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ON WEIGHTED ESTIMATES FOR THE STREAM
FUNCTION OF AXIALLY SYMMETRIC SOLUTIONS

TO THE NAVIER–STOKES EQUATIONS
IN A BOUNDED CYLINDER

Abstract. Higher-order estimates in weighted Sobolev spaces for solutions
to a singular elliptic equation for the stream function in an axially sym-
metric cylinder are provided. These estimates are essential for the proof of
the global existence of regular axially symmetric solutions to incompressible
Navier–Stokes equations in axially symmetric cylinders. In order to derive
the estimates, the technique of weighted Sobolev spaces developed by Kon-
drat’ev is applied. The weight is a power function of the distance to the axis
of symmetry.

1. Introduction. In this note we derive estimates for solutions to the
following problem:

(1.1)

−∆ψ +
ψ

r2
= ω in Ω,

ψ = 0 on S := ∂Ω,

where Ω ⊂ R3 is a bounded cylinder with boundary S. Before we go into any
geometrical details (see (1.6)), we briefly justify why this problem is highly
important in mathematical fluid mechanics.

Our ultimate goal is to study the regularity of weak solutions to an initial-
boundary value problem for the three-dimensional axi-symmetric
Navier–Stokes equations with non-vanishing swirl. In order to define this
quantity we need to introduce cylindrical coordinates. If x = (x1, x2, x3)
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in Cartesian coordinates, then the cylindrical coordinates (r, φ, z) are intro-
duced by the relation x = Φ(r, φ, z), where

x1 = r cosφ,

x2 = r sinφ,

x3 = z.

Thus, the standard basis vectors are
ēr = ∂rΦ = (cosφ, sinφ, 0),

ēφ = ∂φΦ = (− sinφ, cosφ, 0),

ēz = ∂zΦ = (0, 0, 1).

Let w = w(x, t) be any vector-valued function of x and t. Then in cylin-
drical coordinates, w is expressed in the standard basis as follows:

(1.2) w = wr(r, φ, z, t)ēr + wφ(r, φ, z, t)ēφ + wz(r, φ, z, t)ēz.

We call w axially-symmetric if

wr,φ = wφ,φ = wz,φ = 0.

Let v and p denote the velocity field of an incompressible fluid and the
pressure, respectively. Let rotv be the vorticity vector. Then the Navier–
Stokes equations read

(1.3)



vt + (v · ∇)v − ν∆v +∇p = f in ΩT = Ω × (0, T ),

divv = 0 in ΩT ,

v · n̄ = 0 on ST = S × (0, T ),

v · ēφ = 0 on ST ,
rotv · ēφ = 0 on ST ,
v|t=0 = v0 in Ω,

where f is the external force field and n̄ is the unit outward vector normal
to S, and S and Ω are the same as in (1.1).

In the mathematical theory of fluid mechanics we call the function rvφ
the swirl.

The problem of regularity of axially-symmetric solutions to (1.3) is in
general open. Since 1968 (see [3] and [10]) it has been known that the Navier–
Stokes equations have regular axially-symmetric solutions in R3 provided
that vφ = 0 and fφ = 0 (hence the swirl is zero). In the case of non-vanishing
swirl there are some partial results, e.g. [1, 4–7, 11, 13] though this list is far
from complete.

However, a long list of papers concerning regularity criterions for the
axially-symmetric Navier–Stokes equations can be found in [8].

One way to investigate the existence of solutions to (1.3) is to start with
the following observation: if v is an axially symmetric solution to (1.3), then
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in light of (1.2) we have

v = vr(r, z, t)ēr + vφ(r, z, t)ēφ + vz(r, z, t)ēz

and
rotv = −vφ,z(r, z, t)ēr + ω(r, z, t)ēφ +

1

r
(rvφ),r(r, z, t)ēz,

where

(1.4) ω = vr,z − vz,r.

Expressing (1.3)2 in cylindrical coordinates yields

(rvr),r + (rvz),z = 0

and combining this equation with (1.4) suggests introducing a stream func-
tion ψ such that

(1.5) vr = −ψ,z, vz =
1

r
(rψ),r.

Since
∆ = ∂2r +

1

r
∂r + ∂2z

we see that this stream function satisfies (1.1). Note that (1.1)2 follows from
(1.3)3. This explains why (1.1) is of primary interest. Solutions to this prob-
lem are essential for establishing global, regular and axially-symmetric so-
lutions to the Navier–Stokes equations with non-vanishing swirl (see [12]).
We demonstrate this idea for the case of small swirl in [8]. Having proper
estimates for solutions to (1.1), the proof in [12] works.

There is a challenge in investigating (1.1), which we shall now discuss.
Let a > 0 and R > 0. In cylindrical coordinates, the bounded cylinder Ω is
given by

(1.6) Ω = {x ∈ R3 : r < R, |z| < a},
where S = ∂Ω = S1 ∪ S2 and

S1 = {x ∈ R3 : r = R, |z| < a},
S2 = {x ∈ R3 : r < R, z ∈ {−a, a}}.

It follows that the terms 1
r2
ψ and 1

rψr might be undefined for r = 0. There
are a few possibilities of overcoming this issue: one could

• remove the ϵ-neighborhood of r = 0, derive necessary estimates and let
ϵ→ 0+ (see e.g. [3]),

• consider 1
r1−ϵψ, derive necessary estimates and let ϵ→ 0+ (see e.g. [4]),

• use weighted Sobolev spaces.

We take the third approach. The classical results for the Poisson equation
tell us that if ω ∈ H1, then ψ ∈ H3. We would expect a similar outcome
here but we need to handle 1

r and similar terms carefully.
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If we were interested in basic energy estimates we could proceed the
standard way: multiply (1.1) by ψ, integrate by parts, use the Hölder and
Cauchy inequalities. This would be justified because in light of [5] and [7,
Remark 2.4] we have

(1.7) ψ = O(r) as r → 0+

provided that ψ is introduced through (1.5) and v is an axially symmetric
vector field of class C1(0, R). Moreover, if v ∈ C3(0, R), then

(1.8) ψ = a1(z, t)r + a3(z, t)r
3 + o(r5) as r → 0+,

where a1 and a3 are smooth functions. Since basic energy estimates are not
enough in our case, more sophisticated tools and techniques are needed.
Weighted Sobolev spaces seem to be the right choice.

To conduct our analysis we introduce the quantity ψ1 = ψ/r. We see
that it satisfies

(1.9)

−∆ψ1 −
2

r
ψ1,r =

ω

r
≡ ω1 in Ω,

ψ1 = 0 on S.

