Marek Beśka (Gdańsk)

GEBELEIN INEQUALITY IN A HILBERT SPACE

Abstract. We present the Gebelein inequality in a separable real Hilbert space. As an application we prove the Strong Law of Large Numbers for Gaussian functionals with values in a separable real Banach space.

1. Introduction. Let μ be a standard Gaussian measure on the real line \mathbb{R} and $|\rho| \leq 1$. We use $L^{2}(\mu)$ for $L^{2}(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$, where $\mathcal{B}(\mathbb{R})$ denotes the Borel σ-algebra of subsets of \mathbb{R}. In $L^{2}(\mu)$ we have the inner product

$$
\langle f, g\rangle_{\mu}=\int_{\mathbb{R}} f(x) g(x) d \mu(x), \quad f, g \in L^{2}(\mu),
$$

and the norm

$$
\|f\|_{2}=\left(\int_{\mathbb{R}} f^{2}(x) d \mu(x)\right)^{1 / 2}, \quad f \in L^{2}(\mu) .
$$

We recall the Hermite polynomials

$$
H_{0} \equiv 1, \quad H_{n}(x)=(-1)^{n} \exp \left(x^{2} / 2\right) \frac{d^{n}}{d x^{n}}\left(\exp \left(-x^{2} / 2\right)\right), \quad x \in \mathbb{R}, n \geq 1,
$$

and their generating function

$$
\begin{equation*}
w(t, x):=\exp \left(t x-t^{2} / 2\right)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} H_{n}(x), \quad t, x \in \mathbb{R} . \tag{1.1}
\end{equation*}
$$

We put $h_{n}:=H_{n} / \sqrt{n!}, n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. It is known that the collection $\left\{h_{n}\right\}_{n \in \mathbb{N}_{0}}$ forms an orthonormal basis in $L^{2}(\mu)$.

The Ornstein-Uhlenbeck operator

$$
P_{\rho}: L^{2}(\mu) \rightarrow L^{2}(\mu)
$$

[^0]is defined by
$$
\left(P_{\rho} f\right)(y)=\int_{\mathbb{R}} f\left(\rho y+\sqrt{1-\rho^{2}} z\right) d \mu(z), \quad y \in \mathbb{R}, f \in L^{2}(\mu) .
$$

The Ornstein-Uhlenbeck operator has the following probabilistic interpretation. Let random variables X and Y have the Gaussian distribution μ and let $\operatorname{cov}(X, Y)=E(X Y)=\rho$. Then for $f, g \in L^{2}(\mu)$, we have

$$
\begin{equation*}
E[f(X) g(Y)]=E[E(f(X) \mid Y) g(Y)]=E[h(Y) g(Y)], \tag{1.2}
\end{equation*}
$$

where $h(y)=E(f(X) \mid Y=y), y \in \mathbb{R}$. On the other hand, if Z is a Gaussian random variable with the standard distribution and independent of Y, then

$$
\mathcal{L}(U, Y)=\mathcal{L}(X, Y),
$$

where $U=\rho Y+\sqrt{1-\rho^{2}} Z$ and $\mathcal{L}(X, Y)$ denotes the distribution of the random vector (X, Y). Thus

$$
\begin{align*}
& E[f(X) g(Y)]=E[f(U) g(Y)]=E[E(f(U) \mid Y) g(Y)] \tag{1.3}\\
& \quad=E\left[E\left(f\left(\rho Y+\sqrt{1-\rho^{2}} Z\right) \mid Y\right) g(Y)\right]=E\left[P_{\rho} f(Y) g(Y)\right] .
\end{align*}
$$

By comparing (1.2) and (1.3) we see that $\left(P_{\rho} f\right)(Y)$ is a version of the conditional expectation $E[f(X) \mid Y]$. It is easy to see that P_{ρ} is symmetric $\left(\left\langle P_{\rho} f, g\right\rangle_{\mu}=\left\langle f, P_{\rho} g\right\rangle_{\mu}, f, g \in L^{2}(\mu)\right)$ and a linear contraction in $L^{2}(\mu)$. It is clear that P_{ρ} is an isometric isomorphism in $L^{2}(\mu)$ when $|\rho|=1$. Moreover, the Hermite polynomials $H_{n}, n \in \mathbb{N}_{0}$, are its eigenvectors, that is,

$$
P_{\rho} H_{n}=\rho^{n} H_{n}, \quad n \in \mathbb{N}_{0},
$$

and P_{ρ} has the following expansion in the Hermite basis:

$$
P_{\rho} f=\sum_{n=0}^{\infty} \rho^{n}\left\langle f, h_{n}\right\rangle_{\mu} h_{n}, \quad f \in L^{2}(\mu) .
$$

We recall the Gebelein inequality.
Theorem 1.1 ($\mathrm{G},\left[\mathrm{DK},[\mathrm{B})\right.$. If $f \in L^{2}(\mu),\langle f, 1\rangle_{\mu}=0$ and $|\rho| \leq 1$, then

$$
\left\|P_{\rho} f\right\|_{2} \leq|\rho|\|f\|_{2},
$$

with equality if and only if f is a linear function.
Using the Gebelein inequality, one can prove the Strong Law of Large Numbers for Gaussian functionals.

Theorem 1.2 ($(\widehat{\mathrm{BC}})$). Let $\left\{X_{i}\right\}_{i \geq 1}$ be a Gaussian sequence of standard random variables such that

$$
\sup _{i \geq 1} \sum_{j=1}^{\infty}\left|\rho_{i j}\right|<\infty,
$$

where $\rho_{i j}=E\left(X_{i} X_{j}\right), i, j \geq 1$. Then for $f \in L^{1}(\mu)$ we have

$$
\frac{f\left(X_{1}\right)+\cdots+f\left(X_{n}\right)}{n} \underset{n \rightarrow \infty}{ } \int_{\mathbb{R}} f d \mu \quad \text { a.s. }
$$

Note that for a centered Gaussian vector $\mathbf{V}=(X, Y)$ with covariance matrix

$$
\operatorname{cov}(\mathbf{V})=\left[\begin{array}{cc}
\sigma^{2} & \sigma^{2} \rho \\
\sigma^{2} \rho & \sigma^{2}
\end{array}\right]
$$

where $\sigma^{2}=E X^{2}=E Y^{2}$ and ρ is a correlation coefficient of \mathbf{V}, we can also define the Ornstein-Uhlenbeck operator. Namely, for $f \in L^{2}\left(\mu_{\sigma}\right)$, where μ_{σ} is the distribution of X, we put

$$
\left(P_{\rho} f\right)(y)=\int_{\mathbb{R}} f\left(\rho y+\sqrt{1-\rho^{2}} z\right) d \mu_{\sigma}(z), \quad y \in \mathbb{R}
$$

Now, the orthogonal Hermite polynomials have the form

$$
H_{\sigma, n}(x):=H_{n}(x / \sigma), \quad x \in \mathbb{R}
$$

and if normalized in $L^{2}\left(\mu_{\sigma}\right)$,

$$
h_{\sigma, n}(x):=H_{\sigma, n}(x) / \sqrt{n!}, \quad x \in \mathbb{R}
$$

The orthonormal system $\left\{h_{\sigma, n}\right\}_{n \geq 0}$ is a basis in $L^{2}\left(\mu_{\sigma}\right)$ and

$$
P_{\rho} h_{\sigma, n}=\rho^{n} h_{\sigma, n}, \quad n \geq 0
$$

Moreover, it is easy to check that in this case the Gebelein inequality has the same form as in Theorem 1.1. This observation concerning the random vector \mathbf{V} shows that we can extend our considerations about the Gebelein inequality and the Ornstein-Uhlenbeck operator to the case of a Hilbert space.
2. Gaussian measures on the Cartesian product of Hilbert spaces. Let H be a fixed (infinite-dimensional) real separable Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. We denote by $L(H):=L(H, H)$ the Banach algebra of all continuous linear operators from H into H. It is well known that the Cartesian product $H \times H$ is also a real separable Hilbert space with inner product

$$
\langle x, y\rangle_{H \times H}:=\left\langle x_{1}, y_{1}\right\rangle+\left\langle x_{2}, y_{2}\right\rangle
$$

where $x=\left(x_{1}, x_{2}\right) \in H \times H$ and $y=\left(y_{1}, y_{2}\right) \in H \times H$. Thus the norm of $H \times H$ is equal to

$$
\|x\|_{H \times H}:=\sqrt{\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}}, \quad x=\left(x_{1}, x_{2}\right) \in H \times H .
$$

It is known that if a system $\left\{e_{n}\right\}_{n \geq 1}$ is an orthonormal basis in H, then the system $\left\{\left(e_{n}, 0\right)\right\}_{n \geq 1} \cup\left\{\left(0, e_{n}\right)\right\}_{n \geq 1}$ is an orthonormal basis in $H \times H$.

