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NON-ZERO-SUM STOCHASTIC GAMES WITH RECURSIVE
UTILITIES OF RISK-SENSITIVE PLAYERS

Abstract. Recursive utilities constructed by conditional entropic risk mea-
sures have recently been considered in various stochastic models and their
applications, e.g., in economic dynamics. We study countable state discounted
stochastic games played by risk-sensitive players. More precisely, we assume
that the players evaluate their payoffs in a recursive way with the aid of the
certainty equivalent of an exponential utility function. Under typical continu-
ity and compactness conditions we prove that a stationary Nash equilibrium
exists.

1. Introduction. The seminal papers of Howard and Matheson [22],
Jacobson [24] and Jaquette [25, 26] mark the beginning of highly active
research on dynamic programming with risk-sensitive preferences of the con-
troller. While maximising the expected payoff implies a risk-neutral attitude,
empirical evidence suggests that many agents tend to be risk-averse or are
even made to be so by regulations, e.g. in finance or insurance industry [30].
The term “a risk-sensitive decision maker” mainly refers in the literature
to the situation when the expectation of the random payoff is replaced by
the certainty equivalent of an exponential utility. Thus, such a risk-sensitive
model assumes that a controller uses a non-linear utility function. It is worth
mentioning that the negative of the certainty equivalent of an exponential
utility is also known as the entropic risk measure [20].
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In recent years, there has been intensive development in this direction.
For example, the approach based on the exponential utility found useful
applications, in economics [2, 10, 27, 31, 36, 39], in actuarial science [9],
in finance [20, 33] and in operations research [21, 24, 40, 41]. Moreover, as
argued by Hansen and Sargent [21] and Başar [6] the risk-sensitive prefer-
ences are also attractive, because they can be used to model preferences
for robustness. In such a case, one can interpret the risk parameter in the
exponential utility function as the robustness parameter. Furthermore, the
risk-sensitive preferences are also interesting from a mathematical point of
view and have inspired a stream of works in Markov decision processes (for
example, [3, 11, 16, 17]) and in dynamic games, see [7, 12] for zero-sum games
and [8, 5, 15, 28, 32, 38] for non-zero-sum games.

In this paper, we consider a non-zero-sum stochastic game on a count-
able state space with the risk-averse players. In other words, the players are
equipped with a parameter that reflects their risk-averse attitude towards
risk. In the literature, there are two approaches that use the certainty equiv-
alent of an exponential function. The first one corresponds to the case when
it is defined on the space of all infinite histories (plays, say Ω) in the game
or decision processes with the measure P constructed by strategies of the
agents and transition probability according to the Ionescu–Tulcea theorem
(see details in Subsection 3.2). The random variable is then the discounted
payoff defined on Ω. The second method, on the other hand, is related to the
use of the certainty equivalent of an exponential function sequentially, i.e.,
at every step. The controller accepts in each period a certainty equivalent as
a terminal payment instead of continuing the dynamic choice process. This
technique leads to the so-called recursive utilities. These two frameworks
have been developed in parallel. The reader is referred to [11, 16, 17] and
to [3, 9, 10, 21] where the former and latter approaches, respectively, were
examined for Markov decision models with discounted payoffs.

The objective of our paper is to apply the latter method for stochastic
games on a countable state space. The certainty equivalent of an exponen-
tial function is used sequentially to define discounted recursive utilities for
the players. More precisely, in the nth step of the game, it is a probability
measure on the product of the state space and the set of action profiles of
the players. It depends on the history up to the nth state. This method leads
to stationary Nash equilibria in discounted stochastic games under consid-
eration. The fact is in contrast to [8], where the authors obtained a Nash
equilibrium in the class of Markovian strategies for the discounted payoffs
defined as in the first method. To the best of our knowledge, there is only
one paper [2] on a dynamic game, where discounted recursive utilities are
studied. This work is devoted to a special model of a two-player symmet-
ric resource extraction game with specific transition probabilities. In [2] the
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authors showed that there exists a symmetric Nash equilibrium in the class
of stationary strategies. Finally, recursive utilities were also employed to the
intergenerational games [4, 27], in which the generations (players or selves)
are risk-averse. However, these models are of different nature than the typi-
cal stochastic game. Finally, we wish to emphasise that dynamic games with
related payoff criteria such as a weighted sum of mean and variance of the
random payoffs need not possess Nash equilibria. Section 3.3 includes a sim-
ple example of a dynamic game with players who evaluate their payoffs as
in the Markowitz model. We prove that the game has no Nash equilibrium.