Since ψ = ψ
r r = ψ1r and r is bounded by R, we see that any estimates for

ψ1 are immediately applicable to ψ. In fact, in [12] we need estimates for ψ1

because this function appears naturally in some auxiliary problems.
To examine problem (1.9) in weighted Sobolev spaces we have to derive

estimates with respect to r and z separately. To derive an estimate with
respect to r we have to examine solutions to (1.9) independently both in a
neighborhood of the axis of symmetry and in a neighborhood at a positive
distance from it. To perform such analysis we treat z as a parameter and we
introduce a partition of unity {ζ(1)(r), ζ(2)(r)} such that

2∑
i=1

ζ(i)(r) = 1

and

ζ(1)(r) =

{
1 for r ≤ r0,

0 for r ≥ 2r0,
ζ(2)(r) =

{
0 for r ≤ r0,

1 for r ≥ 2r0,

where r0 > 0 is fixed in such a way that 2r0 < R.
Let

ψ̃
(i)
1 = ψ1ζ

(i), ω̃
(i)
1 = ω1ζ

(i), i = 1, 2,

and ζ̇ = d
drζ, ζ̈ = d2

dr2
ζ. Then from (1.9) we obtain two problems:

(1.10)

−∆ψ̃(1)
1 − 2

r
ψ̃
(1)
1,r = ω̃

(1)
1 − 2ψ1,r ζ̇

(1) − ψ1ζ̈
(1) − 2

r
ψ1ζ̇

(1) in Ω(1),

ψ̃
(1)
1 = 0 on ∂Ω(1),
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where

Ω(1) = {(r, z) : r > 0, z ∈ (−a, a)}, ∂Ω(1) = {(r, z) : z ∈ {−a, a}, r > 0},
and

(1.11)

−∆ψ̃(2)
1 − 2

r
ψ̃
(2)
1,r = ω̃

(2)
1 − 2ψ1,r ζ̇

(2) − ψ1ζ̈
(2) − 2

r
ψ1ζ̇

(2) in Ω(2),

ψ̃(2) = 0 on ∂Ω(2),

where

(1.12) Ω(2) = {(r, z) : r0 < r < R, z ∈ (−a, a)}, ∂Ω(2) = ∂Ω
(2)
1 ∪ ∂Ω(2)

2

and

∂Ω
(2)
1 = {(r, z) : z ∈ {−a, a}, r0 < r < R},

∂Ω
(2)
2 = {(r, z) : z ∈ (−a, a), r = R}.

We temporarily simplify the notation using

(1.13)

u = ψ̃
(1)
1 , w = ψ̃

(2)
1 ,

f = ω̃
(1)
1 − 2ψ1,r ζ̇

(1) − ψ1ζ̈
(1) − 2

r
ψ1ζ̇

(1),

g = ω̃
(2)
1 − 2ψ1,r ζ̇

(2) − ψ1ζ̈
(2) − 2

r
ψ1ζ̇

(2).

Then (1.10) and (1.11) become

(1.14)

−∆u− 2

r
u,r = f in Ω(1),

u = 0 on ∂Ω(1),

and

(1.15)

−∆w − 2

r
w,r = g in Ω(2),

w = 0 on ∂Ω(2).

As we can see, the above two problems are similar; they only differ in
the domain. In the case of Ω(2) we can safely use the classical theory for the
Poisson equation.

Since r0 > 0 we instantly deduce that problem (1.15) can be solved
classically.

To study the existence and properties of solutions to (1.14) we need
weighted Sobolev spaces. They are defined at the beginning of Section 2.
In addition we will be using Kondrat’ev’s technique (see [2]). It offers a
way to deal with expressions of the form u

rα when α > 0. We saw in (1.7)
that ψ1 is well defined at r = 0 but in the case of the weighted Sobolev
space H3

0 we need to handle ψ1

r3
in L2. The function ψ1 does not vanish

sufficiently fast when r → 0+, thus it has to be modified in a certain way. The
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modifications appear in the formulations of Theorems 1.1–1.4. They depend
on the weighted Sobolev spaces applied. These kinds of modifications form
the essence of this note.

The very first theorem we prove is the following:

Theorem 1.1. Suppose that ψ1 is a solution to (1.9). Assume that ω1 ∈
L2,µ(Ω), µ ∈ (0, 1). Then

∥ψ1 − ψ1(0)∥2L2(−a,a;H2
µ(0,R)) + ∥ψ1,zr∥2L2,µ(Ω) + ∥ψ1,zz∥2L2,µ(Ω)

+ 2µ(2− 2µ)∥ψ1,z∥2L2,µ−1(Ω) ≤ c∥ω1∥2L2,µ(Ω),

where ψ1(0) = ψ1|r=0.

In light of (1.8) we cannot expect ψ1 ∈ H2
µ(0, R) for almost all z. However,

this should be the case for the difference ψ1 − ψ1|r=0.
In a similar manner we obtain higher order regularity.

Theorem 1.2. Let ψ1 be a solution to (1.9). Let ω1 ∈ H1
µ(Ω), µ ∈ (0, 1).

Then

∥ψ1 − ψ1(0)∥2L2(−a,a;H3
µ(0,R)) + ∥ψ1,zzz∥2L2,µ(Ω) + ∥ψ1,zzr∥2L2,µ(Ω)

+ 2µ(2− 2µ)∥ψ1,zz∥2L2,µ−1(Ω) ≤ c∥ω1∥2H1
µ(Ω).

The above theorems are useful but we need estimates when µ = 0. We
cannot simply let µ → 0 because ψ1 − ψ1(0) is neither in H2

0 nor in H3
0 .

Instead we construct two auxiliary functions χ and η that we subtract from
ψ1 (this construction is presented in Lemmas 3.6 and 3.7). This allows us
to derive necessary estimates in H3

0 . We emphasize that H3
0 denotes the

weighted Sobolev space with weight µ = 0 (see Section 2). To show that ψ1

satisfying the assertions of either Theorem 1.1 or Theorem 1.2 belongs to
either H2

0 or H3
0 , respectively, we need additional modifications of ψ1 near

the axis of symmetry. The modifications are described in Theorems 1.3 and
1.4, respectively.

In the theorems below we assume that ψ1 is a weak solution to (1.9).
Basic energy estimates and the existence of weak solutions are discussed in
Section 2.

Theorem 1.3. Suppose that ψ1 is a weak solution to (1.9). Let ω1 ∈
L2(Ω) and introduce

χ(r, z) =

r�

0

ψ1,τ (1 +K(τ)) dτ,

where K(τ) is a smooth function with compact support such that

lim
r→0+

K(r)

r2
= c0 <∞.
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Then

∥ψ1 −ψ1(0)− χ∥2L2(−a,a;H2
0 (0,R)) + ∥ψ1,zr∥2L2(Ω) + ∥ψ1,zz∥2L2(Ω) ≤ c∥ω1∥2L2(Ω),

In the case of H3
0 we have

Theorem 1.4. Let ψ1 be a weak solution to (1.9). Let ω1 ∈ H1(Ω). Then

a�

−a
∥ψ1 − ψ1(0)− η∥2H3

0 (0,R) dz

+
�

Ω

(|ψ1,zzz|2 + |ψ1,zzr|2 + |ψ1,zz|2) r dr dz ≤ c∥ω1∥2H1(Ω),

where

η(r, z) = −
r�

0

(r − τ)

(
3

r
ψ1,τ + ψ1,zz + ω1

)
(1 +K(τ)) dτ

and K is as in Theorem 1.3.

At this point the estimates from Theorems 1.3 and 1.4 may look surpris-
ing. In [8] we show how to eliminate ψ1(0), χ and η by using the data.