Let $B \in L(H \times H)$. Then for $x, y \in H$ we have

$$
B(x, y)=\left(B_{1}(x, y), B_{2}(x, y)\right)
$$

where $B_{1}, B_{2} \in L(H \times H, H)$. Note that for $x, y \in H$,

$$
\begin{aligned}
& B_{1}(x, y)=B_{1}(x, 0)+B_{1}(0, y) \\
& B_{2}(x, y)=B_{2}(x, 0)+B_{2}(0, y)
\end{aligned}
$$

Hence we can introduce operators $B_{i j} \in L(H), i, j=1,2$, as follows:

$$
\begin{array}{lll}
B_{11}(x)=B_{1}(x, 0), & B_{12}(y)=B_{1}(0, y), & x, y \in H \\
B_{21}(x)=B_{2}(x, 0), & B_{22}(y)=B_{2}(0, y), & x, y \in H
\end{array}
$$

and we have

$$
\begin{array}{ll}
B_{1}(x, y)=B_{11}(x)+B_{12}(y), & x, y \in H \\
B_{2}(x, y)=B_{21}(x)+B_{22}(y), & x, y \in H
\end{array}
$$

Therefore, we can represent the operator B in matrix form:

$$
B(x, y)=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad(x, y) \in H \times H
$$

and briefly

$$
B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

We denote by $\mathcal{B}(H)$ the Borel σ-algebra of H and by μ_{Q} a fixed centered Gaussian measure on $(H, \mathcal{B}(H))$ with covariance operator Q such that $\operatorname{Ker} Q=\{0\}\left(\right.$ then $\left.\operatorname{supp}\left(\mu_{Q}\right)=H\right)$. It is well known that there exists a complete orthonormal basis $\left\{e_{n}\right\}_{n \geq 1}$ on H and a sequence $\left\{\lambda_{n}\right\}_{n \geq 1}$ of positive numbers such that

$$
Q\left(e_{n}\right)=\lambda_{n} e_{n}, \quad n \in \mathbb{N}, \quad \text { and } \quad \sum_{n=1}^{\infty} \lambda_{n}<\infty
$$

Without loss of generality we may and will assume that

$$
\lambda_{1}=\cdots=\lambda_{d_{1}}>\lambda_{d_{1}+1}=\cdots=\lambda_{d_{2}}>\lambda_{d_{2}+1}=\cdots
$$

Then for each $i \geq 1$ we have

$$
d_{i}-d_{i-1}=\operatorname{dim}\left[\operatorname{Ker}\left(\lambda_{d_{i}} I-Q\right)\right], \quad d_{0}:=0
$$

We recall that the Cameron-Martin space $Q^{1 / 2}(H) \subset H$ can be defined by

$$
Q^{1 / 2}(H)=\left\{y \in H: \sum_{n=1}^{\infty}\left\langle y, e_{n}\right\rangle^{2} / \lambda_{n}<\infty\right\}
$$

Let us consider the mapping

$$
W: Q^{1 / 2}(H) \rightarrow L^{2}\left(H, \mu_{Q}\right), \quad Q^{1 / 2}(H) \ni y \mapsto W_{y} \in L^{2}\left(H, \mu_{Q}\right)
$$

where $W_{y}(x)=\left\langle x, Q^{-1 / 2} y\right\rangle$ for $x \in H$. If $y_{1}, y_{2} \in Q^{1 / 2}(H)$ then

$$
\int_{H} W_{y_{1}} W_{y_{2}} d \mu_{Q}=\left\langle Q Q^{-1 / 2} y_{1}, Q^{-1 / 2} y_{2}\right\rangle=\left\langle y_{1}, y_{2}\right\rangle
$$

Hence W is an isometry. Since $Q^{1 / 2}(H)$ is dense in H, the mapping W can be uniquely extended to H. The operator W is called the white noise mapping. Note that for fixed $y \in H$ the random variable W_{y} is a centered Gaussian random variable on the probability space $\left(H, \mathcal{B}(H), \mu_{Q}\right)$ with variance $\|y\|^{2}$. Moreover, if $y=\sum_{n=1}^{\infty}\left\langle y, e_{n}\right\rangle e_{n}$, then

$$
\begin{equation*}
W_{y}=\sum_{n=1}^{\infty}\left\langle y, e_{n}\right\rangle W_{e_{n}}=\sum_{n=1}^{\infty}\left\langle y, e_{n}\right\rangle \frac{\left\langle\cdot, e_{n}\right\rangle}{\sqrt{\lambda_{n}}} \tag{2.4}
\end{equation*}
$$

and for $S \in L(H)$,

$$
W_{S y}=\sum_{n=1}^{\infty}\left\langle S y, e_{n}\right\rangle W_{e_{n}}=\sum_{n=1}^{\infty}\left\langle y, e_{n}\right\rangle W_{S e_{n}} \quad \text { in } L^{2}\left(\mu_{Q}\right)
$$

Let $B \in L(H \times H)$. We say that B is positive (written $B \geq 0$) if

$$
\langle B(x, y),(x, y)\rangle_{H \times H} \geq 0 \quad \text { for all } x, y \in H
$$

Let Q be the covariance operator as above and let $R \in L(H)$. Assume that an operator $B \in L(H \times H)$ has the form

$$
B=\left[\begin{array}{cc}
Q & Q R \tag{2.5}\\
R^{*} Q & Q
\end{array}\right]
$$

where R^{*} is the adjoint operator of R. We see at once that B is symmetric (i.e. $B=B^{*}$).

Lemma 2.1. An operator $B \in L(H \times H)$ of the form (2.5) is positive if and only if

$$
\begin{equation*}
\left\|Q^{1 / 2} R Q^{-1 / 2}\right\|_{Q^{1 / 2}(H)} \leq 1 \tag{2.6}
\end{equation*}
$$

where $\|\cdot\|_{Q^{1 / 2}(H)}$ denotes the norm of H restricted to the Cameron-Martin space $Q^{1 / 2}(H)$. Moreover, if $Q R=R Q$ then B is positive if and only if $\|R\| \leq 1$.

Proof. Let $(x, y) \in H \times H$. Then

$$
\begin{aligned}
\langle B(x, y),(x, y)\rangle_{H \times H} & =\left\langle\left(Q x+Q R y, R^{*} Q x+Q y\right),(x, y)\right\rangle_{H \times H} \\
& =\langle Q x, x\rangle+\langle Q R y, x\rangle+\left\langle R^{*} Q x, y\right\rangle+\langle Q y, y\rangle \\
& =\langle Q x, x\rangle+2\langle Q R y, x\rangle+\langle Q y, y\rangle \\
& =\left\|Q^{1 / 2} x\right\|^{2}+2\left\langle Q^{1 / 2} R Q^{-1 / 2} Q^{1 / 2} y, Q^{1 / 2} x\right\rangle+\left\|Q^{1 / 2} y\right\|^{2} \\
& =\|u\|^{2}+2\left\langle Q^{1 / 2} R Q^{-1 / 2} v, u\right\rangle+\|v\|^{2},
\end{aligned}
$$

where $u:=Q^{1 / 2} x$ and $v:=Q^{1 / 2} y$. Hence B is positive if and only if

$$
\begin{equation*}
\|u\|^{2}+2\left\langle Q^{1 / 2} R Q^{-1 / 2} v, u\right\rangle+\|v\|^{2} \geq 0 \quad \text { for all } u, v \in Q^{1 / 2}(H) \tag{2.7}
\end{equation*}
$$

Let us assume that 2.7 is fullfilled. Then

$$
\begin{equation*}
\|u\|^{2}+\|v\|^{2} \geq-2\left\langle Q^{1 / 2} R Q^{-1 / 2} v, u\right\rangle, \quad u, v \in Q^{1 / 2}(H) . \tag{2.8}
\end{equation*}
$$

