF+ AD.

• |[ω1]
<ω1 | < |[ω1]

ω1 |.
• |[ω2]

<ω2 | < |[ω2]
ω2 |.

• For any set A ⊆ R, |[δA]<δA | < |[δA]δA |.
• More generally, for any cardinal κ satisfying the partition relation κ →
(κ)ω+ω

2 , one has |[κ]<κ| < |[κ]κ|.

Proof. Under AD, ω1, ω2, and δA, for any A ⊆ R, satisfy the ω + ω
exponent partition relation by Fact 4.4 and are thus measurable cardinals
by Fact 4.3. Each result now follows from Facts 4.2 and 4.1.

Fact 4.6. Assume V = L(J,R) |= AD+DCR, where J is a set of ordinals.
Suppose Φ : [κ]κ → [κ]<κ. Then there is an e ∈ R such that for all x ∈ R
with e ≤J,ωOJ

x (which refers to the (J, ωOJ)-constructibility reduction), one
has the following properties:

(i) For all f ∈ [κ]κ ∩ L[J, ωOJ , x], Φ(f) ∈ L[J, ωOJ , x].
(ii) Φ ∩ L[J, ωOJ , x] ∈ L[J, ωOJ , x].

(i) and (ii) together imply that Φ ∩ L[J, ωOJ , x] is a function, which is
even a set in L[J, ωOJ , x].

Proof. In L(J,R), every set is ODJ,e for some real e. Let φ be a formula
and let ᾱ be a tuple of ordinals such that

(f, σ) ∈ Φ⇔ L(J,R) |= φ(J, e, ᾱ, f, σ).

Now fix x ∈ R such that e ∈ L[J, ωOJ , x]. By Fact 2.10 and the above,
for all (f, σ) ∈ ([κ]κ × [κ]<κ) ∩ L[J, ωOJ , x],

(f, σ) ∈ Φ⇔ L[J, ωOJ , x] |= 1
ωOJ/Gn

x
⊩

ωOJ/G1
x
L(J̌ , Ṙsym) |= φ(J, e, ᾱ, f, σ).

By comprehension in L[J, ωOJ , x], one sees that (ii) follows.
Note that for each f ∈ [κ]κ and β ∈ κ, one has

β ∈ Φ(f) ⇔ L(J,R) |= (∃σ)(φ(J, e, ᾱ, f, σ) ∧ β ∈ σ).

(Here σ ∈ [κ]<κ is construed as a subset of κ.)
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So for each x ∈ R such that e ∈ L[J, ωOJ , x], if f ∈ L[J, ωOJ , x], one has

β ∈ Φ(f) ⇔ L[J, ωOJ , x] |= 1
ωOJ/G1

x
⊩

ωOJ/G1
x

L(J, Ṙsym) |= (∃σ)(φ(J, e, ᾱ, f, σ) ∧ β ∈ σ).

Again by comprehension in L[J, ωOJ , x], one finds that Φ(f) ∈ L[J, ωOJ , x]
and thus (i) holds.

The following result due to Steel is proved by inner model-theoretic tech-
niques:

Fact 4.7 (Steel, [19, Theorem 8.27]). Assume ZF+AD+V = L(R). If κ
is regular, then for all x ∈ R, HODx |= “κ is measurable”.

Theorem 4.8. Assume ZF + AD + V=L(R). Suppose κ < Θ is regular.
Then |[κ]<κ| < |[κ]κ|.

Proof. If κ < Θ is regular, then Fact 4.7 implies that HOD
L(R)
x |= “κ is

measurable” for any x ∈ R. Let X = ωO. By Fact 2.11, HOD
L(R)
x = L[X, x].

Now suppose that there is an injection Φ : [κ]κ → [κ]<κ. By Fact 4.6,
there is an e ∈ R such that Φ∩L[X, e] ∈ L[X, e] and this set is a function in
L[X, e]. Let Ψ = Φ ∩ L[X, e]. By absoluteness, L[X, e] |= “Ψ : [κ]κ → [κ]<κ

is an injection”. However, since κ is measurable in HODe = L[X, e], one
has L[X, e] |= |[κ]<κ| = κ. By Cantor’s theorem applied in L[X, e], such an
injection cannot exist.

By Theorem 4.5, |[ω1]
<ω1 | < |[ω1]

ω1 |. A natural question at this point
would be whether it is possible under ZF+AD that there exists a set K such
that |[ω1]

<ω1 | < |K| < |[ω1]
ω1 |. Next, it will be shown that such a set exists

under ZF+AD++¬ADR+V=L(P(R)). Recall that under this assumption,
there is a set J of ordinals such that V = L(J,R).

Definition 4.9. Assume ZF + AD+. Let J ⊆ ON be a set of ordinals
such that V = L(J,R). Let X = (J, ωOJ).

NJ
1 =

⊔
r∈R

((ω
L(J,R)
1 )+)L[X,r] = {(r, α) : α < ((ω

L(J,R)
1 )+)L[X,r]}.

In other words, this is a disjoint union over r ∈ R of the successors of ωL(J,R)
1

as computed in L[X, r].
Theorem 4.10. Assume ZF+AD+ and there is a set J ⊆ ON such that

V = L(J,R). Then:

(1) ¬(|NJ
1 | ≤ [ω1]

<ω1).
(2) |R× ω1| < |NJ

1 | < |R× ω2|.
(3) |NJ

1 | < |[ω1]
ω1 |.

(4) ¬(|[ω1]
ω| ≤ |NJ

1 |).
(5) |[ω1]

<ω1 | < |[ω1]
<ω1 ⊔NJ

1 | < |[ω1]
ω1 |.
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Proof. Let X = (J, ωOJ). Suppose there is an injection Φ : NJ
1 → [ω1]

<ω1 .
By the idea of Fact 4.6, there is an e ∈ R such that Φ ∩ L[X, e] ∈ L[X, e]
and L[X, e] thinks that Φ̃ = Φ ∩ L[X, e] is an injective function with do-
main NJ

1 ∩ L[X, e]. Thus with the model L[X, e], the restriction of Φ̃ to
{e}×((ω

L(J,R)
1 )+)L[X,e] is an injection into ([ω

L(J,R)
1 ]<ω

L(J,R)
1 )∩L[X, e]. This is

impossible since the inaccessibility of ωL(J,R)
1 in the model L[X, e] implies that

L[X, e] |= |[ωL(J,R)
1 ]<ω

L(J,R)
1 | = ω

L(J,R)
1 . This shows that ¬(NJ

1 ≤ [ω1]
<ω1).

This also implies |[ω1]
<ω1 | < |[ω1]

<ω1 ⊔NJ
1 |.

Suppose there is an injection Φ : NJ
1 → R × ω1. Using the same idea as

applied in the proof of Fact 4.6, there is an e such that Φ∩L[X, e] ∈ L[X, e]
and L[X, e] thinks that Φ ∩ L[X, e] is an injective function with domain
NJ

1 ∩ L[X, e]. Let Φ̃ = Φ ∩ L[X, e]. Then L[X, e] |= “Φ̃ restricted to {e} ×
((ω

L(J,R)
1 )+)L[X,e] = {e} × (ω

L(J,R)
1 )+ is an injection of {e} × (ω

L(J,R)
1 )+ into

R×ωL(J,R)
1 ”. Note that L[X, e] |= |R| < ω

L(J,R)
1 since ωL(J,R)

1 is inaccessible in
L[X, e]. Thus L[X, e] |= |R× ω

L(J,R)
1 | = ω

L(J,R)
1 . It is impossible that L[X, e]

has an injection of the successor ωL(J,R)
1 (as computed in L[X, e]) into ωL(J,R)

1 .
This establishes ¬(|NJ

1 | ≤ |R× ω1|).
Suppose there is an injection Φ : R × ω2 → NJ

1 . Again using the idea
applied for Fact 4.6, there is an e such that Φ∩L[X, e] ∈ L[X, e] and L[X, e]
thinks that Φ̃ = Φ∩L[X, e] is a function with domain (R×ωL(J,R)

2 )∩L[X, e].
Since L[X, e] |= AC and there are no uncountable wellordered sequences of
distinct reals, L[X, e] |= |R| < ω

L(J,R)
1 . Since AD implies that ω1 and ω2

are measurable, the argument for Fact 4.2 implies that there are no un-
countable wellordered sequences of distinct reals and no ω2 length sequences
of distinct subsets of ω1. Thus RL[X,e] is countable and for each r ∈ R,
((ω

L(J,R)
1 )+)L[X,r] < ω

L(J,R)
2 . Hence L[X, e] |= |

⊔
r∈R((ω

L(J,R)
1 )+)L[X,r]| <

ω
L(J,R)
2 . Thus it is impossible that L[X, e] thinks that Φ̃ restricted to {e} ×
ω
L(J,R)
2 is an injection of {e} × ω

L(J,R)
2 into

L[X, e] ∩NJ
1 =

⊔
r∈RL[X,e]

((ω
L(J,R)
1 )+)L[X,r].

This establishes that ¬(|R× ω2| ≤ |NJ
1 |).

As observed above, for each r ∈ R, ((ωL(J,R)
1 )+)L[X,r] < ω

L(J,R)
2 . Thus it

is clear that NJ
1 is a subset of R× ω2. Thus |R× ω1| < |NJ

1 | < |R× ω2|.
For each r ∈ R, define Ar = {f ∈ [ω

L(J,R)
1 ]ω

L(J,R)
1 : min(f) ≥ ω} in L[X, r].

Observe that L[X, r] |= |Ar| = |[ωL(J,R)
1 ]ω

L(J,R)
1 | = |2ω

L(J,R)
1 | ≥ (ω

L(J,R)
1 )+. Let

Ψr : ((ω
L(J,R)
1 )+)L[X,r] → Ar be the least injection from ((ω

L(J,R)
1 )+)L[X,r]

into Ar according to the constructibility order on L[X, r]. (Note that ⟨Ψr :
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r ∈ R⟩ does exist as a set in L(J,R).) Out in L(J,R), define an injection
Γ : NJ

1 → [ω1]
ω1 by Γ (r, α) = rˆΨr(α), which is well-defined if one considers

R as [ω]ω, the collection of strictly increasing ω-sequences in ω, and the fact
that minΨr(α) ≥ ω since Ψr(α) ∈ Ar. Then Γ witnesses that |NJ

1 | ≤ |[ω1]
ω1 |.

Let add : ω1× [ω1]
<ω1 → [ω1]

<ω1 be defined by add(α, f)(β) = α+ f(β),
whenever β < dom(f). If B ⊆ ω1 is unbounded in ω1, then let enumB :
ω1 → ω1 denote the increasing enumeration of B. Let

Λ(f) = ⟨sup(f)⟩̂ add(sup(f), f )̂ enumω1\rang(add(sup(f),f)).

In words, Λ(f) first outputs sup(f), then outputs the values sup(f) + f(β)
for each β < dom(f), and then fills up the rest with an increasing enumer-
ation of the remaining countable ordinals. Thus Λ is an injection of [ω1]

<ω1

into [ω1]
ω1 .