2. Preliminaries and notation. We use R and N to denote the sets
of all real numbers and positive integers, respectively. Let (Ω,A,P) be a
probability space and let Z be a random payoff of a player on Ω that is
essentially bounded. Instead of using EZ the player applies the exponential
utility function to evaluate his/her random payoff. In what follows let U(z) =
rerz where r ∈ R\{0}. The certainty equivalent of U for the random variable
Z is the number ce(r, Z) such that U(ce(r, Z)) = EU(Z). It is easy to see
that

ce(r, Z) =
1

r
lnE(erZ).

The quantity −ce(r, Z) is also known as the entropic risk measure of Z
(see [20]). However, in what follows we shall refer to ce(r, Z) as the entropic
risk measure. The parameter −r is known as the Arrow–Pratt risk coefficient
of absolute risk aversion of U (see [20, p. 74] and [34]). Here, we call it
simply the risk sensitivity coefficient of a player. A player equipped with the
risk sensitivity coefficient −r > 0 (resp. −r < 0) is risk-averse (resp. risk-
seeking) and indifferent between receiving a random payoff Z and obtaining
the amount ce(r, Z) for sure. Observe that by applying the Taylor expansion
around r = 0 for U we get

ce(r, Z) ≈ EZ +
r

2
VarZ.

Therefore, if r < 0, then the individual who considers ce(r, Z) tends not only
the maximisation of the expected value EZ of the random payoff Z, but also
to minimisation of its variance.

Let K be a compact metric space. We denote by C(K) the Banach space
of all continuous real-valued functions on K endowed with the maximum
norm. By the Riesz representation theorem [1, Corollary 14.15] the topo-
logical dual space C∗(K) of C(K) consists of all finite countably additive
regular measures on the Borel sets in K. The space C∗(K) is endowed with
the weak-star metrisable topology; it is a locally convex linear topological
space. The set Pr(K) of all probability measures on K is a compact convex
subset of C∗(K) [1, Theorem 6.21]. Recall that a sequence (µn)n∈N of prob-
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ability measures in Pr(K) weak-star converges to µ (denoted by µn →∗ µ) if
limn→∞

	
K f dµn =

	
K f dµ for each f ∈ C(K) (see [13, Proposition 7.21]).

If K is a metric space, then we denote by B(K) the Banach space of
all bounded real-valued functions on K endowed with the supremum norm
∥f∥ = supy∈K |f(y)|.

3. The model and main result. Fix N ≥ 2. An N -person non-zero-
sum discounted stochastic game (DSG) is defined by the following objects:
• N = {1, . . . , N} is the set of players.
• X is a countable state space, endowed with the σ-algebra of all its subsets.
• Ai is a compact metric action space for player i ∈ N , endowed with the

Borel σ-algebra. For x ∈ X the set Ai(x) is a non-empty compact subset
of Ai and denotes the set of admissible actions for player i ∈ N in x. We
define

A :=

N∏
i=1

Ai and A(x) :=

N∏
i=1

Ai(x).

Note that
Ki = {(x, ai) : x ∈ X, ai ∈ Ai(x)}

is the set all of feasible state-action pairs for player i ∈ N . We also define
K := {(x,aaa) : x ∈ X, aaa = (a1, . . . , an) ∈ A(x)}.

• ui : K → R, i ∈ N , is a utility-per-stage function for player i ∈ N .
• q(y|x,aaa) is the transition probability from x to y ∈ X, when the players

choose a profile aaa = (a1, . . . , aN ) of actions in A(x).
• β ∈ (0, 1) is the discount factor.
• −r > 0 is the risk sensitivity coefficient of each player i ∈ N .

We impose the following assumptions.
Assumption A.