Using some properties of ψ1 presented in this paper we prove in [12]
the following global estimate for axially symmetric solutions to the Navier–
Stokes equations:

(1.16) ∥ωr/r∥V (Ωt) + ∥ω/r∥V (Ωt) ≤ ϕ(data(t)),

where ωr and ω are the radial and angular coordinates of the vorticity, and
the energy norm of V (Ωt) is defined by

∥u∥V (Ωt) = sup
t′≤t

∥u(t′)∥L2(Ω) + ∥∇u∥L2(Ωt).

However, to prove (1.16) we need that ψ1 = 0 on the axis of symmetry.
To end this introduction it is worth mentioning that we could continue

the process of deriving higher-order estimates for ψ1. In light of (1.8) it
would require more subtractions from ψ1 when r = 0. However, we do not
see any potential gain or immediate applications for such estimates.

2. Notation and auxiliary results

Notation. By c we denote a generic constant which may vary from line
to line.

We use N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}.
The set {(r, z) : r > 0, z ∈ R} is denoted by R2

+.
By ϕ we always denote an increasing positive function.
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Function spaces

Definition 2.1. Let Ω be either a cylindrical domain (0, R) × (−a, a)
or Ω = R2

+. We introduce the following norms:

∥u∥2L2,µ(Ω) =
�

Ω

|u(r, z)|2r2µr dr dz, µ ∈ R,

∥u∥2Hk
µ(Ω) =

∑
|α|≤k

�

Ω

|Dα
r,zu(r, z)|2r2(µ+|α|−k)r dr dz,

where Dα
r,z = ∂α1

r ∂α2
z , |α| = α1 + α2, |α| ≤ k, αi ∈ N0, i = 1, 2, k ∈ N0 and

µ ∈ R.

Then we have the compatibility condition

L2,µ(Ω) = H0
µ(Ω).

Fourier transform. Let f ∈ S(R), where S(R) is the Schwartz space of
all complex-valued rapidly decreasing infinitely differentiable functions on R.
Then the Fourier transform and its inverse are defined by

(2.1) f̂(λ) =
1√
2π

�

R

e−iλτf(τ) dτ,
ˇ̂
f(τ) =

1√
2π

�

R

eiλτ f̂(λ) dλ

and ˇ̂
f = ˆ̌f = f .

Remark 2.2. For smooth functions with respect to z we introduce the
weighted norms

(2.2) ∥u∥2Hk
µ(R+) =

k∑
i=0

�

R+

|∂iru|2r2(µ−k+i)r dr

where µ ∈ R and k ∈ N0.
With the transformation τ = − ln r, r = e−τ , dr = −e−τ dτ we will prove

the equivalence

(2.3)
k∑
i=0

�

R+

|∂iru|2r2(µ−k+i)r dr ∼
k∑
i=0

�

R

|∂iτu′|2e2hτ dτ

for u′(τ) = u′(− ln r) = u(r), h = k − 1− µ.
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To show (2.3), we first take k = 2. Then h = 1−µ and ∂2τ = −r∂r(−r∂r)
= r2∂2r + r∂r. We have

�

R

(|∂2τu′|2 + |∂τu′|2 + |u′|2)e2(1−µ)τ dτ

=
�

R+

(
|r∂r(r∂ru)|2 + |r∂ru|2 + |u|2

)
r2(µ−1) 1

r
dr

≤ 2
�

R+

(
|∂2ru|2 +

|∂ru|2

r2
+

|u|2

r4

)
r2µr dr,

and conversely
�

R+

(
|∂2ru|2 +

|∂ru|2

r2
+

|u|2

r4

)
r2µτr dr

=
�

R+

(r4|∂2ru|2 + r2|∂ru|2 + |u|2)r2µ−4r dr

=
�

R+

(|r∂r(r∂ru)− r∂ru|2 + |r∂ru|2 + |u|2)r2µ−4r dr

≤ 2
�

R+

(|r∂r(r∂ru)|2 + |r∂ru|2 + |u|2)r2µ−4r dr

≤ 2
�

R

(|∂2τu′|2 + |∂τu′|2 + |u′|2)e2(1−µ)τ dτ.

The above considerations imply (2.3) for k = 2. Similarly we can prove it for
k ≥ 3.

Using the Fourier transform we introduce norms equivalent to (2.2) and
convenient for examining solutions of differential equations. Hence, by the
Parseval identity we have

(2.4)
+∞+ih�

−∞+ih

k∑
j=0

|λ|2j |û(λ)|2 dλ =
�

R

k∑
j=0

|∂jτu|2e2hτ dτ,

where the r.h.s. norm is equivalent to (2.2) under the equivalence (2.3). This
ends Remark 2.2.

Energy estimates and weak solutions

Lemma 2.3. Assume that ω1 ∈ L2(Ω). Then there exists a weak solution
to problem (1.9) such that ψ1 ∈ H1(Ω) and we have

(2.5) ∥ψ1∥2H1(Ω) +

a�

−a
ψ2
1(0) dz ≤ c∥ω1∥2L2(Ω),

where ψ1(0) = ψ1|r=0.
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Proof. Multiplying (1.9) by ψ1, integrating over Ω and using the bound-
ary condition and the Poincaré inequality we derive (2.5). Then the existence
follows from the Fredholm alternative.

Remark 2.4. We deduce from (1.8) that

(2.6) ψ1 = a1(z, t) + a2(z, t)r
2 + o(r4) when r → 0+.

In particular, ψ(0) = ψ|r=0 = 0 but ψ1(0) = ψ1|r=0 ̸= 0.

Lemma 2.5. Assume that ω ∈ L2(Ω). Then there exists a solution ψ ∈
H1(Ω) to problem (1.1) which satisfies

(2.7) ∥ψ∥2H1(Ω) +
�

Ω

ψ2

r2
dx ≤ c∥ω∥2L2(Ω)

and

(2.8) ∥ψ,rz∥2L2(Ω) + ∥ψ,zz∥2L2(Ω) +
�

Ω

ψ2
,z

r2
dx ≤ c∥ω∥2L2(Ω).

The proof of (2.7) is similar to the proof of (2.5). Moreover, in view of
(2.6) the integral on the l.h.s. of (2.7) is finite.

Proof of Lemma 2.5. Multiplying (1.1)1 by ψ, integrating over Ω, using
boundary conditions and the Poincaré inequality we obtain (2.7). Multiply-
ing (1.1) by −ψ,zz and integrating over Ω yields

(2.9)
�

Ω

ψ,rrψ,zz dx+
�

Ω

1

r
ψ,rψ,zz dx+

�

Ω

ψ2
,zz dx+

�

Ω

ψ2
,z

r2
dx = −

�

Ω

ωψ,zz dx.