Let A = {f ∈ [ω1]
<ω1 : min(f) ≥ ω}. Observe that |A| = |[ω1]

<ω1 |. Note
that Λ[A] and Γ [NJ

1 ] are disjoint subsets of [ω1]
ω1 since for any f ∈ Λ[A],

min(f) ≥ ω, but for all f ∈ Γ [NJ
1 ], min(f) < ω. Thus one can merge these

two injections together to obtain an injection of [ω1]
<ω1 ⊔ NJ

1 into [ω1]
ω1 .

This shows that
|[ω1]

<ω1 ⊔NJ
1 | ≤ |[ω1]

ω1 |.
Now suppose Φ : [ω1]

ω → NJ
1 is an injection. Let π : R × ω2 → R de-

note the projection onto the first coordinate. Thinking of NJ
1 ⊆ R × ω2,

π ◦ Φ : [ω1]
ω → R. Thinking of R as ω2, let σn : R → 2 be defined to

be the projection onto the nth coordinate, that is, σn(r) = r(n). Thus for
each n ∈ ω, σn ◦ π ◦ Φ : [ω1]

ω → 2. By the correct-type partition relation,
ω1 →∗ (ω1)

ω
2 , there is a club Cn and in ∈ 2 such that for all f ∈ [Cn]

ω
∗ ,

σn(π(Φ(f))) = in, where [Cn]
ω
∗ is the collection of all f ∈ [Cn]

ω which are of
the correct type. (See [2, Section 2] for the definition of functions of correct
type, the correct-type partition relation, and its equivalence with the usual
partition property.) By ACR

ω , let ⟨Cn : n ∈ ω⟩ be such that Cn is a club
subset of ω1 which is homogeneous for σn ◦ π ◦Φ in the above sense for each
n ∈ ω. Let s ∈ R be defined by s(n) = in. Let C =

⋂
n∈ω Cn. Then for all

f ∈ [C]ω∗ , π(Φ(f)) = s. Thus Φ restricted to [C]ω∗ is an injection of [C]ω∗ into
{s} × ((ω

L(J,R)
1 )+)L[X,e]. This is impossible since [C]ω∗ is not wellorderable

under AD. This shows
¬(|[ω1]

ω| ≤ |NJ
1 |).

Now suppose Φ : [ω1]
ω1 → [ω1]

<ω1 ⊔NJ
1 . Define P : [ω1]

ω1 → 2 by

P (f) =

{
0, Φ(f) ∈ [ω1]

<ω1 ,

1, Φ(f) ∈ NJ
1 .

By ω1 → (ω1)
ω1
2 , choose a C ⊆ ω1 with |C| = ω1 and homogeneous for P .

If C is homogeneous for 0, then Φ gives an injection of [C]ω1 (which is in
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bijection with [ω1]
ω1) into [ω1]

<ω1 . This contradicts Theorem 4.5. Suppose C
is homogeneous for P taking value 1. Then Φ is an injection of [C]ω1 into NJ

1 .
From this, one obtains an injection of [ω1]

ω into NJ
1 . But it was shown above

that ¬(|[ω1]
ω| ≤ |NJ

1 |).
This completes the proof of the theorem.

Note that the failure of ADR is important. With ADR, one cannot have
a set X that absorbs fragments of functions as in Fact 4.6. Moreover, the
natural analogs of the NJ

1 sets under ADR are simply in bijection with R×ω1.

Fact 4.11. Assume ZF + ADR. Let S ⊆ ON be a set of ordinals. Let
N =

⊔
r∈R((ω

V
1 )

+)L[S,r]. Then |N | = |R× ω1|.
Proof. Using a prewellordering on R of length ω1, one can code subsets

of ω1 (and also subsets of ω1 × ω1) by reals using the Moschovakis coding
lemma. Define a relation R ⊆ R × R by R(x, y) if and only if y codes a
subset of ω1 × ω1 which is a wellordering of ω1 of order type ((ωV

1 )
+)L[S,x].

By ADR, let F : R → R be a uniformizing function for R. For each x ∈ R,
let Ψx : ωV

1 → ((ωV
1 )

+)L[S,x] be the bijection induced by the wellordering on
ω1 coded by F (x) according to the fixed prewellordering of length ω1.

Define Φ : R× ω1 → N by Φ(x, α) = (x, Ψx(α)). Then Φ is a bijection.

A natural question, under ADR, is whether there is an intermediate car-
dinal between |[ω1]

<ω1 | and |[ω1]
ω1 |.

5. Cardinality of S1. Recall the definition of S1 from the introduction.

Definition 5.1 (Woodin). Let S1 = {f ∈ [ω1]
<ω1 : sup(f) = ω

L[f ]
1 }.

This section will establish several properties of the cardinality of S1 under
AD and DCR, the statement that all sets of reals have ∞-Borel codes. It will
be shown that S1 does not inject into ωON, the class of ω-sequences of
ordinals, which implies that |[ω1]

ω| < |[ω1]
<ω1 |.

Woodin [20] defines the set S1 and establishes an elaborate dichotomy
which asserts that S1 has a special position among uncountable subsets
of [ω1]

<ω1 .

Fact 5.2 (Woodin’s S1 dichotomy [20, Theorem 19]). Assume ZF+DC+
ADR. If X ⊆ [ω1]

<ω1 is uncountable, then either |X| ≤ |[ω1]
ω| or |S1| ≤ |X|.

The proof of Woodin’s S1 dichotomy is very elaborate. This section will
present some elementary arguments to establish several of the basic cardinal
properties of S1 under AD+.

The next result shows that S1 contains a copy of R but has no uncount-
able wellorderable subsets. These properties are mentioned in [20] without
proof, but for completeness, the brief arguments given in [4] will be repro-
duced below.
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Fact 5.3 (Woodin). Assume ZF. Then |R| ≤ |S1|.
Assume ZF and there are no uncountable wellorderable sets of reals. Then

¬(ω1 ≤ |S1|).
Proof. For this proof, consider R as the collection of infinite subsets of ω.

For each r ∈ R, let Ar = r ∪ {α : ω ≤ α < ω
L[r]
1 }. Let fr ∈ [ω1]

<ω1 be the
increasing enumeration of Ar. Note that ωL[fr]

1 = ω
L[r]
1 = sup(fr). Thus

fr ∈ S1. The function Φ : R → S1 defined by Φ(r) = fr is an injection.
Suppose Φ : ω1 → S1 is an injection.

Claim. sup {ωL[Φ(α)]
1 : α < ω1} = ω1.

Suppose not. Let ϵ = sup {sup(Φ(α)) : α < ω1} and ϵ < ω1. Since Φ
maps into S1, one has sup {ωL[Φ(α)]

1 : α < ω1} = sup {sup(Φ(α)) : α < ω1} =
ϵ < ω1. Then Φ would be an injection into [ϵ + 1]<ϵ+1 which is in bijection
with R. This is impossible since there are no uncountable wellorderable sets
of reals.

Let ϖ : ω1 × ω1 → ω1 be a constructible bijection, for instance the
Gödel pairing function. Think of S1 ⊆ [ω1]

<ω1 as subsets of ω1. Then let
Φ̃ = {ϖ(α, β) : β ∈ Φ(α)}. Note that Φ̃ is a subset of ω1 which codes the
function Φ. That is, Φ ∈ L[Φ̃]. Therefore, Φ ∈ L[Φ] |= ZFC.

Since there are no uncountable wellordered sets of reals, one sees that
ω
L[Φ]
1 < ω1. By the claim, there is some α < ω1 such that ωL[Φ(α)]

1 > ω
L[Φ]
1 .

However, since Φ ∈ L[Φ], Φ(α) ∈ L[Φ]. Thus ωL[Φ(α)]
1 ≤ ω

L[Φ]
1 , a contradic-

tion.

Woodin’s S1-dichotomy (Fact 5.2) and Fact 5.3 are not sufficient to dis-
tinguish |S1| from |R|, or |[ω1]

ω| from |[ω1]
<ω1 |. Next, Theorem 5.7 will be

shown in order to make these distinctions. (These cardinality distinctions
seem to be implicit in [20].) The most interesting properties of S1 require at
least some of the properties of AD+.

First, we will fix a simple coding for elements of <ω1ω1 by reals.

Definition 5.4. Let ρ : ω×ω → ω denote a fixed recursive and bijective
pairing function. Thinking of R as ω2, one can code relations on ω by reals.
That is, for each x ∈ X, let Rx(n,m) ⇔ x(ρ(n, n)) = 1. Recall WO is the
collection of x such that Rx is a wellordering on ω.

For each x ∈ R, let xn ∈ R be defined by xn(k) = x(ρ(n, k)). We say
that x ∈ BS if x0 ∈ WO and for all n ∈ ω, (x1)n ∈ WO. For each x ∈ BS,
let σx : ot(x0) → ω1 be defined by σx(α) = β if for the unique n ∈ ω with
rank α according to the wellordering Rx0 , ot((x1)n) = β.

In this way, every σ ∈ <ω1ω1 has a code x ∈ BS such that σx = σ.

Fact 5.5. Assume ZF + AD + DCR, and all sets of reals have ∞-Borel
codes. Suppose R ⊆ <ω1ω1 × κ, where κ < Θ. Then there is a set S ⊆ ON
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and a formula ϑ such that for all σ ∈ <ω1ω1 and β < κ,

R(σ, β) ⇔ L[S, σ] |= ϑ(S, σ, β).

If Φ : <ω1ω1 → ωκ is a function, then there is a set S ⊆ ON such that for
all σ ∈ <ω1ω1, Φ(σ) ∈ L[S, σ].

Proof. Since κ < Θ, let ⪯ be a prewellordering on R of length κ. Let
(J ′, ϕ′) be an ∞-Borel code for ⪯. Let φ : R → κ be the associated ranking
function of ⪯.

Fix R ⊆ <ω1ω1 × κ. Let R̃ ⊆ R× R be defined by

R̃(x, y) ⇔ x ∈ BS ∧R(σx, φ(y)).
Let (J ′′, ϕ′′) be an ∞-Borel code for R̃.

Let J be a set of ordinals coding in some fixed constructible way the two
sets of ordinals J ′ and J ′′. Let ωOJ be the finite support direct limit of the
Vopěnka forcing ⟨nOJ , πn,m : 0 < m ≤ n < ω⟩. Let S be a set of ordinals
that codes (J, ωOJ).

Fix σ ∈ <ωω1 and let Pσ denote the forcing Coll(ω, sup(σ)). Observe
that forcing with Pσ over L[J, σ] canonically adds a surjection of ω onto
sup(σ). From this, one can canonically obtain a bijection of ω with sup(f).
Thus one can naturally produce an element of BS which codes σ in any Pσ-
generic extension of L[S, σ]. Let τσ be a Pσ-name in L[S, σ] for this naturally
produced element of BS which codes σ.

Let ϑ be the following formula: ϑ(S, σ, β) if and only if

1Pσ ⊩Pσ L[J, ωOJ , τσ] |= 1
ωOJ/G1

τσ
⊩

ωOJ/G1
τσ

L(J, Ṙsym) |= (∃y)(φ(y) = β ∧ L[J ′′, τσ, y] |= ϕ′′(J ′′, τσ, y)).

In the above, “φ(y) = β” is an abbreviation for a statement asserting that β
is the rank of y in the prewellordering defined by the ∞-Borel code (J ′, ϕ′).

It is very important that “φ(y) = β” is expressed in this way. The pur-
pose of using L(J,R) and Woodin’s results on the symmetric collapse is to
express “φ(y) = β”, which cannot be computed correctly by evaluating the
prewellordering directly in an inner model of ZFC which can only contain
countably many of the reals of the original universe satisfying determinacy.