(i) The functions ui(x, ·) are non-negative, bounded and continuous on A(x)
for all x ∈ X and i ∈ N .

(ii) The function q(y|x, ·) is continuous on A(x) for all x, y ∈ X.

Let H1 = X and Ht+1 = K × Ht for t ∈ N. Assume that every set
Ht is endowed with its Borel σ-algebra. Clearly, h1 = x1 and an element
ht = (x1, aaa1, . . . , xt) of Ht represents the history of the game up to the tth
stage, where aaak = (ak1, . . . , a

k
N ) is the profile of actions chosen by the players

in state xk at stage k ∈ N of the game.
A strategy for player i ∈ N is a sequence σi = (σti)t∈N, where each σti

is a transition probability from Ht to Ai such that σti(Ai(x
t)|ht) = 1 for

any history ht ∈ Ht, t ∈ N. We denote by Σi the set of all strategies for
player i. We let Φi denote the set of transition probabilities from X to Ai.
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Then φi ∈ Φi if φi(Ai(x)|x) = 1 for all x ∈ X. A stationary strategy for
player i is a constant sequence (φt

i)t∈N, where φt
i = φi for all t ∈ N and some

φi ∈ Φi. For convenience, we shall identify a stationary strategy (φi, φi, . . .)
for player i with the constant element φi of the sequence. Thus, the set of
all stationary strategies of player i will also be denoted by Φi. Furthermore,
we set

Σ =

N∏
i=1

Σi and Φ =

N∏
i=1

Φi.

Hence, Σ (resp. Φ) is the set of all (resp. all stationary) strategy profiles of
the players.

3.1. DSGs with recursive utilities involving entropic risk mea-
sures. Assume that σσσ = (σ1, . . . , σN ) ∈ Σ where σi = (σti)t∈N and σσσt :=
(σt1, . . . , σ

t
N ). Then σσσt(daaa|ht) := σt1(da1|ht) ⊗ · · · ⊗ σtN (daN |ht) is the prod-

uct probability measure on A(xt) induced by σtj(daj |ht), j ∈ N . Let vi ∈
B(Ht+1) and ht ∈ Ht. We define

(3.1) T i
σσσtvi(h

t)

:=
1

r
ln

�

A(xt)

∑
xt+1∈X

er(ui(x
t,aaa)+βvi(h

t,aaa,xt+1))q(xt+1|xt, aaa)σσσt(daaa|ht).

Note that, if vi, wi ∈ B(Ht+1) and vi ≤ wi and c ∈ R, then for ht ∈ Ht,

(3.2) T i
σσσtvi(h

t) ≤ T i
σσσtwi(h

t) and T i
σσσt(vi + c)(ht) = T i

σσσtvi(h
t) + βc.

Remark 3.1. The operator in (3.1) is defined using the entropic risk mea-
sure induced by the probability measure P(xt+1, daaa) = q(xt+1|xt, aaa)σσσt(daaa|ht),
ht ∈ Ht on Ω = X × A, depending in step t on ht. This risk measure acts
as an aggregator of the t-stage utility ui(xt, ·) and the discounted value vi(·)
of utilities to be received from stage t+ 1 onwards. In the risk-neutral case
(r = 0) the operator in (3.1) takes on the following well-known form:

T̂ i
σσσtvi(h

t) =
�

A(xt)

(
ui(x

t, aaa) + β
∑

xt+1∈X

vi(h
t, aaa, xt+1)q(xt+1|xt, aaa)

)
σσσt(daaa|ht)

for any ht ∈ Ht. A non-zero-sum stochastic game with a standard discounted
payoff criterion and a countable state space was studied in [19, 37] and
[18, 23]. In particular, Fink [19] and Takahashi [37] proved independently
the existence of a stationary Nash equilibrium for the finite state case. Their
result was extended to possibly infinite countable state space models by
Federgruen [18].

Assume that 0 ≡ 0 is the null function. Clearly 0 ∈ B(Ht+1). By an
n-stage game we mean a game with the n-stage utility for player i under a
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strategy profile σσσ ∈ Σ defined as

U
[1,n]
i (σσσ)(x1) := T i

σσσ1 · · ·T i
σσσn0(x1), x1 ∈ X.