Putting $-u$ instead of u in (2.8), we get

$$
\begin{equation*}
\|u\|^{2}+\|v\|^{2} \geq 2\left\langle Q^{1 / 2} R Q^{-1 / 2} v, u\right\rangle, \quad u, v \in Q^{1 / 2}(H) . \tag{2.9}
\end{equation*}
$$

From (2.8) and (2.9) we obtain

$$
\|u\|^{2}+\|v\|^{2} \geq 2\left|\left\langle Q^{1 / 2} R Q^{-1 / 2} v, u\right\rangle\right|, \quad u, v \in Q^{1 / 2}(H) .
$$

Taking the sup over all $u, v \in Q^{1 / 2}(H)$ such that $\|u\|=\|v\|=1$ we obtain (2.6). Conversely, assume that (2.6) is fullfilled. Then

$$
\left|\left\langle Q^{1 / 2} R Q^{-1 / 2} v, u\right\rangle\right| \leq\|v\|\|u\|, \quad u, v \in Q^{1 / 2}(H) .
$$

Hence

$$
\left\langle Q^{1 / 2} R Q^{-1 / 2} v, u\right\rangle \geq-\|v\|\|u\|, \quad u, v \in Q^{1 / 2}(H)
$$

Therefore

$$
\|u\|^{2}+2\left\langle Q^{1 / 2} R Q^{-1 / 2} v, u\right\rangle+\|v\|^{2} \geq\|u\|^{2}-2\|u\|\|v\|+\|v\|^{2}=(\|u\|-\|v\|)^{2} \geq 0,
$$ where $u, v \in Q^{1 / 2}(H)$. From 2.7) it follows that B is positive. The second part of the lemma follows from the first part and from the density of the Cameron-Martin $Q^{1 / 2}(H)$ space in H.

An operator $T \in L(H)$ is said to be nuclear if there exist two sequences $\left\{h_{i}\right\}_{i \geq 1},\left\{g_{i}\right\}_{i \geq 1} \subset H$ such that $\sum_{i=1}^{\infty}\left\|h_{i}\right\|\left\|g_{i}\right\|<\infty$ and T has the representation

$$
T x=\sum_{i=1}^{\infty}\left\langle x, h_{i}\right\rangle g_{i}, \quad x \in H .
$$

For a nuclear operator T, we can define its trace by $\operatorname{tr}(T)=\sum_{i=1}^{\infty}\left\langle T f_{i}, f_{i}\right\rangle$, where $\left\{f_{i}\right\}_{i \geq 1}$ is an othonormal basis of H. It is known that $\operatorname{tr}(T)$ is a welldefined number, independent of the choice of $\left\{f_{i}\right\}_{i \geq 1}$. Moreover, a symmetric positive operator $T \in L(H)$ is nuclear if and only if for some (or each) orthonormal basis $\left\{f_{i}\right\}_{i \geq 1}$ of H we have $\sum_{i=1}^{\infty}\left\langle T f_{i}, f_{i}\right\rangle<\infty$.

Now, we are going to show that the operator $B \in L(H \times H)$ of the form (2.5) is under certain assumptions the covariance operator of some centered Gaussian measure on $(H \times H, \mathcal{B}(H \times H)$).

Theorem 2.2. Let Q be the covariance operator as above and $R \in L(H)$ be such that $\|R\| \leq 1$ and $R Q=Q R$. Then the operator $B \in L(H \times H)$ of the form (2.5) is the covariance operator of some centered Gaussian measure on $(H \times H, \mathcal{B}(H \times H))$.

Proof. The symmetry of B is obvious. Lemma 2.1 implies positivity. An easy computation shows that B has a finite trace. Then the conclusion follows from the Mourier theorem (see e.g. [VTC]).
3. The Ornstein-Uhlenbeck operator on a Hilbert space. Let (Ω, \mathcal{F}, P) be a fixed probability space and let $(X, Y): \Omega \rightarrow H \times H$ be a centered Gaussian vector with covariance operator B of the form 2.5 , where $Q R=R Q$ and $\|R\| \leq 1$. By definition of the covariance operator of (X, Y), we have

$$
\begin{aligned}
Q(x) & =\int_{\Omega} X\langle X, x\rangle d P=\int_{\Omega} Y\langle Y, x\rangle d P \\
(Q R)(x) & =\int_{\Omega} X\langle Y, x\rangle d P \\
\left(R^{*} Q\right)(x) & =\int_{\Omega} Y\langle X, x\rangle d P
\end{aligned}
$$

where $x \in H$ and the above integrals are in the Bochner sense. Let Z : $\Omega \rightarrow H$ be a centered Gaussian vector with covariance operator Q and independent of the random vector Y. Let us denote

$$
U=R Y+\sqrt{I-R R^{*}} Z
$$

where I is the identity operator on H. Note that $I-R R^{*}$ is a symmetric and positive operator.

Now, we determine the covariance operator of the random vector (U, Y). For $x \in H$ we have

$$
\begin{aligned}
\int_{\Omega} U\langle U, & x\rangle d P=\int_{\Omega}\left(R Y+\sqrt{I-R R^{*}} Z\right)\left\langle R Y+\sqrt{I-R R^{*}} Z, x\right\rangle d P \\
= & \int_{\Omega} R Y\langle R Y, x\rangle d P+\int_{\Omega} R Y\left\langle\sqrt{I-R R^{*}} Z, x\right\rangle d P \\
& +\int_{\Omega} \sqrt{I-R R^{*}} Z\langle R Y, x\rangle d P+\int_{\Omega} \sqrt{I-R R^{*}} Z\left\langle\sqrt{I-R R^{*}} Z, x\right\rangle d P \\
& =\int_{\Omega} R Y\langle R Y, x\rangle d P+\int_{\Omega} \sqrt{I-R R^{*}} Z\left\langle\sqrt{I-R R^{*}} Z, x\right\rangle d P \\
& =R Q R^{*} x+\sqrt{I-R R^{*}} Q \sqrt{I-R R^{*}} x=Q(x) .
\end{aligned}
$$

Similarly,

$$
\int_{\Omega} U\langle Y, x\rangle d P=\int_{\Omega} R Y\langle Y, x\rangle d P=R Q(x)=Q R(x)
$$

and

$$
\int_{\Omega} Y\langle U, x\rangle d P=\int_{\Omega} Y\langle R Y, x\rangle d P=Q R^{*}(x)=R^{*} Q(x)
$$

Hence, we see that (X, Y) and (U, Y) have equal covariance operators. This implies that $\mathcal{L}(X, Y)=\mathcal{L}(U, Y)$. So, we can define the OrnsteinUhlenbeck operator $P_{R}: L^{2}\left(\mu_{Q}\right) \rightarrow L^{2}\left(\mu_{Q}\right)$, where $L^{2}\left(\mu_{Q}\right)$ is shorthand for $L^{2}\left(H, \mathcal{B}(H), \mu_{Q}\right)$,

$$
\begin{aligned}
\left(P_{R} f\right)(y) & =E[f(X) \mid Y=y]=E[f(U) \mid Y=y] \\
& =\int_{H} f\left(R y+\sqrt{I-R R^{*}} z\right) d \mu_{Q}(z), \quad y \in H
\end{aligned}
$$

It is easy to see that P_{R} is a contraction on $L^{2}\left(\mu_{Q}\right)$. Let us point out that we can define P_{R} on $L^{p}\left(\mu_{Q}\right), p \geq 1$, and in this case P_{R} is also a contraction. The operator P_{R} is symmetric if R is symmetric.