Claim. For all σ ∈ <ω1ω1, R(σ, β) if and only if L[S, σ] |= ϑ(S, σ, β).

To see this: (⇒) Let p ∈ Pσ. Since sup(σ) < ω1, the powerset of Pσ

computed in L[S, σ] is countable in the real universe satisfying determinacy.
Thus there is a G ⊆ Pσ containing p which is Pσ-generic over L[S, σ]. In
L[S, σ][G], τσ[G] ∈ BS is a code for σ, that is στσ [G] = σ. In L(J,R), there is
a y ∈ R such that φ(y) = β. Hence R̃(τσ[G], y). Thus

L(J,R) |= (∃y)(φ(y) = β ∧ L[J ′′, τσ[G], y] |= ϕ′′(J ′′, τσ[G], y)).
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By Fact 2.10,

L[J, ωOJ , τσ[G]] |= 1
ωOJ/G

1
τσ [G]

⊩
ωOJ/G

1
τσ [G]

L(J, Ṙsym) |= (∃y)(φ(y) = β ∧ L[J ′′, τσ[G], y] |= ϕ′′(J ′′, τσ[G], y)).

In particular,

L[S, σ][G] |= L[J, ωOJ , τσ[G]] |= 1
ωOJ/G

1
τσ [G]

⊩
ωOJ/G

1
τσ [G]

L(J, Ṙsym) |= (∃y)(φ(y) = β ∧ L[J ′′, τσ[G], y] |= ϕ′′(J ′′, τσ[G], y)).

By the forcing theorem and the fact that p ∈ G, there is a q ≤Pσ p such that

L[S, σ] |= q ⊩Pσ L[J, ωOJ , τσ] |= 1
ωOJ/G1

τσ
⊩

ωOJ/G1
τσ

L(J, Ṙsym) |= (∃y)(φ(y) = β ∧ L[J ′′, τσ, y] |= ϕ′′(J ′′, τσ, y)).

Since p ∈ Pσ was arbitrary, L[S, σ] believes that 1Pσ forces the statement in
the forcing language above. Thus L[S, σ] |= ϑ(S, σ, β).

(⇐) Since the powerset of Pσ computed in L[S, σ] |= ZFC is countable in
the real world satisfying AD, there exists a G ∈ V which is Pσ-generic over
L[S, σ]. Note that by the explicit definition of the coding used in BS, one
has τσ[G] ∈ BS and στσ [G] = σ by absoluteness. Since L[S, σ] |= ϑ(S, σ, β),
one has

L[S, σ][G] |= L[J, ωOJ , τσ[G]] |= 1
ωOJ/G

1
τσ [G]

⊩
ωOJ/G

1
τσ [G]

L(J, Ṙsym) |= (∃y)(φ(y) = β ∧ L[J ′′, τσ[G], y] |= ϕ′′(J ′′, τσ[G], y)).

Since G is a set in the real world V ,

V |= L[J, ωOJ , τσ[G]] |= 1
ωOJ/G

1
τσ [G]

⊩
ωOJ/G

1
τσ [G]

L(J, Ṙsym) |= (∃y)(φ(y) = β ∧ L[J ′′, τσ[G], y] |= ϕ′′(J ′′, τσ[G], y)).

Fact 2.10 implies

L(J,R) |= (∃y)(φ(y) = β ∧ L[J ′′, τσ[G], y] |= ϕ′′(J ′′, τσ[G], y)).

Since (J ′′, ϕ′′) is the ∞-Borel code for R̃, it follows that R̃(τσ[G], y) holds.
By definition of R̃ and the fact that τσ[G] ∈ BS is a code for σ, R(σ, β)
holds.

This concludes the proof of the claim and hence the first statement of
the fact.

Now suppose Φ : <ω1ω1 → ωκ is a function. Let R(σ, n, β) assert that
Φ(σ)(n) = β. By the first part, there is a set S ⊆ ON and a formula ϑ such
that

R(σ, n, β) ⇔ L[S, σ] |= ϑ(S, σ, n, β).

Then by comprehension in L[S, σ], one finds that Φ(σ) ∈ L[S, σ].
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A consequence of Fact 5.5 is that (under ZF+ AD+ DCR and all sets of
reals have ∞-Borel codes) every subset A of [ω1]

<ω1 has an ∞-Borel code
(S, φ) in the sense that σ ∈ A if and only if L[S, σ] |= φ(S, σ).

A key idea of the previous argument was to use ∞-Borel codes to go
into a suitable L(J,R) |= ZF+AD+DC and then by considering the forcing
language Coll(ω, sup(σ)), one can speak of a canonical real coding σ. For
f ∈ ωκ, there are various ways to code f by a real; however, it is unclear
where to find or how to uniformly speak of a real coding f within the ZFC

model HOD
L(J,R)
J = L[J, ωOJ ].

We can only prove the following weaker result which is quite similar to
Fact 4.6:

Fact 5.6. Assume ZF + AD + DCR and all sets of reals have ∞-Borel
codes. Let Φ : ωκ→ <ω1ω1 be a partial function, where κ < Θ. Then there is
a set S ⊆ ON such that for all z ∈ R, and all f ∈ dom(Φ)∩L[S, z], one has
Φ(f) ∈ L[S, z].

Proof. Since κ < Θ, let ⪯ be a prewellordering of R of length κ. Let φ be
the associated ranking function. Let (J ′, ϕ′) denote the ∞-Borel code for ⪯.

For each x ∈ R, let xn denote the nth section of x. Define fx ∈ ωκ by
fx(n) = φ(xn). In this way, every f ∈ ωκ has an x ∈ R such that fx = f .

Define a relation R ⊆ R× R× R by R(x, v, w) if and only if

fx ∈ dom(Φ) ∧ v, w ∈ WO ∧ ot(v) ∈ dom(Φ(fx)) ∧ Φ(fx)(ot(v)) = ot(w).

Let (J ′′, ϕ′′) be an ∞-Borel code for R.
Let J be a set of ordinals that codes J ′ and J ′′ in some fixed constructible

manner.
Now work in L(J,R) |= ZF + AD + DC. In L(J,R), R is ODJ . Let ς

be a formula with ordinal parameters such that L(J,R) |= R(x, v, w) ⇔
L(J,R) |= ς(J, x, v, w). In L(J,R), let ωOJ denote the finite support direct
limit of J-Vopěnka forcing.

Define ϑ(z, J, f, α, β) by

1
ωOJ/G1

z
⊩

ωOJ/G1
z
L(J, Ṙsym)

|= (∃x, v, w)((∀n)(φ(xn) = f(n) ∧ α = ot(v) ∧ β = ot(w) ∧ ς(J, x, v, w))).

Then for any z ∈ R, by Fact 2.10, one can conclude for all f ∈ L[J, ωOJ , z]
that L(J,R) |= Φ(f)(α) = β if and only if L[J, ωOJ , z] |= ϑ(z, J, f, α, β). By
comprehension, Φ(f) ∈ L[J, ωOJ , z].

Theorem 5.7. Assume ZF+AD+DCR and all sets of reals have ∞-Borel
codes. Then there is no injection of S1 into ωON, the class of ω-sequences
of ordinals.
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Proof. Suppose Φ : S1 → ωON is an injection. Since R surjects onto
<ω1ω1 (for example, by BS and the coding from Definition 5.4), one has that
R surjects onto S1 ⊆ <ω1ω1. Thus one can show that A =

⋃
{rang(Φ(σ)) :

σ ∈ S1} is a collection of ordinals which is a surjective image of R. Thus
the Mostowski collapse of A is some ordinal κ < Θ. Hence from Φ, one can
derive an injection Ψ : S1 → ωκ. Since Ψ is an injection, Ψ−1 : ωκ→ S1 is a
partial function.

Let S ⊆ ON be a set of ordinals satisfying Fact 5.5 for the function Ψ
and Fact 5.6 for the partial function Ψ−1.

Since ω1 is measurable in L[S] |= ZFC, let ζ < ω1 be an inaccessible
cardinal of L[S]. Let Coll(ω,<ζ) be the Lévy collapse of ζ. Since ζ < ω1

and L[S] |= ZFC, the powerset of Coll(ω,<ζ) is countable in the real world
satisfying AD. Thus in the real world, there is a G ⊆ Coll(ω,<ζ) which is
Coll(ω,<ζ)-generic over L[S].

From G and its generic surjection of ζ onto ζ, one can find a cofinal
function g : ζ → ζ such that L[g] = L[G]. Since L[g] = L[G], we have
ω
L[g]
1 = ω

L[G]
1 = ζ = sup(g). Thus g ∈ S1.

By the property of S from Fact 5.5, Ψ(g) ∈ L[S, g]. Since Ψ(g) ∈ ωκ,
and by using the main property of the Lévy collapse Coll(ω,< ζ), there
exists some ξ < ζ such that Ψ(g) ∈ L[S][G↾ξ]. By using the Coll(ω, ξ)-
generic obtained from G, one sees that there is a real z ∈ L[S][G] such
that L[S][G↾ξ] ⊆ L[S][z]. Thus Ψ(g) ∈ L[S, z]. By the property of S from
Fact 5.6 for the partial function Ψ−1, one has g = Ψ−1(Ψ(g)) ∈ L[S, z].
Thus L[S][G] = L[S][g] ⊆ L[S][z] ⊆ L[S][G↾(ξ + 1)]. It is impossible that
L[S][G] = L[S][G↾(ξ + 1)] for any ξ < ζ.

Therefore, no such injection can exist.

Theorem 5.8. Assume ZF+AD+DCR and all sets of reals have ∞-Borel
codes. Then |R| < |S1| and |[ω1]

ω| < |[ω1]
<ω1 |.

Proof. Since |R| = |ωω|, Theorem 5.7 implies that there is no injection
of S1 into R or [ω1]

ω. Thus |R| < |S1|. Since S1 ⊆ [ω1]
<ω1 and S1 does not

inject into [ω1]
ω, one has |[ω1]

ω| < |[ω1]
<ω1 |.

6. Countable powerset operation

Definition 6.1. Let X be a set. Let Pω1(X) = {A ⊆ X : |A| ≤ ℵ0} be
the collection of countable subsets of X.

This section will discuss the question of what cardinality properties of
Pω1(X) must have already been exhibited by X. For example, it will be
shown that if κ is a cardinal and κ injects into Pω1(X), then κ already
injects into X. It will also be shown that if P(ω1) injects into Pω1(X), then
R ⊔ ω1 already injects into X.
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Fact 6.2 (Woodin’s perfect set dichotomy). Assume ZF + AD + DCR
and all sets of reals have an ∞-Borel code. Let E be an equivalence relation
on R. Then exactly one of the following holds:

(1) R/E is wellorderable.
(2) R injects into R/E.

Moreover, if R/E is wellorderable and if (S, φ) is an ∞-Borel code for E,
then there is a uniform procedure that takes (S, φ) to an OD

L(S,R)
S wellorder-

ing of R/E.

Proof. This result is attributed to Woodin by Hjorth [10]. A proof of
these results can be found in [2, Section 8] and [4] which give particular
attention to the uniformity aspects of (1) and (2).