From (3.2) and Assumption A it follows that

U
[1,n+1]
i (σσσ)(x1) = T i

σσσ1 · · ·T i
σσσn+10(x

1) ≥ T i
σσσ1 · · ·T i

σσσn0(x1) = U
[1,n]
i (σσσ)(x1).

Let L > 0 be such that 0 ≤ ui ≤ L for all i ∈ N . Using Jensen’s inequality
n times we obtain

0 ≤ U
[1,n]
i (σσσ)(x1) ≤ L(1 + β + · · ·+ βn−1).

Therefore, our next definition is correct. The recursive utility for player i
under a strategy profile σσσ ∈ Σ is

(3.3) Ui(σσσ)(x
1) := lim

n→∞
U

[1,n]
i (σσσ)(x1), x1 ∈ X.

As usual, for any σσσ = (σ1, . . . , σN ) ∈ Σ, i ∈ N and πi ∈ Σi, we denote
by [σσσ−i, πi] the strategy profile where player i uses πi and every player j ∈
N \ {i} uses σj . We identify [σσσ−i, σi] with σσσ.

Definition 3.2. A strategy profile σσσ∗ ∈ Σ is a Nash equilibrium in the
DSG if

Ui(σσσ
∗)(x1) ≥ Ui([σσσ

∗
−i, σi])(x

1)

for every σi ∈ Σi, every player i ∈ N and for all x1 ∈ X.

Theorem 3.3 (The Equilibrium Theorem). Under Assumption A, the
DSG with recursive utilities of risk-sensitive players has a stationary Nash
equilibrium φφφ∗ ∈ Φ.

Remark 3.4. Our assumption that the functions ui, i ∈ N , are non-
negative is not restrictive. If ui is bounded and not necessarily ui ≥ 0,
then we can find a constant c > 0 such that u+i = ui + c ≥ 0 for all i.
If U+

i (σσσ)(x1) is the recursive utility of player i in the game with one-stage
utility function u+i , then we have

U+
i (σσσ)(x1) = Ui(σσσ)(x

1) +
c

1− β
.

Therefore, we may restrict attention to games with non-negative rewards.

Remark 3.5. If we assume that σσσ = φφφ ∈ Φ, then σσσt = φφφ for all t and for
vi ∈ B(X) formula (3.1) has a simpler form:

T i
σσσtvi(h

t) = T i
φφφvi(x

t)(3.4)

=
1

r
ln

�

A(xt)

∑
xt+1∈X

er(ui(x
t,aaa)+βvi(x

t+1))q(xt+1|xt, aaa)φφφ(daaa|xt).

Let T i,n
φφφ be the composition of T i

φφφ with itself n times. Let U [2,n]
i (φφφ)(x2) be

the utility of player i in the (n− 1)-stage subgame starting at state x2 ∈ X.
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Then from (3.4) it follows that

U
[1,n]
i (φφφ)(x1) = T i,n

φφφ 0(x1) = T i
φφφU

[2,n]
i (φφφ)(x1),(3.5)

Ui(φφφ)(x
1) = T i

φφφUi(φφφ)(x
1).

Formula (3.5) says that we deal with recursive utilities satisfying Koopmans’
equation [29] with T i

φφφ as the aggregator of the utility obtained in the first
stage and the utility from stage 2 onwards. Koopmans’ approach [29] al-
lows, however, for more general aggregators to study recursive utilities in
infinite time horizon problems. Our aggregator is defined with the help of
the entropic risk measure.

Remark 3.6. Recursive utilities have attracted the interest of many re-
searchers and found applications in stochastic decision models [3, 9, 10, 21,
36] and games [2, 4, 27]. However, the last two papers on games deal with
intergenerational models, in which the solution is defined as a subgame per-
fect equilibrium. In [2], on the other hand, the authors examined games of
resource extraction, in which the players have identical risk-sensitive pref-
erences and apply discounted recursive utilities. Exploiting the form of a
one-stage payoff and a transition probability they obtained a stationary
non-randomised equilibrium in the class of non-decreasing right-continuous
functions on the state space being a subset of the real numbers. The proof
relies on the Schauder–Tikhonov fixed point theorem. Hence, the model and
the tools used in [2] are different than in this work.