For a sequence $n=\left\{n_{i}\right\}_{i \geq 1} \subset \mathbb{N}_{0}$ we define

$$
|n|:=\sum_{i=1}^{\infty} n_{i} \quad \text { and } \quad n!:=\prod_{i=1}^{\infty} n_{i}!.
$$

Let us introduce the sets

$$
\begin{aligned}
\Lambda & :=\left\{n=\left\{n_{i}\right\}_{i \geq 1} \in \mathbb{N}_{0}^{\mathbb{N}}:|n|<\infty\right\} \\
\Lambda_{r} & :=\left\{n=\left\{n_{i}\right\}_{i \geq 1} \in \Lambda: n_{i}=0, i>r\right\}, \quad r \in \mathbb{N} .
\end{aligned}
$$

For $n=\left\{n_{i}\right\}_{i \geq 1} \in \Lambda$ we define Hermite polynomials on H by

$$
H_{n}(x)=\prod_{i=1}^{\infty} H_{n_{i}}\left(W_{e_{i}}(x)\right), \quad x \in H
$$

and

$$
h_{n}(x)=H_{n}(x) / \sqrt{n!}, \quad x \in H,
$$

where $\left\{e_{n}\right\}_{n \geq 1}$ is as above (i.e. $\left\{e_{n}\right\}_{n \geq 1}$ is the basis of H composed of normalized eigenvectors of the operator Q) and W is the white noise mapping.

ThEOREM $3.1([\mathbb{N}])$. The system $\left\{h_{n}\right\}_{n \in \Lambda}$ is an orthonormal basis in $L^{2}\left(\mu_{Q}\right)$.

For any $n \geq 1$ we will denote by \mathcal{H}_{n} the closed linear subspace of $L^{2}\left(\mu_{Q}\right)$ generated by the random variables $\left\{H_{n}\left(W_{y}\right): y \in H,\|y\|=1\right\}$, and \mathcal{H}_{0} will be the set of constants. It is well known that the subspaces \mathcal{H}_{n} and \mathcal{H}_{m} are orthogonal whenever $n \neq m$. The subspace $\mathcal{H}_{n}, n \geq 0$, is called the Wiener chaos of order n, and the set $\left\{h_{m}:|m|=n, m \in \Lambda\right\}$ is an orthonormal basis in \mathcal{H}_{n} (see e.g. N$]$).

Theorem $3.2([\mathbb{N}])$. The space $L^{2}\left(\mu_{Q}\right)$ can be decomposed into the infinite orthogonal sum of the subspaces $\mathcal{H}_{n}, n \geq 0$, i.e.

$$
L^{2}\left(\mu_{Q}\right)=\bigoplus_{n=0}^{\infty} \mathcal{H}_{n}
$$

In the next assertion we determine a generating function of the Hermite polynomials $\left\{h_{n}\right\}_{n \in \Lambda}$.

Lemma 3.3. For $t \in H$ we have

$$
\begin{equation*}
\exp \left(W_{t}-\|t\|^{2} / 2\right)=\sum_{n \in \Lambda} \frac{t^{n}}{n!} H_{n}=\sum_{n \in \Lambda} \frac{t^{n}}{\sqrt{n!}} h_{n} \tag{3.10}
\end{equation*}
$$

where $t=\sum_{i \geq 1} t_{i} e_{i}, t_{i}=\left\langle t, e_{i}\right\rangle, i \geq 1$, and $t^{n}=\prod_{i \geq 1} t_{i}^{n_{i}}$ with the convention $0^{0}:=1$. The convergence in 3.10 is in the norm of $L^{2}\left(\mu_{Q}\right)$.

Proof. We will show that the Fourier coefficients of $\omega_{t}:=\exp \left(W_{t}-\right.$ $\left.\|t\|^{2} / 2\right)$ with respect to the basis $\left\{h_{n}\right\}_{n \geq 1}$ are equal to $t^{n} / \sqrt{n!}, n \in \Lambda$. Let $n=\left\{n_{i}\right\}_{i \geq 1} \in \Lambda$. Assume that $n=0:=(0,0, \ldots)$. Then

$$
\left\langle\omega_{t}, h_{0}\right\rangle_{\mu_{Q}}=\left\langle\omega_{t}, 1\right\rangle_{\mu_{Q}}=\int_{H} \exp \left(W_{t}-\|t\|^{2} / 2\right) d \mu_{Q}=1
$$

Now, let $n \neq 0$. Then there is $m \in \mathbb{N}$ such that $n_{i}=0$ for $i>m$. Using (2.4), independence of $\left\{W_{e_{i}}\right\}_{i \geq 1}$ and (1.1) we have

$$
\begin{aligned}
\left\langle\omega_{t}, h_{n}\right\rangle_{\mu_{Q}}= & \int_{H} \exp \left(W_{t}-\|t\|^{2} / 2\right) h_{n} d \mu_{Q} \\
= & \frac{1}{\sqrt{n!}} \exp \left(-\|t\|^{2} / 2\right) \int_{H} \exp \left(W_{t}\right) H_{n} d \mu_{Q} \\
= & \frac{1}{\sqrt{n!}} \exp \left(-\|t\|^{2} / 2\right) \int_{H} \exp \left(\sum_{i=1}^{\infty} t_{i} W_{e_{i}}\right) \prod_{i=1}^{m} H_{n_{i}}\left(W_{e_{i}}\right) d \mu_{Q} \\
= & \frac{1}{\sqrt{n!}} \exp \left(-\|t\|^{2} / 2\right) \int_{H} \exp \left(\sum_{i=m+1}^{\infty} t_{i} W_{e_{i}}\right) d \mu_{Q} \\
& \times \int_{H} \exp \left(\sum_{i=1}^{m} t_{i} W_{e_{i}}\right) \prod_{i=1}^{m} H_{n_{i}}\left(W_{e_{i}}\right) d \mu_{Q} \\
= & \frac{1}{\sqrt{n!}} \exp \left(-\|t\|^{2} / 2\right) \exp \left(\frac{1}{2} \sum_{i=m+1}^{\infty}\left\langle t, e_{i}\right\rangle^{2}\right) \\
& \times \prod_{i=1}^{m} \int_{H} \exp \left(t_{i} W_{e_{i}}\right) H_{n_{i}}\left(W_{e_{i}}\right) d \mu_{Q} \\
= & \frac{1}{\sqrt{n!}} \exp \left(-\|t\|^{2} / 2\right) \prod_{i=m+1}^{\infty} \exp \left(t_{i}^{2} / 2\right) \\
& \times \prod_{i=1}^{m} \int_{H}^{H} \exp \left(t_{i}^{2} / 2\right) \sum_{j=0}^{\infty} \frac{t_{i}^{j}}{j!} H_{j}\left(W_{e_{i}}\right) H_{n_{i}}\left(W_{e_{i}}\right) d \mu_{Q} \\
= & \frac{1}{\sqrt{n!}} \prod_{i=1}^{m} \frac{t_{i}^{n_{i}}}{n_{i}!} n_{i}!=\frac{1}{\sqrt{n!}} t^{n} \cdot \square
\end{aligned}
$$

Corollary 3.4. Assume that $t=\sum_{i=1}^{r} t_{i} e_{i} \in H, r \in \mathbb{N}$. Then equality (3.10) has the form

$$
\exp \left(W_{t}-\|t\|^{2} / 2\right)=\sum_{n \in \Lambda_{r}} \frac{t^{n}}{n!} H_{n}=\sum_{n \in \Lambda_{r}} \frac{t^{n}}{\sqrt{n!}} h_{n}
$$

4. Main result. The set of all infinite matrices (with countable rows and columns) with elements from $\mathbb{R}\left(\right.$ or $\left.\mathbb{N}_{0}\right)$ is denoted by $\mathcal{M}_{\infty}(\mathbb{R})$ (resp. $\mathcal{M}_{\infty}\left(\mathbb{N}_{0}\right)$). If $M \in \mathcal{M}_{\infty}(\mathbb{R})$, the j th column and i th row of M are denoted by M_{j} and M^{i} respectively. From time to time we shall use the shorthand $M=\left[M_{j}^{i}\right]$. As usual we identify rows and columns of M with vectors from \mathbb{R}^{∞}. Let us introduce the set

$$
\mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right)=\left\{K \in \mathcal{M}_{\infty}\left(\mathbb{N}_{0}\right):|K| \in \Lambda\right\}
$$

where $|K|=\left(\left|K^{1}\right|,\left|K^{2}\right|, \ldots\right)$. If $K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right)$, it is easy to see that K has a finite number of non-zero columns and rows. Moreover, for $K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right)$ and $M \in \mathcal{M}_{\infty}(\mathbb{R})$, we denote

$$
K!:=\prod_{i=1}^{\infty} K^{i}!=\prod_{i, j=1}^{\infty} K_{j}^{i}!\quad \text { and } \quad M^{K}:=\prod_{i=1}^{\infty}\left(M^{i}\right)^{K^{i}}=\prod_{i, j=1}^{\infty}\left(M_{j}^{i}\right)^{K_{j}^{i}}
$$

with the convention $0^{0}=1$. From the above definitions we immediately get
Corollary 4.1. Let $K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right)$ and $M \in \mathcal{M}_{\infty}(\mathbb{R})$. Then
(i) K ! $=\left(K^{T}\right)$! and $M^{K^{T}}=\left(M^{T}\right)^{K}$ (here and hereafter, T stands for transposition).
(ii) Let $K_{j}^{i} \neq 0$ and $M_{j}^{i}=0$ for some $i, j \in \mathbb{N}$. Then $M^{K}=0$.
(iii) If $|K|=n$ and $\left|K^{T}\right|=m$, then $|n|=|m|$.