Definition 6.3. Let X be a set. Let PWO(X) = {A ⊆ X : A is
wellorderable}. Note that Pω1(X) ⊆ PWO(X).

Fact 6.4. Assume ZF + AD + DCR and all sets of reals have ∞-Borel
codes. Let κ < Θ and E be an equivalence relation on R. Suppose Φ : κ →
PWO(R/E) is a function. Then there is a sequence ⟨<α: α < κ⟩ such that
<α is a wellordering of Φ(α) for each α < κ.

Proof. Let (J0, ϕ0) be an ∞-Borel code for E. Let ⪯ be a prewellordering
on R of length κ. Let ς : R → κ be the ranking function of ⪯. Let (J1, ϕ1)
be an ∞-Borel code for ⪯. Define R ⊆ R× R by R(x, y) ⇔ [y]E ∈ Φ(ς(x)).
Let (J2, ϕ2) be an ∞-Borel code for R. Let J be a set of ordinals that codes
J0, J1, and J2.

Now work in L(J,R) |= ZF+AD+DC. Note that from J , one can recover
in L(J,R) the sets E, ⪯, R, and Φ. In fact, all these sets are OD

L(J,R)
J . Thus

for each α < κ, Φ(α) is OD
L(J,R)
J with a witnessing definition obtained uni-

formly in α. Consider
⋃
Φ(α) ⊆ R. Let Eα = E↾

⋃
Φ(α). Eα is OD

L(J,R)
J uni-

formly from the definitions witnessing E and Φ(α) is OD
L(J,R)
J . The OD

L(J,R)
J

set Eα has an OD
L(J,R)
J ∞-Borel code obtained uniformly from a definition

witnessing that Eα is OD
L(J,R)
J . (This follows from an application of Fact

2.10.) If the ∞-Borel codes for each equivalence relation in ⟨Eα : α < κ⟩ can
be obtained uniformly, then Fact 6.2 states that one can uniformly produce
a sequence of wellorderings ⟨<α: α < κ⟩ such that each <α is a wellordering
of (

⋃
Φ(α))/Eα which is Φ(α).

The following is the “Boldface GCH”. It was established first in L(R) by
Steel. Woodin extended this result to AD+.

Fact 6.5 (Woodin). Assume ZF + AD+. Let κ < Θ be a cardinal. If
X ⊆ P(κ) is wellorderable, then |X| ≤ κ.
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Theorem 6.6. Assume ZF+AD+DCR and all sets of reals have ∞-Borel
codes. Suppose κ < Θ is a cardinal with the property that for all δ < κ, there
is no length-κ sequence of distinct subsets of P(δ). Let X be a set such that
there is a surjection π : R → X. Then κ ≤ |PWO(X)| implies that κ ≤ |X|.
In particular, κ ≤ |Pω1(X)| implies κ ≤ |X|.

Assuming ZF + AD+, for all cardinals κ < Θ and all sets X which are
surjective images of R, κ ≤ |PWO(X)| implies κ ≤ |X|. In particular, κ ≤
|Pω1(X)| implies κ ≤ |X|.

Proof. Define an equivalence relation on R by xE y if and only if π(x) =
π(y). Then X is in bijection with R/E. Thus we will work with R/E rather
than directly with X. If κ ≤ |PWO(X)|, then one has an injection Φ : κ →
PWO(R/E). By Fact 6.4, let ⟨<α : α < ω1⟩ be a sequence such that for each
α < κ, <α is a wellordering of Φ(α).

By using the usual wellordering on κ and the sequence of wellorderings
⟨<α : α < κ⟩, one can define a wellordering of

⋃
Φ[κ] =

⋃
{Φ(α) : α < κ}.

Thus |
⋃
Φ[κ]| is a wellordered cardinal.

The claim is that |
⋃
Φ[κ]| ≥ κ. To see this, suppose |

⋃
Φ[κ]| = δ for

some δ < κ. Let Ψ :
⋃
Φ[κ] → δ be a bijection. Then Γ (α) = Ψ [Φ(α)] =

{Ψ(x) : x ∈ Φ(α)} is an injection of κ into P(δ). However, by assumption,
there are no length-κ sequences of distinct subsets of P(δ). The claim has
been shown.

The claim immediately implies that κ ≤ |R/E| = |X|.
In the setting of ZF+AD+, Fact 6.5 implies that for every cardinal δ < κ,

every wellorderable set of subsets of δ has cardinality δ. Thus κ cannot inject
into P(δ). The second result now follows from the first.

Corollary 6.7. Assume ZF+ DCR + AD and all sets of reals have ∞-
Borel codes. Let X be a set which is a surjective image of R. Then ω1 ≤
|PWO(X)| implies ω1 ≤ |X|. In particular, ω1 ≤ |Pω1(X)| implies ω1 ≤ |X|.

To analyze the structure of the cardinality of sets X such that |[ω1]
ω1 | ≤

|Pω1(X)|, one needs an almost everywhere (with respect to the strong par-
tition measure) continuity result for functions Φ : [ω1]

ω1 → ω1. The result
holds in ZF + AD and its proof is quite different from the method used in
this article.

Fact 6.8 ([5]). Assume ZF + AD. For every function Φ : [ω1]
ω1 → ω1,

there is a club C ⊆ ω1 such that Φ↾[C]ω1
∗ → ω1 is continuous.

If C ⊆ ω1 is club, then [C]ω1
∗ is the collection of f ∈ [C]ω1 which are of the

correct type, i.e. have uniform cofinality ω and are discontinuous everywhere.
One can check that |[ω1]

ω1 | = |[C]ω1
∗ |. The function Φ↾[C]ω1

∗ being continuous
means that for all f ∈ [C]ω1

∗ , there is an α < ω1 such that for all g ∈ [C]ω1
∗ ,

if f↾α = g↾α, then Φ(f) = Φ(g).
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Zapletal has also asked the authors whether if one partitions [ω1]
ω1 into

ω1 many sets, then must one of the pieces have cardinality |[ω1]
ω1 |, under

determinacy assumptions. The almost everywhere continuity property gives
a positive answer.

Fact 6.9 ([5]). Assume ZF+ AD. Let ⟨Xα : α < ω1⟩ be such that Xα ⊆
[ω1]

ω1 for each X and
⋃

α<ω1
Xα = [ω1]

ω1. Then there exists α < ω1 such
that |Xα| = |[ω1]

ω1.

Theorem 6.10. Assume ZF + AD + DCR and all sets of reals have an
∞-Borel code. Let X be a set which is a surjective image of R. If |[ω1]

ω1 | ≤
|Pω1(X)|, then |R ⊔ ω1| ≤ |X|.

Proof. Let π : R → X be a surjection. Again define an equivalence
relation on R by xE y if and only if π(x) = π(y). Since |X| = |R/E|, we
will work with the quotient by E. Now suppose Φ : [ω1]

ω1 → Pω1(R/E) is
an injection.

Note that |[ω1]
ω1 | ≤ |Pω1(R/E)| implies, in particular, that ω1 ≤ |R/E|

by Corollary 6.7. Suppose ¬(|R| ≤ |R/E|). Then the Woodin perfect set
dichotomy (Fact 6.2) implies that R/E is wellorderable and hence there is
some cardinal κ such that |R/E| = κ. Let Λ : R/E → κ be a bijection.

Let Γ : [ω1]
ω1 → [κ]<ω1 be defined by Γ (f) = Λ[Φ(f)]. Since Φ(f) ∈

Pω1(R/E), Φ(f) is a countable subset of R/E. Thus Λ[Φ(f)] = {Λ(x) : x ∈
Φ(f)} is a countable subset of κ.

Let ot(Λ[Φ(f)]) be the ordertype of this countable subset of κ in the
usual ordering on κ, which of course is a countable ordinal. Note that ot◦Γ :
[ω1]

ω1 → ω1.
By lettingXα = (ot◦Γ )−1({α}), one has [ω1]

ω1 =
⋃

α<ω1
Xα. By Fact 6.9,

there is some α < ω1 such that |Xα| = |[ω1]
ω1 |. Let Ξ : [ω1]

ω1 → Xα be a
bijection.

Since α < ω1, let B : ω → α be a bijection. For each f ∈ [κ]α, define
Σ(f) ∈ [κ]ω by recursion as follows: Σ(f)(0) = f(B(0)) and Σ(f)(n+ 1) =
Σ(f)(n) + f(B(n + 1)). The map Σ : [κ]α → [κ]ω is an injection. Then
Σ ◦Γ ◦Ξ : [ω1]

ω1 → [κ]ω is an injection. Since |S1| ≤ |[ω1]
ω1 |, one can derive

an injection of S1 into [κ]ω. This violates Theorem 5.7.
Therefore, |R| ≤ |R/E| = |X|. Thus |R ⊔ ω1| ≤ |R/E| = |X|.

7. The cardinalities below R × ω1. This section will investigate the
cardinalities below R × ω1. Assuming ADR, a uniformization argument will
show there are only four uncountable cardinalities below |R×ω1|. In models
of the form AD+, ¬ADR, and V = L(P(R)), this section will show that
there are many intermediate cardinalities below R×ω1. This large family of
cardinalities will correspond to the ultrapower of ω1 by the J-constructibility
degree measure for a certain set J of ordinals.
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Definition 7.1. Let Φ : R → ω1. Define
⊔
Φ = {(r, α) : α < Φ(r)},

which is an R-index disjoint union of countable ordinals given by the func-
tion Φ.

Fact 7.2. Assume AD. Then for every Φ : R → ω1, ω1 does not inject
into

⊔
Φ. If {r : Φ(r) > 0} is uncountable, then |R| ≤ |

⊔
Φ|.

Proof. Let π1 : R × ω1 → R denote the projection onto the first co-
ordinate. Suppose Ψ : ω1 →

⊔
Φ is an injection. Since for all r ∈ R,

Φ(r) < ω1, the set of α such that π1(Ψ(α)) = r is countable. Thus X =
{r : (∃α < ω1)(π1(Ψ(α)) = r)} is an uncountable set of reals. X is wellorder-
able by setting x ⊏ y if and only if the least α such that π1(Ψ(α)) = x is
less than the least α such that π1(Ψ(α)) = y. This is a contradiction since
there are no uncountable wellorderable sequences of reals.

Suppose Y = {r : Φ(r) > 0} is uncountable. By the perfect set property,
let Λ′ : R → Y be an injection. Then Λ : R →

⊔
Φ defined by Λ(r) =

(Λ′(r), 0) is an injection.

Fact 7.3. For all X ⊆ R × ω1 such that ¬(ω1 ≤ |X|), there exists a
Φ : R → ω1 such that X ≈

⊔
Φ.

Proof. For each r ∈ R, letXr = {α : (r, α) ∈ X}. Since ω1 does not inject
into X, Xr is countable. Let δr be the order type of Xr. Let ϖr : Xr → δr be
the associated collapse map. Let Φ : R → ω1 be defined by Φ(r) = δr. Define
Λ : X →

⊔
Φ by Λ(x) = (π1(x), ϖπ1(x)(π2(x))), where π1 : R× ω1 → R and

π2 : R × ω1 → ω1 are the projections onto the first and second coordinate,
respectively. Λ is a bijection.