3.2. DSGs with the entropic risk measure on the space of all
plays. In this section we describe an alternative approach and results for
stochastic games on a countable state space obtained in [8], when the entropic
risk measure is not used step by step but it is applied on the space of all
plays.

Let H∞ = K×K× · · · be the space of all infinite histories of the game
(plays) endowed with the product σ-algebra. For any profile of strategies
σσσ ∈ Σ, a probability measure Pσσσx1 and a stochastic process (xt, aaat)t∈N are
defined on H∞ in a canonical way according to the Ionescu–Tulcea theorem
[13, Proposition 7.28]. Here x1 is an initial state. The expectation operator
with respect to Pσσσx1 is denoted by Eσσσ

x1 .

For each i ∈ N , the discounted utility function defined involving the risk
measure on the space H∞ is defined as follows:

(3.6) Ũi(σσσ)(x
1) :=

1

r
lnEσσσ

x1

[
er

∑∞
t=1 β

t−1ui(x
t,aaat)

]
.

This form of utility was used in a number of papers on risk-sensitive control
processes, e.g., [11, 16, 17], and on dynamic games, e.g., [7, 8, 5, 12, 15,
28]. The drawback of the model with the utility in (3.6) is that an optimal
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stationary policy/strategy need not exist. This is because the real discount
factor between consecutive periods is not constant as in the risk-neutral case;
see a detailed discussion in [16]. Therefore, one can expect to have optimality
in the Markovian class of policies.

Basu and Ghosh [8] considered stochastic games with a countable state
space and proved that any DSG with the utility functions in (3.6) has a
Nash equilibrium σσσ∗ = (σ∗1, . . . , σ

∗
N ) where every σ∗i is Markovian, i.e., σ∗i =

(σ∗ti )t∈N and σ∗ti (dai |ht) = σ∗ti (dai|xt) for all t ∈ N. Thus, the mixed action
chosen by each player depends on time t and the state xt. In stationary
equilibrium, only the current state matters. The Bellman equations in the
two aforementioned approaches, i.e. with the utilities in (3.3) and utilities in
(3.6), are different.

Remark 3.7. A non-stationary Nash equilibrium obtained in [8] can be
seen as stationary if we replace the state space X by X × N and change
the transition probability in a standard way. The new transition function is
q̃((y, n + 1)|(x, n), aaa) = q(y|x,aaa). However, for the finite set X we obtain a
stationary Nash equilibrium profile, where strategies of the players depend
on infinitely many states in X × N. If X is finite and we deal with DSG
with recursive utilities of the players, then a stationary Nash equilibrium
consists of strategies depending only on finitely many states. This fact seems
important if we think about algorithms for finding Nash equilibria.

3.3. A game with payoffs induced by the Markowitz risk mea-
sure. We give a bimatrix game which can be seen as a stochastic game
starting at some state and then moving immediately to an absorbing state.
The example illustrates that the Nash equilibrium need not exist if the en-
tropic risk measure is replaced by the Markowitz measure. By the Markowitz
risk measure of a random variable Z we mean EZ + 2

r VarZ with r < 0. For
convenience, we assume that r = −2. The random variables in our example
are payoffs when the players use mixed strategies.

Example 3.8. We assume that the players play the following bimatrix
game and the game moves with probability 1 to an absorbing state with zero
rewards. Hence, in fact we deal with a game with just one step. The payoff
matrices for players 1 and 2 are

P1 =

[
2 −2

−1 1

]
and P2 =

[
−2 2

1 −1

]
.

Note that this game has no pure Nash equilibrium. A strategy for player 1
is µ = (a, 1 − a) where 0 ≤ a ≤ 1. A strategy for player 2 is σ = (b, 1 − b)
with 0 ≤ b ≤ 1. The expected payoffs under a pair (µ, σ) are

p1(µ, σ) = (3a− 1)(2b− 1) and p2(µ, σ) = −(3a− 1)(2b− 1).
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The variances are the same for both players:

Var(p1(µ, σ)) = Var(p2(µ, σ)) = 3a+ 1− (3a− 1)2(2b− 1)2.