Integrating by parts in the first term and using the boundary conditions, we
get

�

Ω

ψ,rrψ,zz dx

=
�

Ω

(ψ,rrψ,z),z dx−
�

Ω

(ψ,rzψ,zr),r dr dx+
�

Ω

ψ,rzψ,z dr dz +
�

Ω

ψ2
,rz dx,

where the first two terms on the r.h.s. vanish because ψ,rr|S2 = 0 and
ψ,z|r=Rr=0 = 0. Using the equality in (2.9) yields

(2.10)
�

Ω

(ψ2
,rz + ψ2

,zz) dx+
�

Ω

ψ2
,z

r2
dx+

�

Ω

ψ,rψ,zz dr dz +
�

Ω

ψ,rzψ,z dr dz

=
�

Ω

ωψ,zz dx.

Integrating by parts with respect to z in the last but one term on the l.h.s.
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of (2.10) and using
R�

0

(ψ,rψ,zz)|S2 dt = 0

we find that the sum of last two terms on the l.h.s. of (2.10) vanishes. Then
(2.10) implies (2.8) and concludes the proof.

From (1.9) we derive the following problem:

(2.11)


−∆ψ1,z −

2

r
ψ1,rz = ω1,z in Ω,

ψ1,z = 0 on {r = R, z ∈ (−a, a)},
ψ1,zz = 0 on {z ∈ {−a, a}, r < R},

where the last boundary condition follows from (1.9) and ω1|z∈{−a,a}, r<R
= 0.

Lemma 2.6. Suppose that ω1,z ∈ L2(Ω). Then there exists a weak solution
to (2.11) such that ψ1,z ∈ H1(Ω) and

(2.12) ∥ψ1,z∥2H1(Ω) +

a�

−a
ψ2
1,z(0) dz ≤ c∥ω1∥2L2(Ω),

where ψ1,z(0) = ψ1,z|r=0.

Proof. Multiplying (2.11)1 by ψ1,z and integrating over Ω yields

(2.13) −
�

Ω

ψ1,rrzψ1,z dx−
�

Ω

ψ1,zzzψ1,z dx− 3
�

Ω

ψ1,zrψ1,z dr dz

=
�

Ω

ω1,zψ1,z dx.

Integrating by parts with respect to r in the first term yields

(2.14) −
�

Ω

(ψ1,rzψ1,zr),r dr dz +
�

Ω

ψ2
1,rz dx+

�

Ω

ψ1,rzψ1,z dr dz,

where
a�

−a
ψ1,rzψ1,zr|r=Rr=0 dz = 0

because ψ1,rz|r=0 = 0 and ψ1,z|r=R = 0.
Integrating by parts in the second term in (2.13) and using (2.14) we

obtain

(2.15)
�

Ω

(ψ2
1,rz + ψ2

1,zz) dx− 2
�

Ω

ψ1,zrψ1,z dr dz =
�

Ω

ω1,zψ1,z dx.



134 B. Nowakowski and W. M. Zajączkowski

The last term on the l.h.s. of (2.15) equals

−
�

Ω

∂rψ
2
1,z dr dz =

a�

−a
ψ2
1,z(0) dz

because ψ1,z|r=R = 0.
Integrating by parts with respect to z in the r.h.s. of (2.15), using ω1|S2

= 0 and applying the Hölder and Young inequalities we derive (2.12).

From [9, Appendix A] we have

Lemma 2.7 (Hardy’s inequalities).(∞�

0

(x�
0

g(y) dy
)p
x−r−1 dx

)1/p
≤ p

r

(∞�

0

|yg(y)|py−r−1 dy
)1/p

for g ≥ 0, p ≥ 1 and r > 0.

Remark 2.8. If we set r = 1 − α and f(x) =
	x
0 g(y) dy in Lemma 2.7,

we obtain
∞�

0

xα−2|f(x)|2 dx ≤ 4

(1− α)2

∞�

0

xα|f ′(x)|2 dx, α < 1.

3. L2-weighted estimates with respect to r for solutions to (1.14).
In this section we derive various estimates with respect to r for solutions to
(1.14) in weighted Sobolev spaces using the technique of Kondrat’ev (see [2]).
These estimates lay foundations for the proofs of Theorems 1.1–1.4. The key
idea is to treat the variable z as a parameter.

First, we rewrite (1.14) in the form

(3.1)

−u,rr −
3

r
u,r = f + u,zz in Ω(1),

u = 0 on ∂Ω(1).

For a fixed z ∈ (−a, a) we treat (3.1) as an ordinary differential equation

(3.2) −u,rr −
3

r
u,r = f + u,zz in R+.

Multiplying (3.1)1 by r2 we obtain

−r2u,rr − 3ru,r = r2(f + u,zz) ≡ g(r, z)

or equivalently

(3.3) −r∂r(r∂ru)− 2r∂ru = g(r, z).

Introduce the new variable

τ = − ln r, r = e−τ .
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Since r∂r = −∂τ we see that (3.3) takes the form

(3.4) −∂2τu+ 2∂τu = g(e−τ , z) ≡ g′(τ, z).

Applying the Fourier transform (see (2.1)) to (3.4) we get

λ2û+ 2iλû = ĝ′.

For λ /∈ {0,−2i} we have

(3.5) û =
1

λ(λ+ 2i)
ĝ′ ≡ R(λ)ĝ′.

Lemma 3.1. Assume that f + u,zz ∈ Hk
µ(R+), k ∈ N0, µ ∈ R. Assume

that R(λ) does not have poles on the line ℑλ = 1+ k − µ. Then there exists
a unique solution to (3.2) in Hk+2

µ (R+) such that

(3.6) ∥u∥Hk+2
µ (R+) ≤ c∥f + u,zz∥Hk

µ(R+).

Proof. Since R(λ) does not have poles on the line ℑλ = 1 + k − µ = h,
we can integrate (3.5) along the line ℑλ = h. Then

+∞+ih�

−∞+ih

k+2∑
j=0

|λ|2(k+2−j)|û|2 dλ ≤
+∞+ih�

−∞+ih

k+2∑
j=0

|λ|2(k+2−j)|R(λ)ĝ′|2 dλ(3.7)

≤ c

+∞+ih�

−∞+ih

k∑
j=0

|λ|2(k−j)|ĝ′|2 dλ.

By the Parseval identity (see (2.4)) inequality (3.7) becomes

�

R

k+2∑
j=0

|∂jτu|2e2hτ dτ ≤ c
�

R

k∑
j=0

|∂jτg′|2e2hτ dτ.

Passing to the variable r yields
�

R+

k+2∑
j=0

|rj∂jru|2r2(µ−k−1) 1

r
dr ≤ c

�

R+

k∑
j=0

|rj∂jrg|2r2(µ−k−1) 1

r
dr.

Continuing, we get
�

R+

k+2∑
j=0

|rj−(k+2)∂jru|2r2µr dr ≤ c
�

R+

k∑
j=0

|rj−k∂jr(f + u,zz)|2r2µr dr,

where the relation g = r2(f + u,zz) was used.

Remark 3.2. Consider a solution u to (3.2). In light of Lemma 3.1 such
a solution has certain regularity. Moreover, when we fix µ ∈ R we expect
from u a certain behavior near r = 0. We are interested in two cases: k = 0
and k = 1.
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When k = 0 we have h = 1− µ. Hence

h1 = 1− µ1 < 0 for some µ1 ∈ (1, 2),

h2 = 1− µ2 > 0 for some µ2 ∈ (0, 1).