Given $M \in \mathcal{M}_{\infty}(\mathbb{R})$ such that $M^{i} \in l_{1}$ for $i \geq 1, n \in \Lambda$ and $t \in l_{\infty}$. It is easy to check that

$$
\begin{equation*}
(M t)^{n}=\sum_{\substack{K \in \mathcal{M}_{\Delta}\left(\mathbb{N}_{0}\right) \\|K|=n}} \frac{n!}{K!} M^{K} t^{\left|K^{T}\right|} \tag{4.11}
\end{equation*}
$$

Putting $t=(1,1, \ldots)$ in 4.11) we obtain

$$
\begin{equation*}
|M|^{n}=\sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\|K|=n}} \frac{n!}{K!} M^{K} \tag{4.12}
\end{equation*}
$$

where $|M|=\left(\left|M^{1}\right|,\left|M^{2}\right|, \ldots\right)$. We now turn to the Ornstein-Uhlenbeck operator P_{R}, where $R \in L(H),\|R\| \leq 1, R Q=Q R$, where Q is as above. The matrix of the operator R in the orthonormal basis $\left\{e_{n}\right\}_{n \geq 1}$ (we recall that $\left\{e_{n}\right\}_{n \geq 1}$ is the basis of H composed of the normalized eigenvectors of the
operator Q) is denoted by

$$
\mathbf{R}=\left[R_{j}^{i}\right]_{i, j \geq 1} \quad \text { where } \quad R_{j}^{i}=\left\langle R e_{j}, e_{i}\right\rangle, i, j \geq 1
$$

Since Q and R commute, the spaces $\operatorname{Ker}\left(\lambda_{d_{i}} I-Q\right), i \in \mathbb{N}$, are invariant under R, i.e.

$$
R\left(\operatorname{Ker}\left(\lambda_{d_{i}} I-Q\right)\right) \subset \operatorname{Ker}\left(\lambda_{d_{i}} I-Q\right), \quad i \in \mathbb{N}
$$

This implies that \mathbf{R} is a block diagonal matrix, where the dimensions of the blocks are $\left(d_{i}-d_{i-1}\right) \times\left(d_{i}-d_{i-1}\right), i \in \mathbb{N}$.

Lemma 4.2. Let $K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right)$ and $|K|=n,\left|K^{T}\right|=m$ (obviously $\left.n=\left\{n_{i}\right\}_{i \geq 1}, m=\left\{m_{i}\right\}_{i \geq 1} \in \Lambda\right)$ and $\mathbf{R}^{K} \neq 0$. Then for each $r \in \mathbb{N}$ we have $n \in \Lambda_{d_{r}}$ if and only if $m \in \Lambda_{d_{r}}$.

Proof. (\Rightarrow) Assume that $n \in \Lambda_{d_{r}}$ for some fixed $r \in \mathbb{N}$. Then $\left|K^{i}\right|=0$ for $i>d_{r}$. Assume that there exists $j_{0}>d_{r}$ such that $m_{j_{0}} \neq 0$. It follows that there exists $1 \leq i_{0} \leq d_{r}$ such that $K_{j_{0}}^{i_{0}} \neq 0$. Since $R_{j_{0}}^{i_{0}}=0$ we get $\mathbf{R}^{K}=0$. This contradicts our assumption.
(\Leftarrow) The proof is similar.
Note that if the matrix \mathbf{R} satisfies the condition $\sup _{i \geq 1} \sum_{j \geq 1}\left|R_{j}^{i}\right|<\infty$, then it defines an operator (denoted by the same letter) $\mathbf{R}: l_{\infty} \rightarrow l_{\infty}$ with the norm

$$
\|\mathbf{R}\|_{\infty}=\sup _{i \geq 1} \sum_{j \geq 1}\left|R_{j}^{i}\right|
$$

LEmmA 4.3. Let $\|\mathbf{R}\|_{\infty} \leq 1$ and $\left\|\mathbf{R}^{T}\right\|_{\infty} \leq 1$. Then $\|R\| \leq 1$ (here $\|R\|$ means the operator norm of R).

Proof. This is immediate from the Frobenius theorem (see [HLP]).
Theorem 4.4. Let $m \in \Lambda$. Then

$$
\begin{equation*}
P_{R}\left(H_{m}\right)=\sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\\left|K^{T}\right|=m}} \frac{m!}{K!} \mathbf{R}^{K^{T}} H_{|K|} \tag{4.13}
\end{equation*}
$$

Proof. Let us point out that the number of terms in the above sum is finite. For any $t \in H$ we define

$$
\omega_{t}(x):=\exp \left(-\|t\|^{2} / 2+W_{t}(x)\right), \quad x \in H
$$

Let $t=\sum_{k \geq 1} t_{k} e_{k}$, where $t_{k}=\left\langle x, e_{k}\right\rangle, k \geq 1$. Hence and from (2.4) we
obtain

$$
\begin{aligned}
\left(P_{R} \omega_{t}\right)(x)= & \int_{H} \exp \left(-\|t\|^{2} / 2+W_{t}\left(R x+\sqrt{I-R R^{*}} y\right)\right) d \mu_{Q}(y) \\
= & \exp \left(-\|t\|^{2} / 2\right) \int_{H} \exp \left(\sum_{k=1}^{\infty} t_{k} \frac{\left\langle R x+\sqrt{I-R R^{*}} y, e_{k}\right\rangle}{\sqrt{\lambda_{k}}}\right) d \mu_{Q}(y) \\
= & \exp \left(-\|t\|^{2} / 2\right) \exp \left(\sum_{k=1}^{\infty} t_{k} \frac{\left\langle R x, e_{k}\right\rangle}{\sqrt{\lambda_{k}}}\right) \\
& \times \int_{H} \exp \left(\sum_{k=1}^{\infty} t_{k} \frac{\left\langle\sqrt{I-R R^{*}} y, e_{k}\right\rangle}{\sqrt{\lambda_{k}}}\right) d \mu_{Q}(y)
\end{aligned}
$$

Note that

$$
\frac{\left\langle R x, e_{k}\right\rangle}{\sqrt{\lambda_{k}}}=\frac{\left\langle x, R^{*} e_{k}\right\rangle}{\sqrt{\lambda_{k}}}=\frac{\left\langle x, Q^{-1 / 2} Q^{1 / 2} R^{*} e_{k}\right\rangle}{\sqrt{\lambda_{k}}}=\left\langle x, Q^{-1 / 2} R^{*} e_{k}\right\rangle
$$

and similarly

$$
\frac{\left\langle\sqrt{I-R R^{*}} y, e_{k}\right\rangle}{\sqrt{\lambda_{k}}}=\left\langle y, Q^{-1 / 2} \sqrt{I-R R^{*}} e_{k}\right\rangle
$$

It follows that

$$
\begin{aligned}
& \left(P_{R} \omega_{t}\right)(x)=\exp \left(-\|t\|^{2} / 2\right) \exp \left(\sum_{k=1}^{\infty} t_{k}\left\langle x, Q^{-1 / 2} R^{*} e_{k}\right\rangle\right) \\
& \quad \times \int_{H} \exp \left(\sum_{k=1}^{\infty} t_{k}\left\langle y, Q^{-1 / 2} \sqrt{I-R R^{*}} e_{k}\right\rangle\right) d \mu_{Q}(y) \\
& =\exp \left(-\|t\|^{2} / 2\right) \exp \left(\sum_{k=1}^{\infty} t_{k} W_{R^{*} e_{k}}(x)\right) \int_{H} \exp \left(\sum_{k=1}^{\infty} t_{k} W_{\sqrt{I-R R^{*}} e_{k}}(y)\right) d \mu_{Q}(y)
\end{aligned}
$$