Fact 7.4. Assume AD. For every X ⊆ R×ω1, one of the following holds:

(1) |X| = |R× ω1|.
(2) |X| = ℵ1.
(3) X is an uncountable set such that ¬(ω1 ≤ |X|).
(4) There is an uncountable Y such that ¬(ω1 ≤ |Y |) and |X| = |Y ⊔ ω1|.
(5) |X| ≤ ℵ0.

Proof. Let X ⊆ R × ω1. For each r ∈ R, let Xr = {α : (r, α) ∈ X}. Let
δr = ot(Xr). For each r ∈ R, let ϖr : Xr → δr denote the collapse map.

Let A = {r : |Xr| = ℵ1}. Suppose A is uncountable. Let Ψ : R → A be a
bijection which exists by the perfect set property and the Cantor–Schröder–
Bernstein theorem. Define Λ : R × ω1 → X by Λ(r, α) = (Ψ(r), ϖ−1

Ψ(r)(α)).
As Λ is a bijection, we have |X| = |R× ω1|. This gives possibility (1).

From now on, assume A is countable. Then R \ A is uncountable. Let
Φ : R → ω1 be defined by

Φ(r) =

{
δr, r /∈ A,

0, otherwise.
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Let Λ :
⊔
Φ→ X be defined by Λ(r, α) = (r,ϖ−1

r (α)). Then Λ is an injection.
In fact, it is a bijection onto X ∩ (R \A× ω1). Thus X ∩ (R \A× ω1) does
not contain a copy of ω1 by Fact 7.2. If B = {r ∈ R \ A : Φ(r) > 0} is
uncountable, then X ∩ (R \ A × ω1) is an uncountable set without a copy
of ω1. If B is countable, then since a countable union of countable ordinals
is countable, X ∩ (R \A× ω1) is a countable set.

Suppose A is nonempty. One can show that a countable union of sets in
bijection with ω1 is in bijection with ω1. Thus X ∩ (A× ω1) ≈ ω1.

Note that X = X ∩ (A × ω1) ⊔ X ∩ ((R \ A) × ω1). If A is empty and
B is countable, then |X| ≤ ℵ0, which gives case (5). If A is empty and B
is uncountable, then X is an uncountable set without a copy of ω1, which
gives case (3). If A is nonempty and B is countable, then |X| = ℵ1, which
gives case (2). If A is nonempty and B is uncountable, then X is a union of
two sets: one set which is in bijection with ω1 and another set which is an
uncountable set without a copy of ω1, which gives case (4).

Fact 7.5. Assume ADR. Every X ⊆ R×ω1 such that ¬(ω1 ≤ |X|) injects
into R.

Proof. Let WO be the set of reals coding wellorderings with underlying
domain ω. Let Xr = {α : (r, α) ∈ X}, let δr = ot(Xr) and let ϖr : Xr → δr
be the collapse map of Xr.

Define R ⊆ R×R by R(x,w) if and only if w ∈ WO and ot(w) = δx. By
ADR, let Σ : R → R be a uniformization for R. For each w ∈ WO and for
each α < ot(w), let αw denote the element of ω with rank α according to w.
(If w codes a finite ordinal, then let nw = n.)

Define Λ : X → R× ω by Λ(x) = (π1(x), ϖπ1(x)(π2(x))
Σ(π1(x))). Then Λ

is an injection. Since |R× ω| = |R|, the proof is complete.

Corollary 7.6. Assume ADR. The uncountable cardinals below |R×ω1|
are |R|, ℵ1, |R ⊔ ω1|, and |R× ω1|.

Proof. This follows from Facts 7.4 and 7.5.
This is also a consequence of Woodin’s dichtomy below |[ω1]

ω| [20, Theo-
rem 18] which is proved under ZF+DC+ADR. However, the proof above under
ADR uses an elementary uniformization argument while Woodin’s stronger
result uses sophisticated AD+ techniques.

We will need several facts about J-constructibility degrees and J-pointed
perfect trees:

Definition 7.7. Let J be a set of ordinals. A perfect tree p ⊆ <ω2 is
J-pointed if for all x ∈ [p], p ≤J x.

Definition 7.8. Let p be a perfect tree on 2. Then s ∈ p is a split node
of p if ŝ 0, ŝ 1 ∈ p.
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By recursion, define Ξp : <ω2 → <ω2 by: Ξp(∅) is the least split node
of p, and if Ξp(s) has been defined, then let Ξp(ŝ i) be the least split node
of p extending Ξp(s)̂ i.

Define Υ p : ω2 → [p] by letting Υ p(r) =
⋃

n∈ω Ξ
p(r↾n). The map Υ p is

called the canonical homeomorphism between ω2 and [p].

Fact 7.9 (Martin). Assume AD. For all A ⊆ R, A or R \A contains the
body of a Turing pointed tree. Hence for any set J of ordinals, A or R \ A
contains the body of a J-pointed tree.

The Martin Turing degree measure µ, and the J-degree measure µJ , are
countably complete ultrafilters.

Proof. Let A ⊆ R. Let GA denote the game

GA

I x0 x2 x4 ...
x

II x1 x3 x5 ...

where Player 1 wins if and only if x ∈ A.
Suppose Player 1 has a winning strategy σ. For any r ∈ R, let σ(r) be

Player 1’s response using σ when Player 2 plays r. Similarly, if t ∈ <ω2, then
σ(t) is Player 1’s response using σ when Player 2 plays t in the finite partial
run of GA.

Thinking of σ as an element of ω2, let σn denote the nth bit of σ. Let
Z = {x ∈ ω2 : (∀n)(x(2n) = σn)}. Note that Z is the body of a perfect tree.

Let p be the ⊆-downward closure of {σ(x↾n) ⊕ (x↾n) : n ∈ ω ∧ x ∈ Z}.
(Recall that if s, t ∈ <ωω are of the same length k, then s ⊕ t has length
2k where (s ⊕ t)(2j) = s(j) and (s ⊕ t)(2j + 1) = t(j) whenever j < k. If
x, y ∈ ωω, one can similarly define x ⊕ y.) Observe that p is a perfect tree
and p is Turing reducible to σ. Suppose f ∈ [p]. There is an x ∈ Z such that
f = σ(x)⊕x. Since σ is a Player 1 winning strategy, f = σ(x)⊕x ∈ A. This
shows that [p] ⊆ A. Note that p is Turing reducible to f since σn = f(4n+1)
for all n. Thus, p is a Turing pointed tree. Every Turing pointed tree is a
J-pointed tree.

If Player 2 has a winning strategy τ , then a similar argument shows that
ω2 \A contains the body of a Turing pointed tree.

Suppose C ⊆ DJ . Let C̃ = {x ∈ ω2 : [x]J ∈ C}. By the above, C̃ or R\ C̃
contains the body of a J-pointed tree p. Without loss of generality, suppose
[p] ⊆ C̃. Suppose x ∈ R is such that p ≤J x. Note Υ p(x) ≤J p ⊕ x ≤J x.
Since Υ p(x) ∈ [p] and p is J-pointed, p ≤J Υ p(x). With knowledge of p,
x = (Υ p)−1(Υ p(x)) ≤J Υ p(x). Thus Υ p(x) has the same J-degree as x. It
has been shown that for any x ≥J p, there is a y ∈ [p] ⊆ C̃ with the
same J-degree as x. Thus C contains the J-cone above the J-degree of p. If
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R \ C̃ contains a J-pointed tree, then the same argument shows that DJ \C
contains a J-cone. This shows that µJ is an ultrafilter.

Suppose ⟨An : n ∈ ω⟩ is a countable sequence from µJ . Using ACR
ω , let

⟨an : n ∈ ω⟩ be a sequence of reals such that for all n ∈ ω, [an]≡J is the base
of J-cone inside An. Let a =

⊕
an, where

⊕
is some recursion coding of

sequences of reals by a real. Then [a]≡J is a base of a J-cone within
⋂

n∈ω An.
This shows that µJ is countably complete (in fact, AD alone implies that
every ultrafilter is countably complete).

Lemma 7.10. Let J be a set of ordinals. Suppose Σ : ω2 → ω2 is a Lip-
schitz continuous function. Suppose p is a J-pointed tree such that Σ ≤J p.
Assume that Σ is not constant on any basic neighborhood of [p]. Then there
is a J-pointed subtree q ⊆ p such that for all r ∈ [q], Σ(r)⊕ q ≡J r.

Proof. Since Σ is a Lipschitz continuous function, Σ can be considered
as a Player 2 stategy in a game where both players make moves from {0, 1}.
In this way, one will consider Σ as a real. Since Σ is Lipschitz, for each
u ∈ <ω2 let Σ(u) ∈ |u|2 be the string t such that for every x ∈ ω2 with
u ⊆ x, t ⊆ Σ(x). If one considers Σ as a Player 2 winning strategy, then
Σ(u) is just the response of Player 2 using Σ when Player 1 plays u.

Fix a J-pointed tree p. We will construct a sequence ⟨us : s ∈ <ω2⟩ in the
tree p and a sequence ⟨ns : s ∈ <ω2⟩ of natural numbers with the following
properties:

(1) For all s ∈ <ω2, us ⊆ usˆi for both i ∈ 2.
(2) For all s ∈ <ω2, if t ⊊ s, then nt < ns.
(3) For all s ∈ <ω2 and i ∈ 2, Σ(usˆi)(ns) = i.
(4) Both ⟨us : s ∈ <ω2⟩ and ⟨ns : s ∈ <ω2⟩ are Turing computable from

p⊕Σ. Since Σ ≤J p, both sequences belong to L[J, p].

First suppose that such sequences exist. Let q be the ⊆-downward closure of
{us : s ∈ <ω2}. Then q is a perfect subtree of p. We know that q is Turing
computable from p⊕Σ and therefore, q ≤J p. Suppose r ∈ [q]. Then r ∈ [p].
Since p is J-pointed, p ≤J r. Thus q ≤J r. This shows that q is also a
J-pointed tree.

Let f be the left-most branch of q, i.e. Υ q(0̄) where 0̄ ∈ ω2 is the constant
0 sequence. Note that f ≤J q. Since f ∈ [p], p ≤J f . Thus p ≤J q and as
a result p ≡J q. Hence Σ, ⟨us : s ∈ <ω2⟩, and ⟨ns : s ∈ <ω2⟩ belong to
L[J, q].

Now suppose r ∈ [q]. As observed above, p ≤J r. We seek to define a
sequence ⟨vn : n ∈ ω⟩ ≤J q⊕Σ(r) in <ω2 such that for all n ∈ ω, vn ⊆ vn+1,
|vn| = n, and uvn ⊆ r.

Let v0 = ∅. By construction of q, uv0 = u∅ ⊆ r. Suppose vn has been
defined. Let vn+1 = vn (̂Σ(r)(nvn)). By the induction hypothesis, uvn ⊆ r. If
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r ∈ [q], then uvnˆ0 or uvnˆ1 is an initial segment of r. By construction, one can
determine which of the two is an initial segment of r by determining the value
of Σ(r)(nvs). This shows that uvn+1 ⊆ r. This completes the construction of
the sequence ⟨vn : n ∈ ω⟩ which is Turing computable from ⟨us : s ∈ <ω2⟩,
⟨ns : s ∈ <ω2⟩, and Σ(r). Thus ⟨vn : n ∈ ω⟩ ≤J q ⊕Σ(r).