Thus, the payoffs under the Markowitz measure are

m1(µ, σ) := (3a− 1)(2b− 1)− 3a− 1 + (3a− 1)2(2b− 1)2,(3.7)

m2(µ, σ) := −(3a− 1)(2b− 1)− 3a− 1 + (3a− 1)2(2b− 1)2.(3.8)

We now show that this game has no Nash equilibrium. Suppose, on the
contrary, that the game with payoff functions m1 and m2 has a Nash equi-
librium (µ∗, σ∗) and σ∗ = (b∗, 1 − b∗). If 2b∗ − 1 = 0, then from (3.7), the
best response of player 1 is to choose a = 0. If 2b∗ − 1 ̸= 0, then the best
response of player 1 is to choose a = 0 or a = 1. That is because (3.7) yields
m1(µ, σ

∗) = c1a
2 + c2a + c3 with some c2, c3 ∈ R and c1 > 0. Thus, µ∗ is

a pure strategy. By (3.8), we have m2(µ
∗, σ) = d1b

2 + d2b + d3 with some
d2, d3 ∈ R and d1 > 0. Hence, the best response of player 2 to µ∗ is to
choose b = 0 or b = 1. Thus, σ∗ is a pure strategy. Let (µ∗, σ∗) be a pure
Nash equilibrium in the game with payoff functions m1 and m2. Observe
that mi(µ

∗, σ∗) = pi(µ
∗, σ∗) for i = 1, 2. Therefore, (µ∗, σ∗) should be a

pure Nash equilibrium in the game with payoff functions p1 and p2. But this
game has no pure Nash equilibrium. Since ln(·) is increasing and 1/r < 0,
for r = −2 any Nash equilibrium (µ̂, σ̂) in the game with payoffs induced by
the entropic risk measure is a Nash equilibrium in the bimatrix game with
payoff matrices

P̂1 =

[
a11 a12

a21 a22

]
= −

[
e−4 e4

e2 e−2

]
, P̂2 =

[
b11 b12

b21 b22

]
= −

[
e4 e−4

e−2 e2

]
.

By the well-known method, one can derive µ̂ = (â, 1− â) and σ̂ = (̂b, 1− b̂)
where

â =
b22 − b21

b11 − b12 + b22 − b21
=

e6 − e2

e8 + e6 − e2 − 1
≈ 0.1173,

b̂ =
a22 − a12

a11 − a12 + a22 − a21
=

e8 − e2

e8 + e6 − e2 − 1
≈ 0.8808.

The absolute risk aversion coefficient |r| = 2 is rather high. It is confirmed if
we compare the equilibrium (µ̂, σ̂) with the unique Nash equilibrium (µ̃, σ̃) in
the risk-neutral case where µ̃ = (ã, 1− ã) with ã = 1/3 > â and σ̃ = (̃b, 1− b̃)
with b̃ = 1/2 < b̂.

4. Proof of the Equilibrium Theorem. First we state some auxiliary
lemmas.
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Lemma 4.1. Assume that fm, f ∈ B(X) and limm→∞ fm(x) = f(x) for
all x ∈ X. If Assumption A holds and aaam → aaa ∈ A(x) as m→ ∞, then

lim
m→∞

∑
y∈X

fm(y)q(y|x,aaam) =
∑
y∈X

f(y)q(y|x,aaa) for all x ∈ X.

Proof. If we show that aaa → q(Z|x,aaa) is continuous for each Z ⊂ X,
then the lemma follows from [35, Chapter 11, Proposition 18]. Let Z =
{z1, z2, . . .} and Zn = {z1, . . . , zn}. Then q(Z|x,aaa) = supn q(Zn|x,aaa) is lower
semicontinuous on A(x). Similarly, q(X \ Z|x,aaa) is lower semicontinuous
on A(x). Since q(Z|x,aaa) = 1− q(X \ Z|x,aaa), aaa 7→ q(Z|x,aaa) is continuous.

For any aaa = (a1, . . . , aN ) ∈ A(x), we use the standard notation aaa−i for the
action profile of all players except player i, i.e., aaa−i ∈ A−i(x) :=

∏
j ̸=iAj(x).