Similarly, for k = 1 we have h = 2− µ and

h̄1 = 2− µ̄1 < 0 for some µ̄1 ∈ (2, 3),

h̄2 = 2− µ̄2 > 0 for some µ̄2 ∈ (0, 2).

The function R(λ) has a pole for h = ℑλ = 0, and thus

1− µ1 < 0 < 1− µ2, 2− µ̄1 < 0 < 2− µ̄2.

By Lemma 3.1 we have four solutions:

k = 0 : u1 ∈ H2
µ1(R+), u2 ∈ H2

µ2(R+),

k = 1 : ū1 ∈ H3
µ̄1(R+), ū2 ∈ H3

µ̄2(R+).

Our aim is to investigate the relations between these solutions.

We will be using the notation from Remark 3.2.

Lemma 3.3. Let k = 0. Then there exists a constant c0 such that

(3.8) u1 − u2 = c0.

If k = 1, then also

(3.9) ū1 − ū2 = c0.

Proof. Consider the case k = 0. The function ĝ′ is analytic for any h ∈
(h1, h2) and

+∞+ih�

−∞+ih

|ĝ′|2 dλ <∞

ℑλ

ℜλ

h2

h1

N + ih2

N + ih1

−N + ih2

−N + ih1

0

−2i

Fig. 1. Integration contour
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for any h ∈ [h1, h2]. We also have (see Fig. 1)

u1 = lim
N→∞

N+ih1�

−N+ih1

eiλτ û(λ) dλ = lim
N→∞

N+ih1�

−N+ih1

eiλτR(λ)ĝ′(λ) dλ

= Res0 e
iλτR(λ)ĝ′(λ)− lim

N→∞

(N+ih2�

N+ih1

eiλτR(λ)ĝ′(λ) dλ

−
−N+ih2�

−N+ih1

eiλτR(λ)ĝ′(λ) dλ−
N+ih2�

−N+ih2

eiλτR(λ)ĝ′(λ) dλ
)
.

Letting with N → ∞ yields

u1 = u2 +Res0 e
iλτR(λ)ĝ′(λ) = u2 + c0,

where

uj =

+∞+ihj�

−∞+ihj

eiλτR(λ)ĝ′(λ) dλ.

Hence (3.8) holds.
For k = 1 the operator R(λ) has the same pole in the interval (h̄1, h̄2).

Hence (3.9) holds. This ends the proof.

Remark 3.4. Let us compute c0. Recall thatu1∈H2
µ1(R+)withµ1∈(1, 2).

This means that u1|r=0 ̸= 0. But u2 = u1 − c0 ∈ H2
µ2(R+) with µ2 ∈ (0, 1),

so u2|r=0 = 0. Hence
c0 = u1(0) = u1|r=0.

Similarly, ū2 = ū1 − c0 ∈ H3
µ̄2(R+) with µ̄2 ∈ (0, 2), so

c0 = ū1(0) ≡ ū1|r=0.

Investigating ū2 ∈ H3
µ̄2(R+) with µ̄2 ∈ (0, 1) we also need
∂rū2 = ∂rū1 = 0 for r = 0.

The restriction follows from Remark 2.4.

The functions u1 and ū1 are good candidates for weak solutions to (3.2)
because they do not vanish on r = 0.

Recall that u = ψ1ζ
(1) and f = ω1ζ

(1) − 2ψ1,r ζ̇
(1) − ψ1ζ̈

(1) − 2
rψ1ζ̇

(1).
Therefore Lemma 2.3 can be applied to solutions to (1.14). Hence we have

(3.10) ∥u∥2H1(Ω) +

a�

−a
u2(0) dz ≤ c∥f∥2L2(Ω)

and Lemmas 2.3 and 3.8 imply

(3.11) ∥u∥2H2(Ω) ≤ c∥f∥2L2(Ω).

Weak solutions to problem (1.14) do not vanish on the axis of symmetry.
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Hence, looking for increasing regularity of weak solutions to (1.14) in
weighted Sobolev spaces we apply (3.6) for u = u1 and µ = µ1 ∈ (1, 2) (see
notation in Remark 3.2).

Using (3.11), estimate (3.6) in this case has the form

∥u1∥2L2(−a,a;H2
µ1

(R+)) ≤ c∥f∥2L2(−a,a;L2,µ1 (R+)),

where µ1 ∈ (1, 2). The above inequality reflects the increasing regularity of
weak solutions to (1.14) in weighted Sobolev spaces because u1 does not
vanish on the axis of symmetry.

Recalling the properties of u1, u2 and assuming f ∈L2(−a, a;L2,µ(R+)),
µ ∈ (0, 1), we can conclude that

∥u− u(0)∥L2(−a,a;H2
µ(R+)) ≤ c∥f∥L2(−a,a;L2,µ(R+)),

where u(0) = u|r=0.
Recalling the properties of ū1 and ū2 and assuming that

f + u,zz ∈ L2(−a, a;H1
µ(R+))

we conclude that

(3.12) ∥u− u(0)∥L2(−a,a;H3
µ(R+)) ≤ c∥f + u,zz∥L2(−a,a;H1

µ(R+)),

where µ ∈ (0, 1).
Estimate (3.6) for k = 1 and µ = 0 suggests for weak solutions to (1.14)

the following inequality:

∥u− u(0)∥L2(−a,a;H3
0 (R+)) ≤ c∥f + u,zz∥L2((−a,a)×H1

0 (R+),

The above estimate does not hold for the weak solutions to problem
(1.14). The l.h.s. norm contains the term

I =

a�

−a

R�

0

|u− u(0)|2

r6
r dr dz.

In view of expansion (2.6) we have I = ∞ for u− u(0) = a2r
2 + a3r

3 + · · · .
In view of Lemma 3.8 (see (3.26)) we need the estimate

∥u,zz∥L2(−a,a;H1
0 (R+)) ≤ c∥u,zzr∥L2(Ω)

but the Hardy inequality does not hold in this case.
Therefore, we introduce a new function η(r, z) such that that

(u− u(0)− η(r, z)),rr|r=0 = 0.

Moreover, we also need:

Lemma 3.5 (cf. [2, Lemma 4.12]). Let ū ∈ Hk(R+), k ∈ N, ∂i

∂ri
u
∣∣
r=0

= 0

for i < k − 1 and ∂k−1
r ū ∈ H1

0 (R+). Then ū ∈ Hk
0 (R+) and

(3.13) ∥ū∥Hk
0 (R+) ≤ c∥∂k−1

r ū∥H1
0 (R+).
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Proof. Using the inequality from Remark 2.8 we infer that
∞�

0

r−2|∂k−1
r ū(r)|2r dr ≥ c

∞�

0

r−4|∂k−2
r ū(r)|2r dr ≥ c

∞�

0

r−2k|ū|2r dr,

which holds for ∂irū|r=0 = 0, i < k − 1. This implies (3.13) and concludes
the proof.

Recall that u is a solution to

(3.14) u,rr = −
(
3

r
u,r + u,zz + f

)
≡ g(r, z).