Note that r =
⋃

n∈ω uvn . Thus r ∈ L[J, q,Σ(r)], i.e. r ≤J q ⊕Σ(r).
Also, since r ∈ [q] and q is J-pointed, Σ ≤J q ≤J r. Thus q⊕Σ(r) ≤J r.

It has been shown that r ≡J q ⊕Σ(r).
Therefore, it remains to show that one can construct the sequences ⟨us :

s ∈ <ω2⟩ and ⟨ns : s ∈ <ω2⟩.
Let u∅ = ∅. Since Σ is not constant, find the least triple (u0, u1,m) such

that u0 ∈ p, u1 ∈ p, u0(m) = 0 and u1(m) = 1. Let n∅ = m, u⟨0⟩ = u0, and
u⟨1⟩ = u1.

Let s ∈ <ω2 and |s| > 0. Suppose us and ns↾|s|−1 have been defined. Since
Σ is not constant on Nus , find the least triple (u0, u1,m) such that u0 ∈ p,
u1 ∈ p, us ⊆ u0, us ⊆ u1, m > ns↾|s|−1, |u0| > m, |u1| > m, Σ(u0)(m) = 0,
and Σ(u1)(m) = 1. Let usˆ0 = u0, usˆ1 = u1, and ns = m. This produces
the sequences ⟨us : s ∈ <ω2⟩ and ⟨ns : s ∈ <ω2⟩ with the desired property.

Definition 7.11. A function F : R → ω1 is J-invariant if for all x, y ∈ R,
x ≡J y implies F (x) = F (y).

If F : R → ω1 is a J-invariant function, then let F̃ : DJ → ω1 be the
induced function on DJ . That is, F̃ (X) = F (x), where x ∈ X.

A J-invariant function F is everywhere increasing if for all x, y ∈ R,
x ≤J y implies F (x) ≤ F (y).

A J-invariant function F is increasing µJ -almost everywhere if there is
an a ∈ R such that for all x, y ∈ R with a ≤J x and a ≤J y, x ≤J y implies
that F (x) ≤ F (y).

Definition 7.12. Let J be a set of ordinals. For each F,G ∈
∏

X∈DJ
ON,

define F =µJ G if {X ∈ DJ : F(X) = G(X)} ∈ µJ . Let F <µJ G if
{X ∈ DJ : F(X) < G(X)} ∈ µJ .

The ultraproduct
∏

X∈DJ
ON/µJ consists of the equivalence classes of∏

X∈DJ
ON under =µJ . For two elements F ,G ∈

∏
X∈DJ

ON/µJ , we let
F < G if for all F ∈ F and G ∈ G, F <µJ G.

Let
∏

DJ
ω1/µJ consist of the equivalence classes having a representative

which is a function F : DJ → ω1.

Fact 7.13 (Woodin). Assume ZF+AD. Let J be a set of ordinals. Then∏
X∈DJ

ω
L[J,X]
1 /µJ = ω1.

Proof. For each α < ω1, let Fα : R → ω1 be the constant function taking
value α. Note that F̃α ∈

∏
X∈DJ

ω
L[J,X]
1 . By the countable additivity of µJ ,

[F̃α]µJ = α. Thus ω1 ⊆
∏

X∈DJ
ω
L[J,X]
1 .



Infinity-Borel codes 35

Let F ∈
∏

X∈DJ
ω
L[J,X]
1 /µJ . Let F : R → ω1 be a J-invariant function

such that F̃ is a representative of F . onsider the following game from [14,
Lemma 3.3]:

GF

I x0 x1 x2 ... x

II y0, z0 y1, z1 y2, z2 ... y, z

Player 2 wins if and only if x ≤J y, z ∈ WOL[J,y], and ot(z) = F (y).

Claim 1. Player 2 has a winning strategy in this game.

Suppose otherwise that Player 1 has a winning strategy σ. Consider σ as
both a real and as a strategy. Since F̃ ∈

∏
X∈DJ

ω
L[J,X]
1 , pick a y ≥J σ such

that F (y) < ω
L[J,y]
1 . Pick a z ∈ WOL[J,y] such that ot(z) = F (y). Note that

σ(y, z) ≤J y since σ, y, z ≤J y. Thus Player 2 has won, which contradicts σ
being a Player 1 winning strategy. This proves Claim 1.

Thus suppose τ is a Player 2 winning strategy. Let π1, π2 : R2 → R
be the projections onto the first and second coordinate, respectively. Since
τ is a winning strategy for Player 2, π2[τ [R]] is a Σ1

1 subset of WO. By
boundedness, there is a δ < ω1 such that for all v ∈ π2[τ [R]], ot(v) < δ.
Now take x ≥J τ . Then τ(x) ≤J x and therefore π1(τ(x)) ≤J x. Since τ is a
winning strategy for Player 2, x ≤J π1(τ(x)). So x ≡J π1(τ(x)). Since F is
J-invariant, F (x) = F (π1(τ(x))) = ot(π2(τ(x))) < δ. Then by the countable
additivity of µJ , there is an α < δ such that for µJ -almost all x, F (x) = α.
Hence [F̃ ]µJ = α.

This shows that
∏

X∈DJ
ω
L[J,X]
1 /µJ ⊆ ω1, which completes the proof.

Fact 7.14. Assume ZF + DCR + AD. Let J be a set of ordinals. Then
every J-invariant function is increasing µJ -almost everywhere.

Proof. Consider the set A = {x ∈ R : (∀y)(x ≤J y ⇒ F (x) ≤ F (y))}.
Since F is a J-invariant function, A is a J-invariant set. Let Ã = A/≡J be
the corresponding set of J-degrees. By Fact 7.9, Ã ∈ µJ or DJ \ Ã ∈ µJ .

Case 1. Suppose DJ \ Ã ∈ µJ . There is some ι ∈ R such that for all
x ∈ R with ι ≤ x, x /∈ A. Let Cι = {x ∈ R : ι ≤ x}. Thus for all x ∈ Cι,
there is a y ∈ R with x ≤J y and F (y) < F (x). Since ι ≤J x ≤J y, in fact
for all x ∈ Cι there is some y ∈ Cι such that F (y) < F (x). Define a binary
relation R on Cι by y R x if and only if F (y) < F (x). By DCR, there is
a sequence ⟨xn : n ∈ ω⟩ such that F (xn+1) < F (xn). This contradicts the
wellfoundedness of ON. Thus Case 1 cannot occur.

Case 2. Suppose A ∈ µJ . There is some ι ∈ R such that for all x ∈ R
with ι ≤J x, x ∈ A. Suppose x, y ∈ R is such that ι ≤J x ≤J y. By definition
of x ∈ A, F (x) ≤ F (y), so F is increasing on the cone above ι.
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Since only Case 2 can occur, F must be increasing µJ -almost every-
where.

Fact 7.15. Assume ZF + DCR + AD. Let J be a set of ordinals. Let
F : R → ω1 be a J-invariant function. Then there is a G : R → ω1 which is
a J-invariant everywhere increasing function such that F̃ ∼µJ G̃.

Proof. By Fact 7.14, there is an ι ∈ R such that F is increasing above the
J-cone of ι. Define G(x) = sup {F (z) : ι ≤J z ≤J x}. (If this set is empty,
then G(x) = 0.) Then G is J-invariant.

If x ≤J y, then {z : ι ≤J z ≤J x} ⊆ {z : ι ≤J z ≤J y}. Thus G(x) ≤
G(y). Therefore G is everywhere increasing.

If x ∈ R is such that ι ≤J x, thenG(x) = sup {F (z) : ι ≤J z ≤ x} = F (x)
since F is increasing on the cone above ι.

Fact 7.16 (Woodin, [17, Theorem 5.9]). Assume AD. Let J be a set of
ordinals. For µJ -almost all x ∈ R, L[J, x] |= CH.

Fact 7.17. Assume ZF + DCR + AD and V = L(J,R) for some set J
of ordinals. Then there is a set XJ of ordinals that absorbs every function
on R × ω1 in the following sense: for every partial function Λ : R × ω1 →
R × ω1, there is a real z, a formula φ, and an ordinal ξ such that for all
(r, α) ∈ dom(f), Λ(r, α) ∈ L[XJ , z, r] and Λ(r, α) = (s, β) ⇔ L[XJ , z, r, s] |=
φ(XJ , z, ξ, r, α, s, β). In this context, z is said to code Λ.

Proof. The proof is quite similar to those of Facts 4.6 and 5.6. As in
those arguments, one can take XJ to be J ⊕ ωOJ .

Remark 7.18. Next, we will study the cardinals below R × ω1 under
the failure of ADR. By Fact 2.7, if one is working in the theory ZF+AD+ +
V=L(P(R))+¬ADR, then there is set J of ordinals such that V = L(J,R). In
the rest of this section, we will work with models of the form L(J,R) |= ZF+
AD+DCR. By Fact 7.17, there is an associated set of ordinals XJ ∈ L(J,R)
which absorbs all functions Λ : R×ω1 → R×ω1 in L(J,R). Without loss of
generality, by replacing J with XJ , we can assume that J is a set of ordinals
that absorbs all functions from R× ω1 into R× ω1.

Definition 7.19. Let J be a set of ordinals. Let F : R → ω1 be a J-
invariant function. Define ΦF : R → ω1 by ΦF (x) = ω

L[J,x]
F (x) . Let W J

F =
⊔
ΦF .

Fact 7.20. Assume ZF + AD. Let F1, F2 : R → ω1 be two everywhere
increasing J-invariant functions such that F̃1 =µJ F̃2. Then W J

F1
≈W J

F2
.

Proof. Let ℓ ∈ R be such that for all x ≥J ℓ, F1(x) = F2(x). By Fact 7.9,
let p be a J-pointed tree such that [p] ⊆ {x ∈ R : ℓ ≤J x}.

Define Λ : W J
F1

→ W J
F2

by letting Λ(x, α) = (Υ p(x), α). Since p is J-
pointed, p ≤J Υ p(x). Hence p ∈ L[J, Υ p(x)]. Using p and Υ p(x), one can
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Turing compute x. Thus x ≤J Υ
p(x). Since Υ p(x) ∈ [p], we have F1(Υ

p(x)) =

F2(Υ
p(x)). Thus α < ω

L[J,x]
F1(x)

≤ ω
L[J,Υ p(x)]
F1(x)

≤ ω
L[J,Υ p(x)]
F1(Υ p(x)) = ω

L[J,Υ p(x)]
F2(Υ p(x)) since

x ≤J Υ p(x), F1 is everywhere increasing, and F1 and F2 are equal on [p].
This shows that Λ is well-defined. It is an injection. Thus |W J

F1
| ≤ |W J

F2
|.

By reversing the roles of F1 and F2 in this argument, one sees that
|W J

F2
| ≤ |W J

F1
|. Hence W J

F1
≈W J

F2
.

Definition 7.21. Assume ZF+DCR+AD and there is a set J of ordinals
such that V = L(J,R). For each F ∈

∏
DJ
ω1/µJ , define the cardinality Y J

F
to be |W J

F |, where F : R → ω1 is any J-invariant everywhere increasing
function such that F̃ ∈ F . (Note that such an F exists by Fact 7.15 and this
definition is correct by Fact 7.20.)