From (2.4) we conclude that

$$
W_{R^{*} t}=\sum_{k=1}^{\infty} t_{k} W_{R^{*} e_{k}} \quad \text { and } \quad W_{\sqrt{I-R R^{*}} t}=\sum_{k=1}^{\infty} t_{k} W_{\sqrt{I-R R^{*}} e_{k}} \quad \text { in } L^{2}\left(\mu_{Q}\right)
$$

Therefore

$$
\begin{aligned}
P_{R}\left(\omega_{t}\right) & =\exp \left(-\|t\|^{2} / 2\right) \exp \left(W_{R^{*} t}\right) \int_{H} \exp \left[W_{\sqrt{I-R R^{*}} t}(y)\right] d \mu_{Q}(y) \\
& =\exp \left(-\|t\|^{2} / 2\right) \exp \left(W_{R^{*} t}\right) \exp \left(\left\|\sqrt{I-R R^{*}} t\right\|^{2} / 2\right) \\
& =\exp \left[W_{R^{*} t}-\left\|R^{*} t\right\|^{2} / 2\right]=\sum_{n \in \Lambda} \frac{\left(R^{*} t\right)^{n}}{n!} H_{n}=\sum_{n \in \Lambda} \frac{\left(\mathbf{R}^{T} t\right)^{n}}{n!} H_{n}
\end{aligned}
$$

Let us fix $m \in \Lambda$. There exist $s, j_{0} \in \mathbb{N}$ such that $m \in \Lambda_{s}$ and $d_{j_{0}-1}<s \leq d_{j_{0}}$. Let $r:=d_{j_{0}}$. Then for any $t=\sum_{1 \leq i \leq r} t_{i} e_{i}$ we have

$$
P_{R}\left(\omega_{t}\right)=\sum_{n \in \Lambda_{r}} \frac{\left(\mathbf{R}^{T} t\right)^{n}}{n!} H_{n}=\lim _{l \rightarrow \infty} \sum_{\substack{n \in \Lambda_{r} \\|n| \leq l}} \frac{\left(\mathbf{R}^{T} t\right)^{n}}{n!} H_{n} \quad \text { in } L^{2}\left(\mu_{Q}\right)
$$

From (4.11) it follows that

$$
\begin{aligned}
P_{R}\left(\omega_{t}\right) & =\lim _{l \rightarrow \infty} \sum_{\substack{n \in \Lambda_{r} \\
|n| \leq l}} \frac{1}{n!} \sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
|K|=n}} \frac{n!}{K!} \mathbf{R}^{K^{T}} t^{\left|K^{T}\right|} H_{n} \\
& =\lim _{l \rightarrow \infty} \sum_{\substack{n \in \Lambda_{r} \\
|n| \leq l}} \sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
|K|=n}} \frac{\mathbf{R}^{K^{T}}}{K!} t^{\left|K^{T}\right|} H_{|K|} .
\end{aligned}
$$

Note that the number of terms in the above two sums is finite. By Corollary 4.1 (iii) and Lemma 4.2 we obtain

$$
\begin{aligned}
& P_{R}\left(\omega_{t}\right)=\lim _{l \rightarrow \infty} \sum_{\substack{n \in \Lambda_{r} \\
|n| \leq l}} \sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
\left|K^{T}\right|=n}} \frac{\mathbf{R}^{K^{T}}}{K!} t^{\left|K^{T}\right|} H_{|K|} \\
& \quad=\lim _{l \rightarrow \infty} \sum_{\substack{n \in \Lambda_{r} \\
|n| \leq l}} \frac{t^{n}}{n!} \sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
\left|K^{T}\right|=n}} \frac{n!}{K!} \mathbf{R}^{K^{T}} H_{|K|}=\sum_{n \in \Lambda_{r}} \frac{t^{n}}{n!} \sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
\left|K^{T}\right|=n}} \frac{n!}{K!} \mathbf{R}^{K^{T}} H_{|K|} \cdot
\end{aligned}
$$

On the other hand, from Corollary 3.4 and from the continuity of P_{R} in $L^{2}\left(\mu_{Q}\right)$, we get

$$
P_{R}\left(\omega_{t}\right)=\sum_{n \in \Lambda_{r}} \frac{t^{n}}{n!} P_{R}\left(H_{n}\right)
$$

By comparing this formula with the formula obtained above, we get (4.13), and the proof is complete.

Corollary 4.5. For each $n \in \mathbb{N}_{0}$,

$$
P_{R}\left(\mathcal{H}_{n}\right) \subset \mathcal{H}_{n}
$$

For the Hermite polynomials orthonormal in $L^{2}\left(\mu_{Q}\right)$, formula 4.13) takes the form

$$
\begin{equation*}
P_{R}\left(h_{m}\right)=\sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\\left|K^{T}\right|=m}} \frac{\sqrt{m!} \sqrt{|K|!}}{K!} \mathbf{R}^{K^{T}} h_{|K|} \tag{4.14}
\end{equation*}
$$

The next theorem is a generalization of the Gebelein inequality to Hilbert spaces.

Theorem 4.6. Let $Q \in L(H)$ be as above and let $R \in L(H)$ satisfy $Q R=R Q$ and $\|\mathbf{R}\|_{\infty} \leq 1$ and $\left\|\mathbf{R}^{T}\right\|_{\infty} \leq 1$. Then for $f \in L^{2}\left(\mu_{Q}\right)$ such that $\langle f, 1\rangle_{\mu_{Q}}=0$ we have

$$
\begin{equation*}
\left\|P_{R}(f)\right\|_{2} \leq \sqrt{\|\mathbf{R}\|_{\infty}\left\|\mathbf{R}^{T}\right\|_{\infty}}\|f\|_{2} \tag{4.15}
\end{equation*}
$$

Proof. Let us first see that by Lemma 4.3 the operator P_{R} is properly defined. For $\|\mathbf{R}\|_{\infty}=0$, inequality 4.15) holds trivially. Assume that $\|\mathbf{R}\|_{\infty} \neq 0$. Let us consider the linear operator $S_{R}: L^{2}\left(\mu_{Q}\right) \rightarrow L^{2}\left(\mu_{Q}\right)$ defined as

$$
S_{R}(f)=\sum_{n \in \Lambda} \sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\|K|=n}}\left\langle f, h_{\left|K^{T}\right|}\right\rangle_{\mu_{Q}} \frac{\sqrt{\left|K^{T}\right|!} \sqrt{|K|!}}{K!} \mathbf{R}^{K^{T}} h_{n}, \quad f \in L^{2}\left(\mu_{Q}\right) .
$$

We shall prove that S_{R} is continuous. Let $f \in L^{2}\left(\mu_{Q}\right)$. Then

$$
\begin{aligned}
\left\|S_{R}(f)\right\|_{2}^{2} & =\int_{H}\left|\sum_{n \in \Lambda} \sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
|K|=n}}\left\langle f, h_{\left|K^{T}\right|}\right\rangle_{\mu_{Q}} \frac{\sqrt{\left|K^{T}\right|!} \sqrt{|K|!}}{K!} \mathbf{R}^{K^{T}} h_{n}\right|^{2} d \mu_{Q} \\
& =\sum_{n \in \Lambda}\left(\sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
|K|=n}} \frac{\sqrt{\left|K^{T}\right|!} \sqrt{|K|!}}{K!} \mathbf{R}^{K^{T}}\left\langle f, h_{\left|K^{T}\right|}\right\rangle_{\mu_{Q}}\right)^{2} \\
& \leq \sum_{n \in \Lambda}\left(\left.\sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
|K|=n}} \frac{\sqrt{\left|K^{T}\right|!} \sqrt{|K|!}}{K!}\left(\overline{\mathbf{R}}^{T}\right)^{K} \right\rvert\,\left\langle f, h_{\left|K^{T}\right|}\right\rangle_{\mu_{Q} \mid}\right)^{2},
\end{aligned}
$$