Lemma 3.6. Let u solve (3.14) and let u|r=0 = u(0). Assume that u ∈
L2(−a, a;H3(R+)) and f ∈ L2(−a, a;H1(R+)). Then there exists a function

(3.15) η(r, z) =

r�

0

(r − τ)g(τ, z)(1 +K(τ)) dτ,

where K(r) is a smooth function with compact support near r = 0 such that

lim
r→0

K(r)r−2 = c0 <∞

and the function

(3.16) u− η − u(0) ∈ L2(−a, a;H3
0 (R+))

satisfies

(3.17) ∥u− η − u(0)∥L2(−a,a;H3
0 (R+))

≤ c(∥u∥L2(−a,a;H2(R+)) + ∥f + u,zz∥L2(−a,a;H1(R+))).

Proof. Since u ∈ L2(−a, a;H3(R+)), we can work with C(−a, a; C∞
0 (R+))

and then use a density argument.
We construct a function η as a solution to the equation

η,rr = g(r, z)(1 +K(r)).

Integrating this equation we obtain (3.15).
To prove (3.16) and (3.17) we use Lemma 3.5 for k = 3. To ensure its

assumptions are met, we check that

(u− η − u(0))|r=0 = −η|r=0 = 0,

∂r(u− η − u(0))|r=0 = ∂r(u− η)|r=0 = ∂ru|r=0 − ∂rη|r=0 = 0,

where Remark 2.4 implies that u,r|r=0 = 0 and

∂rη =

r�

0

g(τ, z)(1 +K(τ)) dτ

gives ∂rη|r=0 = 0.
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Finally, we examine

∥∂rr(u− η − u(0))∥H1
0 (R+) = ∥gK∥H1

0 (R+)(3.18)

=

∥∥∥∥(3

r
u,r + u,zz + f

)
K(r)

∥∥∥∥
H1

0 (R+)

≤ c∥u∥H2(R+) + ∥f + u,zz∥H1(R+)).

Applying Lemma 3.5 and integrating (3.18) with respect to z we derive
(3.16) and (3.17). This ends the proof.

Lemma 3.7. Let u satisfy (3.14), u|r=0 = u(0), u ∈ L2(−a, a;H2(R+))
and f ∈ L2(−a, a;L2(R+)). Then there exists a function

(3.19) χ(r, z) =

r�

0

u,τ (1 +K(τ)) dτ,

where K is defined in Lemma 3.6 and the function

(3.20) u− χ− u(0) ∈ L2(−a, a;H2
0 (R+))

satisfies

(3.21) ∥u− χ− u(0)∥L2(−a,a;H2
0 (R+)) ≤ c∥u∥L2(−a,a;H2(R+)).

Proof. Since u ∈ L2(−a, a;H2(R+)) we prove this lemma for functions
from C(−a, a; C∞

0 (R+)) and use a density argument.
We construct χ as a solution to

(3.22) χ,r = u,r(1 +K(r)).

Integrating (3.22) with respect to r yields (3.19).
To prove (3.20) and (3.21) we use Lemma 3.5 for k = 2. We need to check

its assumptions. We have

(u− χ− u(0))|r=0 = (u− u(0))|r=0 − χ|r=0 = 0

and

(3.23) ∥(u− χ− u(0)),r∥H1
0 (R+) =

∥∥∥∂r r�
0

u,τ (τ, z)K(τ) dτ
∥∥∥
H1

0 (R+)

= ∥u,rK + uK,r∥H1
0 (R+) + ∥uK,r∥H1

0 (R+) ≤ c∥u∥H2(R+).

Integrating (3.23) with respect to z and applying Lemma 3.5 for k = 2 we
conclude the proof.

Recall that ψ1 is a solution to

(3.24)

−ψ1,rr − ψ1,zz −
3

r
ψ1,r = ω1 in Ω,

ψ1 = 0 on S1 ∪ S2.
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Lemma 3.8. For solutions to (3.24) the following estimates hold:
�

Ω

(ψ2
1,rr + ψ2

1,rz + ψ2
1,zz) dx+

�

Ω

1

r2
ψ2
1,r dx ≤ c∥ω1∥2L2(Ω),(3.25)

�

Ω

(ψ2
1,rrz + ψ2

1,zzr + ψ2
1,zzz) dx+

a�

−a
ψ2
1,zz|r=0 dz +

a�

−a
ψ2
1,rz|r=R dz(3.26)

≤ c∥ω1,z∥2L2(Ω).

Proof. First we show (3.25). Multiplying (3.24) by ψ1,zz and integrating
over Ω yields

(3.27) −
�

Ω

ψ1,rrψ1,zz dx−
�

Ω

ψ2
1,zz dx− 3

�

Ω

1

r
ψ1,rψ1,zz dx =

�

Ω

ω1ψ1,zz dx.

The first term in (3.27) equals

−
�

Ω

(ψ1,rrψ1,z),z dx+
�

Ω

ψ1,rrzψ1,z dx

= −
�

Ω

(ψ1,rrψ1,z),z dx+
�

Ω

(ψ1,rzψ1,zr),r dr dz −
�

Ω

ψ2
1,rz dx−

�

Ω

ψ1,rzψ1,z dr dz,

where the first term is equal to

−
R�

0

ψ1,rrψ1,z|S2r dr = 0,

because ψ1,rr|S2 = 0, and the second
a�

−a
ψ1,rzψ1,z|S1 dz = 0,

which follows from ψ1,z|S1 = 0.
Consider the last term on the l.h.s. of (3.27). We have

−3
�

Ω

ψ1,rψ1,zz dr dz = −3
�

Ω

(ψ1,rψ1,z),z dr dz + 3
�

Ω

ψ1,rzψ1,z dx

= −3

2

a�

−a
ψ2
1,z|r=Rr=0 dz,

where we have used
R�

0

ψ1,rψ1,z|S2 dr = 0

because ψ1,r

∣∣
S2

= 0.
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Using the above considerations in (3.27) implies

(3.28) −
�

Ω

(ψ2
1,rz + ψ2

1,zz) dx+

a�

−a
ψ2
1,z|r=Rr=0 dz =

�

Ω

ω1ψ1,zz dx.

Since ψ1,z|r=R = 0, equality (3.28) can be written in the form

(3.29)
�

Ω

(ψ2
1,rz + ψ2

1,zz) dx+

a�

−a
ψ2
1,z|r=0 dz = −

�

Ω

ω1ψ1,zz dx.

Applying the Hölder and Young inequalities to the r.h.s. of (3.29) we obtain

(3.30)
�

Ω

(ψ2
1,rz + ψ2

1,zz) dx+

a�

−a
ψ2
1,z|r=0 dz ≤ c

�

Ω

ω2
1 dx.

Multiplying (3.24) by 1
rψ1,r and integrating over Ω yields

(3.31) 3
�

Ω

∣∣∣∣1rψ1,r

∣∣∣∣2 dx = −
�

Ω

ψ1,rr
1

r
ψ1,r dx−

�

Ω

ψ1,zz
1

r
ψ1,r dx−

�

Ω

ω1
1

r
ψ1,r dx.