Fact 7.22. Let J be a set of ordinals. For every Φ : R → ω1, there is an
everywhere increasing J-invariant function F such that |

⊔
Φ| ≤ |W J

F |.
Thus every subset of R × ω1 without a copy of ω1 injects into W J

F for
some everywhere increasing J-invariant function F . Of course, W J

F does not
contain a copy of ω1 either, since it is of the form

⊔
Φ for some function Φ.

Proof. Let F ′ : R → ω1 be defined by letting F ′(x) to be the ordinal
such that L[J, x] |= |Φ(x)| = ℵF ′(x).

For each x ∈ R, let Γ x : Φ(x) → ω
L[J,x]
F ′(x) be the L[J, x]-least bijection.

Then Λ′ :
⊔
Φ→W J

F ′ defined by Λ′(x, α) = (x, Γ x(α)) is a bijection.
Let F (x) = sup {F ′(z) : z ≤J x}. Then F ′ is everywhere increasing and

W J
F ′ injects into W J

F .
The last statement follows from Fact 7.3.

Example 7.23. Let J be a set of ordinals. Let H0, H1 : R → ω1 denote
the constant 0 and constant 1 function, respectively. Then |W J

H0
| = |W J

H1
|

= |R|.

Proof. Note W J
H0

=
⊔
ω
L[J,x]
0 ≈ R× ω ≈ R.

For each x ∈ R, let Γ x : ω
L[J,x]
1 → R denote the L[J, x]-least injection of

ω
L[J,x]
1 into RL[J,x]. Define Λ : W J

H0
→ R × R by Λ(x, α) = (x, Γ x(α)). Λ is

an injection witnessing |W J
H1

| ≤ |R× R| = |R|. Thus W J
H1

≈ R.

Fact 7.24. Assume ZF+AD+DCR and V = L(J,R) where J is a set of
ordinals that absorbs all functions from R×ω1 into R×ω1 as in Fact 7.17 and
Remark 7.18. Suppose F1, F2 : R → ω1 are everywhere increasing J-invariant
functions such that F̃1 <µJ F̃2 and F1 is not µJ -almost everywhere equal to 0.
Then |W J

F1
| < |W J

F2
|.

Proof. Since F1 is not µJ -almost everywhere 0 and F1 <µJ F2, let ℓ ∈ R
be such that for all x ∈ R with ℓ ≤J x, 1 ≤ F1(x) < F2(x). Let p be a
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J-pointed tree such that [p] ⊆ {x ∈ R : ℓ ≤J x}. Define Λ : W J
F1

→ W J
F2

by Λ(x, α) = (Υ p(x), α). For all (x, α) ∈ W J
F1

, α < ω
L[J,x]
F1(x)

≤ ω
L[J,Υ p(x)]
F1(Υ p(x)) <

ω
L[J,Υ p(x)]
F2(Υ p(x)) since x ≤J Υ

p(x), F1 is everywhere increasing, and ℓ ≤J Υ
p(x).

Thus Λ is a well-defined injection witnessing |W J
F1
| ≤ |W J

F2
|.

Suppose there was an injection Λ : W J
F2

→ W J
F1

. Since J absorbs all
functions, let z ∈ R and φ be some formulas such that within L[J, z], Λ
is correctly defined in the sense of Fact 7.17. That is, for all (r, α) ∈ W J

F2
,

Λ(r, α) ∈ L[J, z, r] and Λ(r, α) = (s, β) ⇔ L[J, z, r] |= φ(J, z, r, α, s, β).
By Fact 7.16, let e ∈ R be such that for all x ∈ R, e ≤J x implies that
L[J, x] |= CH.

Let w = z ⊕ ℓ ⊕ e. Within L[J,w], Λ as defined by φ is a injection of
W J

F2
∩ L[J,w] into W J

F1
∩ L[J,w]. In particular, within L[J,w], there is an

injection of {w} × ω
L[J,w]
F2(w) into W J

F1
∩ L[J,w] ⊆ RL[J,w] × ω

L[J,w]
F1(w) since F1 is

an everywhere increasing function. Since L[J,w] |= CH, |R|L[J,w] = ω
L[J,w]
1 .

By the definition of ℓ, for all x such that ℓ ≤J x, F1(x) ≥ 1. Thus L[J,w] |=
|R × ωF1(w)| = ωF1(w). Thus within L[J,w], one has an injection of ωL[J,w]

F2(w)

into ωL[J,w]
F1(w) . Since ℓ ≤J w, we have F2(w) > F1(w). Such an injection cannot

exist in L[J,w], a contradiction. This shows |W J
F1
| < |W J

F2
|.

Corollary 7.25 (Woodin). Assume ZF+AD++¬ADR+V=L(P(R)).
There is a set X ⊆ R× ω1 such that |R| < |X| and ¬(ω1 ≤ |X|),

Proof. By Fact 2.7, there is a set J of ordinals such that V = L(J,R) and
J absorbs functions. Let F 1, F 2 : R → ω1 be the constant function taking
values 1 and 2, respectively. By Example 7.23, W J

F 1 ≈ R. Then by Fact 7.24,
|R| = |W J

F 1 | < |W J
F 2 |.

The set W J
F 2 is essentially the example in [20, Theorem 25].

Theorem 7.26. Assume ZF+ AD+ DCR and V = L(J,R) for some set
J of ordinals which absorbs functions from R× ω1 into R× ω1. Let V be the
collection of |X| such that X ⊆ R × ω1 and ¬(ω1 ≤ |X|); that is, V is the
collection of cardinalities of sets below R×ω1 that do not possess a copy of ω1.

The sequence {Y J
F : F ∈

∏
DJ
ω1/µJ \ {0}} is an order-preserving in-

jection of the wellordering
∏

DJ
ω1/µJ \ {0} with the ultrapower ordering

into V with the natural cardinality ordering induced by injections. More-
over, this sequence is cofinal in V in the sense that if Y ∈ V, then there is
an F ∈

∏
D ω1/µ \ {0} such that Y ≤ Y J

F .

Proof. This is clear from Facts 7.22 and 7.24. Also note that it is nec-
essary to remove 0, for otherwise the sequence would not be injective since
Y J
0 = |R| = Y J

1 by Example 7.23.
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Fact 7.27 (Woodin). Assume ZF+DCR+AD and V = L(J,R) for some
set J of ordinals. Let XJ = J ⊕ ωOJ . Then

∏
DXJ

ω
L[XJ ,X]
2 /µXJ

= ΘL(J,R).

Proof. This is shown in [14, Theorem 5.16].

As in Remark 7.18, if one has that V = L(J,R), one could have always
chosen the set of ordinals which absorbed functions to be J⊕ωOJ . Moreover
L(J,R) = L(J ⊕ ωOJ ,R). Thus {Y J

F : F ∈
∏

DJ
ω1/µJ} is quite long.

Let Y = {Y J
F : F ∈

∏
DJ
ω1/µJ \ {0}}. A natural question would be

whether V, the collection of uncountable cardinals below R×ω1 which does
not contain a copy of ω1, is the same as Y. Certainly, Y ⊆ V and Y is cofinal
in V. Moreover, for all Y ∈ Y and X ∈ V, either X ≤ Y or Y ≤ X . This will
follow from the next result. Moreover, the game in the proof is important
for later results.

Theorem 7.28. Assume ZF + AD. Let J be a set of ordinals. Let F :
R → ω1 be an everywhere increasing J-invariant function such that for all
x ∈ R, F (x) ≥ 1. Let Φ : R → ω1 be any function. Consider the following
game SΦ

F :

SΦ
F

I r0 r1 r2 r3 · · · r

II x0 x1 x2 x3 · · · x

where Players 1 and 2 separately play natural numbers to produce reals r
and x. Player 2 wins SΦ

F if and only if L[J, r, x] |= Φ(r) < ωF (r⊕x). If
Player 2 has a winning strategy in SΦ

F , then |
⊔
Φ| ≤ |W J

F |. If Player 1 has
a winning strategy in SΦ

F , then |W J
F | ≤ |

⊔
Φ|.

Thus either |
⊔
Φ| ≤ |W J

F | or |W J
F | ≤ |

⊔
Φ|.

Proof. Suppose Player 2 has a winning strategy τ . For each r ∈ R, let
τ(r) denote the real that Player 2 produces using τ when Player 1 plays r.

Since τ is a Player 2 winning strategy, for all r ∈ R, L[J, r, τ(r)] |= Φ(r) <
ωF (r⊕τ(r)). Define Λ :

⊔
Φ→W J

F by Λ(r, α) = (r⊕τ(r), α). Λ is an injection
witnessing |

⊔
Φ| ≤ |W J

F |.
Suppose now Player 1 has a winning strategy σ. For each x ∈ R, let σ(x)

be the response by Player 1 using σ when Player 2 plays x.
Since σ is a Player 1 winning strategy, for all x ∈ R, L[J, σ(x), x] |=

ωF (σ(x)⊕x) ≤ Φ(σ(x)). Note that if x0, x1 ∈ R are such that σ(x0) = σ(x1)

and σ(x0)⊕ x0 ≡J σ(x1)⊕ x1, then ωL[J,σ(x0),x0]
F (σ(x0)⊕x0)

= ω
L[J,σ(x1),x1]
F (σ(x1)⊕x1)

.
By Fact 7.16, let e ∈ R be such that for all x ∈ R with e ≤J x, we

have L[J, x] |= CH. By Fact 7.9, let p be a J-pointed perfect tree such that
e⊕ σ ≤J p, i.e. [p] is inside the cone above e⊕ σ.
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Note that when one considers σ : R → R as a Lipschitz function, it can-
not be constant on any neighborhood of [p] since ωL[J,σ(x),x]

F (σ(x)⊕x) ≤ Φ(σ(x)) and
F (x) ≥ 1 for all x ∈ R. Thus by Lemma 7.10, there is a J-pointed perfect
subtree q ⊆ p with the property that for all x ∈ [q], σ(x)⊕ q ≡J x.

Before proceeding, we should give intuition for the next function: σ as a
Lipschitz function is not an injection; however, for any r ∈ σ[[q]], one knows
where the possible preimages of r come from. Precisely, for any r ∈ σ[[q]],
σ−1[{r}] ⊆ RL[r⊕q]. Thus there are at most |R|L[J,r⊕q] many x ∈ R such
that σ(x) = r. Since L[J, r ⊕ q] |= CH, we have L[J, r ⊕ q] |= |R| = ω1.
In anticipation of many possible x sharing the same r as its image, we will
split ωL[J,r⊕q]

F (r⊕q) into RL[J,r⊕q] many disjoint pieces of size ωL[J,r⊕q]
F (r⊕q) . This makes

room for each of the possible x such that σ(x) = r. The details are as follows:
For each r ∈ σ[[q]], let Πr : RL[J,r⊕q] × ω

L[J,r⊕q]
F (r⊕q) → ω

L[J,r⊕q]
F (r⊕q) be the

L[J, r ⊕ q]-least injection which exists since L[J, r ⊕ q] |= CH and F (x) ≥ 1

for all x ∈ R. Define Λ′ :
⊔

x∈[q] ω
L[J,x]
F (x) →

⊔
Φ by

Λ′(x, α) = (σ(x), Πσ(x)(x, α)).