where $\overline{\mathbf{R}}=\left[\left|R_{j}^{i}\right|\right]_{i, j \geq 1}$ (here $\left|R_{j}^{i}\right|$ means the absolute value of R_{j}^{i}). From what has already been proved, from (4.12) and by the Jensen inequality we see that

$$
\begin{aligned}
\left\|S_{R}(f)\right\|_{2}^{2} \leq & \sum_{n \in \Lambda} \frac{\left(\left|\overline{\mathbf{R}}^{T}\right|^{n}\right)^{2}}{n!} \\
& \times\left(\frac{1}{\left|\overline{\mathbf{R}}^{T}\right|^{n}} \sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
|K|=n}} \frac{n!}{K!}\left(\overline{\mathbf{R}}^{T}\right)^{K} \sqrt{\left|K^{T}\right|!}\left|\left\langle f, h_{\left|K^{T}\right|}\right\rangle_{\mu_{Q}}\right|\right)^{2} \\
\leq & \sum_{n \in \Lambda} \frac{\left(\left|\overline{\mathbf{R}}^{T}\right|^{n}\right)^{2}}{n!} \frac{1}{\left|\overline{\mathbf{R}}^{T}\right|^{n}} \sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
|K|=n}} \frac{n!}{K!}\left(\overline{\mathbf{R}}^{T}\right)^{K}\left|K^{T}\right|!\left\langle f, h_{\left|K^{T}\right|}\right\rangle_{\mu_{Q}}^{2} \\
= & \sum_{n \in \Lambda}\left|\overline{\mathbf{R}}^{T}\right|^{n} \sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
|K|=n}} \frac{\left|K^{T}\right|!!}{K!}\left(\overline{\mathbf{R}}^{T}\right)^{K}\left\langle f, h_{\left|K^{T}\right|}\right\rangle_{\mu_{Q}}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left\|\mathbf{R}^{T}\right\|_{\infty} \sum_{n \in \Lambda} \sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
|K|=n}} \frac{\left|K^{T}\right|!}{K!}\left(\overline{\mathbf{R}}^{T}\right)^{K}\left\langle f, h_{\left|K^{T}\right|}\right\rangle_{\mu_{Q}}^{2} \\
& =\left\|\mathbf{R}^{T}\right\|_{\infty} \sum_{n \in \Lambda} \sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
\left|K^{T}\right|=n}} \frac{\left|K^{T}\right|!}{K^{T}!} \overline{\mathbf{R}}^{K^{T}}\left\langle f, h_{\left|K^{T}\right|}\right\rangle_{\mu_{Q}}^{2} \\
& =\left\|\mathbf{R}^{T}\right\|_{\infty} \sum_{n \in \Lambda} \sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
|K|=n}} \frac{|K|!}{K!} \overline{\mathbf{R}}^{K}\left\langle f, h_{n}\right\rangle_{\mu_{Q}}^{2}
\end{aligned}
$$

Now, from (4.12) we conclude that

$$
\begin{equation*}
\left\|S_{R}(f)\right\|_{2}^{2} \leq\left\|\mathbf{R}^{T}\right\|_{\infty} \sum_{n \in A}|\overline{\mathbf{R}}|^{n}\left\langle f, h_{n}\right\rangle_{\mu_{Q}}^{2} . \tag{4.16}
\end{equation*}
$$

By assumption $\left\|\mathbf{R}^{T}\right\|_{\infty} \leq 1$ and $|\overline{\mathbf{R}}|^{n} \leq 1\left(|\overline{\mathbf{R}}|^{0}=1\right)$. Therefore

$$
\left\|S_{R}(f)\right\|_{2} \leq\|f\|_{2}, \quad f \in L^{2}\left(\mu_{Q}\right)
$$

i.e. S_{R} is a continuous linear operator on $L^{2}\left(\mu_{Q}\right)$. Moreover, $P_{R}\left(h_{m}\right)=$ $S_{R}\left(h_{m}\right)$ for $m \in \Lambda$: indeed,

$$
\begin{aligned}
S_{R}\left(h_{m}\right)= & \sum_{n \in \Lambda} \sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
|K|=n}}\left\langle h_{m}, h_{\left|K^{T}\right|}\right\rangle_{\mu_{Q}} \frac{\sqrt{\left|K^{T}\right|!} \sqrt{|K|!}}{K!} \mathbf{R}^{K^{T}} h_{n} \\
= & \sum_{n \in \Lambda} \sum_{\substack{\begin{subarray}{c}{\left.|K|=n \\
|K| \mathbb{N}_{0}\right) \\
\left|K^{T}\right|=m} }}\end{subarray}} \frac{\sqrt{\left|K^{T}\right|!} \sqrt{|K|!}}{K!} \mathbf{R}^{K^{T}} h_{|K|} \\
= & \sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
\left|K^{T}\right|=m}} \frac{\sqrt{\left|K^{T}\right|!} \sqrt{|K|!}}{K!} \mathbf{R}^{K^{T}} h_{|K|}=P_{R}\left(h_{m}\right)
\end{aligned}
$$

Hence and from the continuity of P_{R} and S_{R} we conclude that $S_{R}=P_{R}$. Finally, from 4.16 and by assumption $\langle f, 1\rangle_{\mu_{Q}}=0$ we obtain

$$
\left\|P_{R}(f)\right\|_{2}^{2}=\left\|S_{R}(f)\right\|_{2}^{2} \leq\left\|\mathbf{R}^{T}\right\|_{\infty} \sum_{n \in \Lambda}|\overline{\mathbf{R}}|^{n}\left\langle f, h_{n}\right\rangle_{\mu_{Q}}^{2} \leq\left\|\mathbf{R}^{T}\right\|_{\infty}\|\mathbf{R}\|_{\infty}\|f\|_{2}^{2}
$$

where $f \in L^{2}\left(\mu_{Q}\right)$ and the proof of 4.15 is complete.
Example. Assume that \mathbf{R} is a diagonal matrix with main diagonal $\left\{\rho_{i}\right\}_{i \geq 1}$ (e.g. if R is symmetric then we can find an orthonormal basis of H such that in this basis both operators Q and R have diagonal matrices). It is clear that $\mathbf{R}^{T}=\mathbf{R}$ and (by the assumption of Theorem 4.6)
$\|\rho\|_{\infty}=\|\mathbf{R}\|_{\infty} \leq 1$, where $\rho=\left(\rho_{1}, \rho_{2}, \ldots\right)$. From 4.14) it follows that

$$
\begin{aligned}
P_{R}\left(h_{n}\right) & =\sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
\left|K^{T}\right|=n}} \frac{\sqrt{n!} \sqrt{|K|!}}{K!} \mathbf{R}^{K^{T}} h_{|K|} \\
& =\sum_{\substack{K \in \mathcal{M}_{\Lambda}\left(\mathbb{N}_{0}\right) \\
|K|=\left|K^{T}\right|=n}} \frac{n!}{K!} \mathbf{R}^{K} h_{n}=\rho^{n} h_{n}, \quad n \in \Lambda .
\end{aligned}
$$

Thus

$$
\begin{equation*}
P_{R}(f)=\sum_{n \in \Lambda} \rho^{n}\left\langle f, h_{n}\right\rangle h_{n}, \quad f \in L^{2}\left(\mu_{Q}\right) \tag{4.17}
\end{equation*}
$$

and the Gebelein inequality has the form

$$
\begin{equation*}
\left\|P_{R}(f)\right\|_{2} \leq\|\rho\|_{\infty}\|f\|_{2}, \quad f \in L^{2}\left(\mu_{Q}\right),\langle f, 1\rangle_{\mu_{Q}}=0 \tag{4.18}
\end{equation*}
$$