The first term on the r.h.s. of (3.31) equals

−
�

Ω

ψ1,rψ1,rr dr dz = −1

2

�

Ω

∂r(ψ
2
1,r) dr dz = −1

2

a�

−a
ψ2
1,r|r=R dz

because ψ1,r|r=0 = 0 (see Remark 2.4).
Applying the Hölder and Young inequalities to the last two terms on the

r.h.s. of (3.31) we finally obtain

(3.32) 3
�

Ω

∣∣∣∣1rψ1,r

∣∣∣∣2 dx+
1

2

a�

−a
ψ2
1,r(R, z) dz ≤ c(∥ψ1,zz∥2L2(Ω) + ∥ω1∥2L2(Ω)).

From (3.24) we infer that

∥ψ1,rr∥2L2(Ω) ≤ ∥ψ1,zz∥2L2(Ω) + 3

∥∥∥∥1rψ1,r

∥∥∥∥2
L2(Ω)

+ ∥ω1∥2L2(Ω).

Combining the above inequality with (3.30) and (3.32) yields (3.25).
Next we show (3.26). Differentiating (3.24) with respect to z, multiplying

by −ψ1,zzz and integrating over Ω we obtain

(3.33)
�

Ω

ψ1,rrzψ1,zzz dx+
�

Ω

ψ2
1,zzz dx+ 3

�

Ω

1

r
ψ1,rzψ1,zzz dx

= −
�

Ω

ω1,zψ1,zzz dx.
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Integrating by parts in the first term yields�

Ω

(ψ1,rrzψ1,zz),z dx−
�

Ω

ψ1,rrzzψ1,zz dx

=

R�

0

ψ1,rrzψ1,zz|z=az=−ar dr −
�

Ω

(ψ1,rzzψ1,zzr),r dr dz +
�

Ω

ψ2
1,rzz dx

+
�

Ω

ψ1,rzzψ1,zz dr dz

=

R�

0

ψ1,rrzψ1,zz|z=az=−ar dr −
a�

−a
ψ1,rzzψ1,zzr|r=Rr=0 dz

+
�

Ω

ψ2
1,rzz dx+

�

Ω

ψ1,rzzψ1,zz dr dz ≡ I.

Since ψ1,zz|r=R = 0 and ψ1,rzz|r=0 = 0, the second term in I vanishes. To
examine the first term in I we project (3.24) onto S2. Then we have

ψ1,zz|S2 = −ψ1,rr|S2 −
3

r
ψ1,r|S2 − ω1|S2 .

Since ω1|S2 = 0 and ψ1|S2 = 0 it follows that ψ1,zz|S2 = 0. Therefore I
becomes

I =
�

Ω

ψ2
1,rzz dx+

�

Ω

ψ1,rzzψ1,zz dr dz.

The second term in I is equal to

−1

2

a�

−a
ψ2
1,zz|r=0 dz,

where it is used that ψ1,zz|r=R = 0.
The last term on the l.h.s. of (3.33) equals

−3
�

Ω

ψ1,rzzψ1,zz dr dz = −3

2

a�

−a
ψ2
1,zz|r=Rr=0 dz =

3

2

a�

−a
ψ2
1,zz|r=0 dz,

where we have used ψ1,zz|S2 = 0 and ψ1,zz|r=R = 0.
In view of the above calculations equality (3.33) takes the form

(3.34)
�

Ω

(ψ2
1,rzz + ψ2

1,zzz) dx+

a�

−a
ψ2
1,zz|r=0 dz = −

�

Ω

ω1,zψ1,zzz dx.

Applying the Hölder and Young inequalities to the r.h.s. of (3.34) gives

(3.35)
�

Ω

(ψ2
1,rzz + ψ2

1,zzz) dx+

a�

−a
ψ2
1,zz|r=0 dz ≤

�

Ω

|ω1,z|2 dx.
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Differentiate (3.24)1 with respect to z, multiply by ψ1,rrz and integrate
over Ω. Then we have

(3.36) −
�

Ω

ψ2
1,rrz dx−

�

Ω

ψ1,zzzψ1,rrz dx− 3
�

Ω

1

r
ψ1,rzψ1,rrz dx

=
�

Ω

ω1,zψ1,rrz dx.

Integrating by parts with respect to z in the second term in (3.36) implies

−
�

Ω

ψ1,zzzψ1,rrz dx = −
�

Ω

(ψ1,zzψ1,rrz),z dx+
�

Ω

ψ1,zzψ1,rrzz dx(3.37)

= −
R�

0

ψ1,zzψ1,rrz|z=az=−ar dr +
�

Ω

(ψ1,zzψ1,rzzr),r dr dz

−
�

Ω

ψ2
1,rzz dx−

�

Ω

ψ1,zzψ1,rzz dr dz,

where the first term on the r.h.s. of (3.37) vanishes because ψ1,zz|S2 = 0 and
the second vanishes also because ψ1,rzz|r=0 = 0 and ψ1,zz|r=R = 0.

Applying (3.37) in (3.36) yields

(3.38)
�

Ω

(ψ2
1,rrz + ψ2

1,rzz) dx+
�

Ω

ψ1,zzψ1,rzz dr dz + 3
�

Ω

ψ1,rzψ1,rrz dr dz

= −
�

Ω

ω1,zψ1,rrz dx.

The second term in (3.38) equals

1

2

a�

−a
ψ2
1,zz|r=Rr=0 dx = −1

2

a�

−a
ψ2
1,zz|r=0 dx

because ψ1,zz|r=R = 0, and the last term has the form

3

2

a�

−a
ψ2
1,rz|r=Rr=0 dz =

3

2

a�

−a
ψ2
1,rz|r=R dz,

where expansion (2.6) is used.
Exploiting the above expressions in (3.38) and applying the Hölder and

Young inequalitites to the r.h.s. of (3.38) we obtain

(3.39)
�

Ω

(ψ2
1,rrz + ψ2

1,rzz) dx− 1

2

a�

−a
ψ2
1,zz|r=0 dx+

3

2

a�

−a
ψ2
1,rz|r=R dz

≤ c∥ω1,z∥2L2(Ω).

Inequalities (3.35) and (3.39) imply (3.26), which concludes the proof.
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Remark 3.9. Up to now we have considered problem (3.1) treating z as
a parameter. It describes solutions to (1.9) only in a neighborhood of the
axis of symmetry. Solutions to (1.9) in a domain r > r0 > 0 are described
by problem (1.15). From (2.6), (3.25) and (1.13)3 we obtain for solutions to
(1.15) the estimate

(3.40) ∥ω∥H2+k(Ω(2)) ≤ c∥ω1∥Hk(Ω(2))

for some k ∈ {0, 1}. Since suppω ⊂ Ω(2) we see that (3.40) can also be
deduced for weighted spaces:

∥w∥H2+k
µ (Ω(2)) ≤ c∥ω1∥Hk

µ(Ω
(2)), µ ≥ 0.