Note this is well-defined since for all x ∈ [q], σ ≤J q ≤J x and thus σ(x) ⊕
x ≡J x ≡J σ(x)⊕q. If x ∈ [q] and α < ω

L[J,x]
F (x) , then x ∈ RL[J,x] = RL[J,σ(x)⊕q]

and α < ω
L[J,x]
F (x) = ω

L[J,σ(x)⊕q]
F (σ(x)⊕q) . Thus (x, α) is in the domain of Πσ(x). Also,

Πσ(x) maps into ωL[J,σ(x)⊕q]
F (σ(x)⊕q) = ω

L[J,σ(x)⊕x]
F (σ(x)⊕x) ≤ Φ(σ(x)).

Suppose (x0, α0) ̸= (x1, α1) belong to
⊔

x∈[q] ω
L[J,x]
F (x) . If σ(x0) ̸= σ(x1),

then it is clear that Λ′(x0, α0) ̸= Λ′(x1, α1). Suppose σ(x0) = σ(x1), and
let r be this common value. As noted above, since x0, x1 ∈ [q], one has
x0 ≡J σ(x0) ⊕ q ≡J r ⊕ q ≡J σ(x1) ⊕ q ≡J x1. Thus x0, x1 ∈ RL[J,r⊕q].
Since x0 ̸= x1, we have Πr(x0, α0) ̸= Πr(x1, α1) since Πr is an injection. By
definition of Λ′, Λ′(x0, α0) ̸= Λ′(x1, α1). Thus Λ′ is an injection.

Finally, define Λ′′ : W J
F →

⊔
x∈[q] ω

L[J,x]
F (x) by Λ′′(x, α) = (Υ q(x), α). Note

x ≤J Υ
q(x) since q is J-pointed. Therefore ωL[J,x]

F (x) ≤ ω
L[J,Υ q(x)]
F (x) ≤ ω

L[J,Υ q(x)]
F (Υ q(x))

since F is everywhere increasing. Thus Λ′′ is a well-defined injection.
Thus |W J

F | ≤ |
⊔

x∈[q] ω
L[J,x]
F (x) | ≤ |

⊔
Φ|.

Corollary 7.29. Assume ZF + AD. Let J be a set of ordinals. Let
F : R → ω1 be a J-invariant function such that F (x) ≥ 1 for all x ∈ R.
Suppose X ⊆ R× ω1 and ¬(ω1 ≤ |X|). Then either |X| ≤ Y J

F or Y J
F ≤ |X|.

In other words, for all X ∈ V and Y ∈ Y, X ≤ Y or Y ≤ X .

Proof. By Fact 7.3, there is some Φ : R → ω1 such that |X| = |
⊔
Φ|.

The result now follows from Theorem 7.28.
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Theorem 7.30. Assume ZF + AD. Let J be a set of ordinals. Let F :
R → ω1 be an everywhere increasing J-invariant function. Let X ⊆ W J

F+1,
where (F + 1)(x) = F (x) + 1. Then either |X| ≤ |W J

F | or |W J
F+1| = |X|.

Proof. By Fact 7.3, there is a Φ : R → ω1 such that |X| = |
⊔
Φ|.

Consider the game SΦ
F+1 from Theorem 7.28:

SX
F

I r0 r1 r2 r3 · · · r

II x0 x1 x2 x3 · · · x

where Player 1 and Player 2 separately play natural numbers to produce
reals r and x. Player 2 wins SX

F if and only if L[J, r, x] |= Φ(r) < ωF (r⊕x)+1.
By AD, one of the two players has a winning strategy.

By Theorem 7.28, if Player 1 has a winning strategy then |W J
F+1| ≤

|
⊔
Φ| = |X| ≤ |W J

F+1|. Thus |X| = |W J
F+1|.

Suppose now Player 2 has a winning strategy τ . We will need a more
careful look at the proof of statement 1 in Theorem 7.28.

For each r ∈ R, let τ(r) denote the real that Player 2 produces using
τ when Player 1 plays r. Since τ is a Player 2 winning strategy, for all
r ∈ R, L[J, r, τ(r)] |= Φ(r) < ωF (r⊕τ(r))+1. That is, L[J, r, τ(r)] |= |Φ(r)| ≤
ωF (r⊕τ(r)). Let Γ r : Φ(r) → ω

L[J,r,τ(r)]
F (r⊕τ(r)) denote the L[J, r, τ(r)]-least injection

of Φ(r) into ωL[J,r,τ(r)]
F (r⊕τ(r)).

Define Λ :
⊔
Φ → W J

F by Λ(r, α) = (r ⊕ τ(r), Γ r(α)). Then Λ is an
injection witnessing |

⊔
Φ| ≤ |W J

F |.

Note that the assumption for Theorems 7.28 and 7.30 is just ZF + AD
and J is any set of ordinals (with no assumption about function absorption,
although the two cardinalities may degenerate without these assumptions).

Corollary 7.31. Assume ZF+ AD+DCR and V = L(J,R) where J is
a set of ordinals which absorbs functions from R×ω1 → R×ω1. Then for all
n ∈ ω \ {0}, there are no cardinalities between Y J

n and Y J
n+1. In particular,

there are no cardinalities between |R| = Y J
1 and Y J

2 .

Theorem 7.32. Assume ZF+DCR +AD and V = L(J,R), where J is a
set of ordinals. Let F ∈

∏
DJ
ω1/µJ \ {0} be such that cof(F) = ω. Let ⟨Fn :

n ∈ ω⟩ be any ω-cofinal sequence through F . Then there exist everywhere
increasing J-invariant functions from R into ω1, F and ⟨Fn : n ∈ ω⟩, such
that [F̃ ]µJ = F and for all n ∈ ω, [F̃n]µJ = Fn.

Furthermore, assume J is a set of ordinals which absorbs functions from
R× ω1 to R× ω1. Then for any X ⊆W J

F , either |X| = |W J
F | or there exists

an n ∈ ω such that |X| ≤ |W J
Fn

|.
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Proof. By Fact 7.15, every G ∈
∏

DJ
ω1/µJ has an everywhere increasing

J-invariant G : R → ω1 such that G = [G̃]µJ . Since AD implies ACR
ω and

every set in L(J,R) is ordinal definable from J and a real, one finds that
L(J,R) satisfies ACω, the full axiom of countable choice. Thus one can obtain
F and ⟨Fn : n ∈ ω⟩ as in the first statement of the theorem. We may assume
that for all n ∈ ω and all x ∈ R, Fn(x) ≥ 1.

Now fix an X ⊆ W J
F . Suppose there is no n such that |X| ≤ |W J

Fn
|. Let

m ∈ ω. Suppose ⟨Xk : k < m⟩ is a sequence of disjoint subset of X and
Xk ≈ W J

Fk
for all k < m. Let Y = X \ (

⋃
k<mXk). For each r ∈ R, let

δr = ot(Yr). Let Φ : R → ω1 be defined by Φ(r) = δr. Note that Y ≈
⊔
Φ.

Consider the game SΦ
Fm

from Theorem 7.28.

Case 1: Suppose Player 2 has a winning strategy in SΦ
Fm

. By Theo-
rem 7.28, there is an injection Λ :

⊔
Φ → W J

Fm
. Since Y ≈

⊔
Φ, there is an

injection of Y into W J
Fm

.
Note that W J

Fm
is in bijection with

⊔
k≤mW

J
Fm

. Since Xk ≈ W J
Fk

and
|WFk

| ≤ |WFm | for all k < m, there are injections of Xk into W J
Fm

. Thus
there is an injection of X = Y ⊔

⊔
k<mXk into

⊔
k≤mW

J
Fm

≈ W J
Fm

. This
contradicts the assumption that there is no n ∈ ω such that |X| ≤ |W J

Fn
|.

So Case 1 cannot occur.

Case 2: Player 1 has a winning strategy in SΦ
Fm

. Theorem 7.28 states
that there is an injection Λm :W J

m → Y . Let Xm be the image of Λm.
Consider the tree T of (Λ0, . . . , Λm−1) such that each Λi : W J

Fi
→ X

is an injection and for all i < j < m, Λi[W
J
i ] ∩ Λj [W

J
j ] = ∅. Order this

tree by extension. By the analysis above, this tree has no dead branches.
Since L(J,R) |= DCR and all sets are ordinal definable from J and a real,
L(J,R) |= DC. Thus let ⟨Λi : i ∈ ω⟩ be a branch through the tree T .

Define K : R× ω1 → R× ω1 by

K(r, α) =

{
Fα(r), α < ω,

0, otherwise.

Since J absorbs functions, as in Fact 7.17, there is an ℓ0 ∈ R such that for
all x ≥J ℓ0 and α < ω1, K(x, α) ∈ L[J, x]. In particular, by absorbing K,
one sees that for all x with ℓ0 ≤ x, ⟨Fn(x) : n ∈ ω⟩ ∈ L[J, x].

Since ⟨Fn : n ∈ ω⟩ is cofinal through F , one can use the countable
additivity of µJ to find an ℓ ≥J ℓ0 such that for all x ∈ R with ℓ ≤J x,
⟨Fn(x) : n ∈ ω⟩ is a cofinal sequence through F (x). Let p be a J-pointed
tree such that ℓ ≤J p. For each s ∈ [p], let Σs : ω

L[J,s]
F (x) →

⊔
n∈ω ω

L[J,s]
Fn(s)

be the
L[J, s]-least injection. (Note it is important that ⟨Fn(s) : s ∈ ω⟩ ∈ L[J, s] for
this to make sense.)
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Let Λ∗ :
⊔

x∈[p] ω
L[J,x]
F (x) → X be defined by

Λ∗(x, α) = Λπ1(Σx(x,α))(x, π2(Σ
x(x, α))).

Here, we think of
⊔

n∈ω ω
L[J,s]
Fn(x)

= {(n, α) : n ∈ ω ∧ α < ω
L[J,x]
Fn(x)

} as a subset
of ω × ω1. The functions π1 : ω × ω1 → ω and π2 : ω × ω1 → ω1 are
the projections onto the first and second coordinates, respectively. Here we
consider W J

Fi
as a subset of R× ω1. Observe that Λ∗ is an injection.

As usual, Λ⋆ :W J
F (x) →

⊔
x∈[p] ω

L[J,x]
F (x) defined by Λ⋆(x, α) = (Υ p(x), α) is

an injection. It has been shown that |W J
F | ≤ |X| and hence |X| = |W J

F |.

By Fact 7.13, the first ω1 elements of
∏

DJ
ω1/µJ are the elements of∏

X∈DJ
ω
L[J,X]
1 /µJ . For each α < ω1, let Fα : R → ω1 be the constant

function α. Note that [F̃α]µJ is α in the ultrapower. Thus, Y J
α = |W J

Fα |.
From the results shown so far, one can determine the ω1-initial segment
of V, the collection of cardinalities below |R× ω1| without a copy of ω1:

Theorem 7.33. Assume ZF + AD + V=L(J,R) where J is a set of or-
dinals which absorbs functions from R × ω1 into R × ω1. The collection of
cardinalities {Y J

α : 1 ≤ α < ω1} is closed under the injection relation, ≤.
That is, if X is an uncountable cardinality and there is some α < ω1 such
that X ≤ Y J

α , then there is some 1 ≤ β ≤ α such that X = Y J
β . Moreover,

{Y J
α : 1 ≤ α < ω1} is an initial segment of V under the injection relation

in the sense that for all X ∈ V, either X ∈ {Y J
α : 1 ≤ α < ω1} or for all

α < ω1, Y J
α ≤ X .
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