In order to examine the equality case in 4.18 we shall consider three cases, the proof of which is an immediate consequence of 4.17).
(i) If $\left|\rho_{i}\right|<\|\rho\|_{\infty}, i \in \mathbb{N}$, then we have equality in (4.18) if and only if $f=0$.
(ii) If $\left|\rho_{i}\right|=\|\rho\|_{\infty}=1, i \in I \subset \mathbb{N}$, then we have equality in 4.18) if and only if

$$
f=\sum_{n \in \Lambda_{I}} t_{n} h_{n}, \quad \sum_{n \in \Lambda_{I}} t_{n}^{2}<\infty
$$

where $\Lambda_{I}=\left\{n=\left\{n_{i}\right\}_{i \geq 1} \in \Lambda: n_{i} \neq 0 \Rightarrow i \in I\right\}$.
(iii) If $\left|\rho_{i}\right|=\|\rho\|_{\infty}<1, i \in I \subset \mathbb{N}$, then we have equality in (4.18) if and only if

$$
f=\sum_{n \in \Lambda_{I_{1}}} t_{n} h_{n}, \quad \sum_{n \in \Lambda_{I_{1}}} t_{n}^{2}<\infty
$$

where $\Lambda_{I_{1}}=\left\{n=\left\{n_{i}\right\}_{i \geq 1} \in \Lambda_{I}:|n|=1\right\}$.
Assume additionally that H is finite-dimensional, say $\operatorname{dim}(H)=d$. It is clear that in this case

$$
P_{R}\left(h_{n}\right)=\rho^{n} h_{n}, \quad n \in \mathbb{N}_{0}^{d}, \rho=\left(\rho_{1}, \ldots, \rho_{d}\right)
$$

It follows that

$$
\left\|P_{R}(f)\right\|_{2} \leq\|\rho\|_{\max }\|f\|_{2}, \quad f \in L^{2}\left(\mu_{Q}\right),\langle f, 1\rangle_{\mu_{Q}}=0
$$

where $\|\rho\|_{\text {max }}=\max _{1 \leq i \leq d}\left|\rho_{i}\right|$. It is well known that for every $f \in L^{2}\left(\mu_{Q}\right)$ there exists a Borel function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that

$$
f(x)=g\left(\left\langle x, e_{1}\right\rangle, \ldots,\left\langle x, e_{d}\right\rangle\right), \quad x \in H
$$

and

$$
\int_{H} f^{2}(x) d \mu_{Q}(x)=\int_{\mathbb{R}^{d}} g^{2}\left(t_{1}, \ldots t_{d}\right) d \nu\left(t_{1}, \ldots, t_{d}\right)
$$

where $\nu=\mu_{\lambda_{1}} \times \cdots \times \mu_{\lambda_{d}}$. If we replace the condition $\langle f, 1\rangle_{\mu_{Q}}=0, f \in$ $L^{2}\left(\mu_{Q}\right)$ with the stronger condition

$$
\begin{equation*}
\int_{\mathbb{R}} g\left(t_{1}, \ldots, t_{d}\right) d \mu_{\lambda_{i}}\left(t_{i}\right)=0, \quad i=1, \ldots, d \tag{4.19}
\end{equation*}
$$

then the Gebelein inequality has the form

$$
\left\|P_{R}(f)\right\|_{2} \leq\left|\rho_{1}\right|^{\varepsilon_{1}} \cdots\left|\rho_{d}\right|^{\varepsilon_{d}}\|f\|_{2}=\bar{\rho}^{\varepsilon}\|f\|_{2}, \quad \varepsilon_{i}= \begin{cases}0 & \text { if } \rho_{i}=0 \tag{4.20}\\ 1 & \text { if } \rho_{i} \neq 0\end{cases}
$$

for $i=1, \ldots, d$ and $\bar{\rho}=\left(\left|\rho_{1}\right|, \ldots,\left|\rho_{d}\right|\right), \quad \varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{d}\right)$. If H is infinitedimensional, then condition 4.19 has the form

$$
\begin{equation*}
\int_{\mathbb{R}} g\left(t_{1}, t_{2}, \ldots\right) d \mu_{\lambda_{i}}\left(t_{i}\right)=0, \quad i=1,2, \ldots \tag{4.21}
\end{equation*}
$$

where $g: \mathbb{R}^{\infty} \rightarrow \mathbb{R}$ is a Borel function such that

$$
f(x)=g\left(\left\langle x, e_{1}\right\rangle,\left\langle x, e_{2}\right\rangle, \ldots\right), \quad x \in H, f \in L^{2}\left(\mu_{Q}\right)
$$

It is easy to check that 4.21 implies $\left\langle f, h_{n}\right\rangle_{\mu_{Q}}=0, n \in \Lambda$, i.e. $f=0$. Therefore in the infinite-dimensional case inequality 4.20 under the assumption (4.21) has a trivial form.
5. Applications. Let $Q \in L(H)$ be as above and let $\left\{X_{n}\right\}_{n \geq 1}$ be a centered Gaussian sequence of random vectors $X_{n}: \Omega \rightarrow H, n \geq 1$, with covariance operator Q and such that the covariance operator of $\left(X_{i}, X_{j}\right)$, $i, j \geq 1$, has the form

$$
\operatorname{cov}\left[\left(X_{i}, X_{j}\right)\right]=\left[\begin{array}{cc}
Q & Q R_{i j} \\
R_{i j} Q & Q
\end{array}\right], \quad i, j \geq 1
$$

where for $i, j \geq 1$ the operators $R_{i j} \in L(H)$ are symmetric, $R_{i j} Q=Q R_{i j}$ and $\left\|\mathbf{R}_{i j}\right\|_{\infty} \leq 1$ (note that $R_{i i}=I$ is the identity operator). Assume additionally that

$$
\sup _{i \geq 1} \sum_{j=1}^{\infty}\left\|\mathbf{R}_{i j}\right\|_{\infty}<\infty
$$

Adopting now the methods from $[\mathrm{BC}]$ we obtain the following statement.
ThEOREM 5.1. Let $\left\{X_{n}\right\}_{n \geq 1}$ be a centered Gaussian sequence as above. Suppose that $f \in L^{1}\left(\mu_{Q}\right)$. Then

$$
\frac{f\left(X_{1}\right)+\cdots+f\left(X_{n}\right)}{n} \underset{n \rightarrow \infty}{ } \int_{H} f d \mu_{Q} \quad P \text {-a.s. }
$$

Let E be a separable real Banach space with norm $\|\cdot\|_{E}$. We denote by $L^{1}\left(\mu_{Q} ; E\right)$ the space of (equivalence classes of) Bochner measurable functions $g: H \rightarrow E$ such that $\int_{H}\|g\| d \mu_{Q}<\infty$. Now Theorem 5.1 and a slight change
in the proof of Ranga Rao (see e.g. [DS]) of the Strong Law of Large Numbers for independent random vectors show that for a Gaussian sequence $\left\{X_{n}\right\}_{n \geq 1}$ (under the above assumptions) and for $g \in L^{1}\left(\mu_{Q} ; E\right)$ we have

$$
\frac{g\left(X_{1}\right)+\cdots+g\left(X_{n}\right)}{n} \xrightarrow[n \rightarrow \infty]{ } \int_{H} g d \mu_{Q} \quad P \text {-a.s. }
$$

References

[B] M. Beśka, Note on variance of the sum of Gaussian functionals, Appl. Math. (Warsaw) 37 (2010), 231-236.
[BC] M. Beśka and Z. Ciesielski, Gebelein's inequality and its consequences, in: Banach Center Publ. 72, Inst. Math., Polish Acad. Sci., 2006, 11-23.
[DK] H. Dym and H. P. McKean, Gaussian Processes, Function Theory and Inverse Spectral Problem, Academic Press, 1976.
[DS] J.-D. Deuschel and D. W. Stroock, Large Deviations, Academic Press, 1989.
[G] H. Gebelein, Das statistische Problem der Korrelation als Variations- und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung, Z. Angew. Math. Mech. 21 (1941), 364-379.
[HLP] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1967.
[N] D. Nualart, The Malliavin Calculus and Related Topics, Springer, Berlin, 2006.
[VTC] N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan, Probability distribution in Banach spaces, Kluwer, 1987.
[V] M. Veraar, Correlation inequalities and applications to vector-valued Gaussian random variables and fractional Brownian motion, Potential Anal. 30 (2009), 341-370.

Marek Beśka
ul. Krzemowa 15D/38
80-041 Gdańsk, Poland
ORCID: 0000-0003-0088-9850
E-mail: mbeska72@gmail.com

[^0]: 2020 Mathematics Subject Classification: Primary 60B11; Secondary 60B12, 46G12, 28C20. Key words and phrases: Gaussian random vector, Hermite polynomials, Cameron-Martin space, white noise mapping, Ornstein-Uhlenbeck operator.
 Received 6 May 2023; revised 28 December 2023.
 Published online 1 February 2024.