4. Estimates with respect to z for solutions to (1.9). Consider
problem (1.9) in the form

(4.1)


−ψ1,rr −

3

r
ψ1,r − ψ1,zz = ω1 in Ω,

ψ1 = 0 for z ∈ {−a, a},
ψ1 = 0 for r = R.

Lemma 4.1. Fix µ ∈ [0, 1). Assume that ω1 ∈ L2,µ(Ω). Then

(4.2)
�

Ω

(ψ2
1,zz + ψ2

1,zr)r
2µ dx+ 2µ(1− µ)

�

Ω

ψ2
1,zr

2µ−2 dx ≤ c
�

Ω

ω2
1r

2µ dx.

Proof. Multiply (4.1)1 by −ψ1,zzr
2µ and integrate over Ω. Then we have

(4.3)
�

Ω

ψ2
1,zzr

2µ dx+
�

Ω

ψ1,rrψ1,zzr
2µ dx+ 3

�

Ω

1

r
ψ1,rψ1,zzr

2µ dx

= −
�

Ω

ω1ψ1,zzr
2µ dx.

Integrating by parts in the second term on the l.h.s. we obtain

−
�

Ω

ψ1,rrzψ1,zr
2µ dx = −

�

Ω

ψ1,rrzψ1,zr
2µ+1 dr dz

= −
�

Ω

(ψ1,rzψ1,zr
2µ+1),r dr dz

+
�

Ω

ψ2
1,rzr

2µ dx+ (2µ+ 1)
�

Ω

ψ1,rzψ1,zr
2µ dr dz

≡ I1 + I2 + I3.

We easily see that

I1 = −
a�

−a
ψ1,rzψ1,zr

2µ|r=Rr=0 dz = 0

because ψ1,z|r=R = 0 and Remark 2.4 implies that ψ1,rz|r=0 = 0.
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Using the above results in (4.3) and integrating by parts in the last term
on the l.h.s. of (4.3) we derive�

Ω

(ψ2
1,zz+ψ

2
1,rz)r

2µ dx−(1−µ)
�

Ω

∂r(ψ
2
1,zr

2µ) dr dz+2µ(1−µ)
�

Ω

ψ2
1,zr

2µ−1 dr dz

= −
�

Ω

ω1ψ1,zzr
2µ dx,

where the second integral vanishes by the same arguments as for I1.
Using the above results in (4.3) and applying the Hölder and Young

inequalities to the r.h.s. yields�

Ω

(ψ2
1,zz + ψ2

1,zr)r
2µ dx+ 2µ(1− µ)

�

Ω

ψ2
1,zr

2µ−2 dx ≤ c
�

Ω

ω2
1r

2µ dx.

This inequality implies (4.2) and concludes the proof.

Lemma 4.2. Fix µ ∈ [0, 1). Assume that ω1,z ∈ L2,µ(Ω). Then

(4.4)
�

Ω

(ψ2
1,zzz +ψ2

1,rzz)r
2µ dx+ 2µ(1− µ)

�

Ω

ψ2
1,zzr

2µ−2 dx ≤ c
�

Ω

ω2
1,zr

2µ dx.

Proof. Differentiate (4.1) with respect to z, multiply by −ψ1,zzzr
2µ and

integrate over Ω. Then we obtain

(4.5)
�

Ω

ψ1,rrzψ1,zzzr
2µ dx+

�

Ω

ψ2
1,zzzr

2µ dx+ 3
�

Ω

1

r
ψ1,rzψ1,zzzr

2µ dx

= −
�

Ω

ω1,zψ1,zzzr
2µ dx.

From (4.1)1 it follows that

(4.6) ψ1,zz|z∈{−a,a} = 0

because ψ1|z∈{−a,a} = 0 and ω1|z∈{−a,a} = 0.
In view of (4.6) the first integral on the l.h.s. of (4.5) equals

(4.7) −
�

Ω

ψ1,rrzzψ1,zzr
2µ dx = −

�

Ω

(ψ1,rzzψ1,zzr
2µ+1),r dr dz

+
�

Ω

ψ2
1,rzzr

2µ dx+ (2µ+ 1)
�

Ω

ψ1,rzzψ1,zzr
2µ drdz.

In virtue of the boundary condition ψ1|r=R = 0 and Remark 2.4 the first
integral on the r.h.s. of (4.7) vanishes.

Integrating by parts in the last term on the l.h.s. of (4.5) and using (4.7),
we obtain

(4.8)
�

Ω

(ψ2
1,zzz + ψ2

1,rzz)r
2µ dx+ (2µ− 2)

�

Ω

ψ1,rzzψ1,zzr
2µ dr dz

= −
�

Ω

ω1,zψ1,zzzr
2µ dx.
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The second term on the l.h.s. equals

(4.9) (µ− 1)
�

Ω

∂r(ψ
2
1,zz)r

2µ dr dz

= (µ− 1)
�

Ω

∂r(ψ
2
1,zzr

2µ) dr dz + 2µ(1− µ)
�

Ω

ψ2
1,zzr

2µ−1 dr dz

= (µ− 1)

a�

−a
ψ2
1,zzr

2µ|r=Rr=0 dz + 2µ(1− µ)
�

Ω

ψ2
1,zzr

2µ−2 dx,

where the first term on the r.h.s. equals (1 − µ)
	a
−a ψ

2
1,zzr

2µ|r=0dz because
ψ1,zz|r=R = 0. Using (4.9) in (4.8) implies (4.4). This ends the proof.

5. Proofs of theorems. Let µ ∈ (0, 1). Combining Lemma 3.1 with
k = 0 and k = 1 with Lemmas 4.1 and 4.2 we obtain

a�

−a
∥ψ1 − ψ

(1)
1 (0)∥2H2

µ(0,R) dz + ∥ψ1,zz∥2L2,µ(Ω) + ∥ψ1,rz∥2L2,µ(Ω)

+ 2µ(1− µ)
�

Ω

ψ2
1,zr

2µ−2 dx ≤ c∥ω1∥2L2,µ(Ω),

and
a�

−a
∥ψ1 − ψ

(1)
1 (0)∥2H3

µ(0,R) dz + ∥ψ1,zzz∥2L2,µ(Ω) + ∥ψ1,rzz∥2L2,µ(Ω)

+ 2µ(1− µ)
�

Ω

ψ2
1,zzr

2µ−2 dx ≤ c∥ω1∥2H1
µ(Ω).

This proves Theorems 1.1 and 1.2.
Lemmas 3.7 and 3.8 used with (1.13) and (3.40) for k = 0 yield
a�

−a
∥ψ1 − ψ

(1)
1 (0)− χ∥2H2

0 (0,R) dz +
�

Ω

(ψ2
1,zz + ψ2

1,zr) dx ≤ c∥ω1∥2L2(Ω)

and Lemmas 3.6, 2.4 and 3.8 along with (1.13) and (3.40) for k = 1 give
a�

−a
∥ψ1 − ψ

(1)
1 (0)− η∥2H3

0 (0,R) dz +
�

Ω

(ψ2
1,zzz + ψ2

1,zzr) dx+ ∥ψ1∥2H2(Ω)

≤ c∥ω1∥2H1(Ω),

and thus Theorems 1.3 and 1.4 follow.
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