We identify (aaa−i, ai) with aaa. If φφφ = (φ1, . . . , φN ) ∈ Φ and i ∈ N , then
φφφ−i(daaa−i|x) ∈ Pr(A−i(x)) is the product measure induced by all φj(daj |x)
with j ∈ N \ {i}. Let φφφ ∈ Φ, i ∈ N and v ∈ B(X). For x ∈ X we define

F i
φφφ−i

v(x) := max
µ∈Pr(Ai(x))

Ei(φφφ−i, µ, v)(x),

where

Ei(φφφ−i, µ, v)(x)

:=
1

r
ln

�

Ai(x)

�

A−i(x)

∑
y∈X

er(ui(x,aaa−i,ai)+βv(y))q(y|x,aaa−i, ai)φφφ−i(daaa−i|x)µ(dai).

Lemma 4.2. F i
φφφ−i

: B(X) → B(X) is a contraction mapping for i ∈ N .

Proof. We apply the same arguments as Blackwell [14], who dealt with
standard discounted dynamic programming. If v, w ∈ B(X) and v ≤ w,
then F i

φφφ−i
v ≤ F i

φφφ−i
w. Moreover, for any v ∈ B(X) and c ∈ R, F i

φφφ−i
(v+ c) =

F i
φφφ−i

v + βc. Therefore, for any v, w ∈ B(X) we can write

F i
φφφ−i

v = F i
φφφ−i

(w + v − w) ≤ F i
φφφ−i

(w + ∥v − w∥) ≤ F i
φφφ−i

w + β∥v − w∥.

Hence, F i
φφφ−i

v − F i
φφφ−i

w ≤ β∥v − w∥. Similarly, we get F i
φφφ−i

w − F i
φφφ−i

v ≤
β∥v − w∥, which finishes the proof.

Assume that ϕϕϕ ∈ Φ, i ∈ N and v ∈ B(X). Recall that

T i
ϕϕϕv(x) =

1

r
ln

�

A(x)

∑
y∈X

er(ui(x,aaa)+βv(y))q(y|x,aaa)ϕϕϕ(daaa|x).

Lemma 4.3.

(a) T i
ϕϕϕ : B(X) → B(X) is a contraction mapping.

(b) Ui(ϕϕϕ) is the unique fixed point of T i
ϕϕϕ and limn→∞ ∥Ui(ϕϕϕ) − T i,n

ϕϕϕ v∥ = 0

for any v ∈ B(X).



Non-zero-sum stochastic games 117

(c) ∥Ui(ϕϕϕ) − U
[1,n]
i (ϕϕϕ)∥ ≤ Lβn

1−β for L > 0 such that 0 ≤ ui ≤ L and for all
ϕϕϕ ∈ Φ and n ∈ N.
Proof. Part (a) is obvious. Parts (b) and (c) are corollaries to the Banach

contraction mapping theorem. In particular,

∥Ui(ϕϕϕ)− U
[1,n]
i (ϕϕϕ)∥ = ∥Ui(ϕϕϕ)− T i,n

ϕϕϕ 0∥ ≤ βn

1− β
∥T i

ϕϕϕ0− 0∥ ≤ Lβn

1− β
.

For i ∈ N let C∗
i :=

∏
x∈X C∗(Ai(x)) be the countable product of the

topological dual spaces C∗(Ai(x)) of the Banach spaces C(Ai(x)). Assume
thatC∗

i is endowed with the product of the weak-star topologies onC∗(Ai(x)).
Since all action spaces Ai(x) are compact metric, C∗

i is metrisable. It is also a
locally convex linear topological space (see [1, Chapter 5.14]). Note that by the
Riesz representation theorem, every ϕi = (ϕi(·|x))x∈X ∈ Φi can be recognised
as an element of a compact convex set

∏
x∈X Pr(Ai(x)) ⊂ C∗

i . Compactness
of the product space follows from Tikhonov’s theorem. Therefore, we can
think that Φi is a compact convex subset of a locally convex metrisable vector
space. The convergence ϕi,n → ϕi,o in Φi means that ϕi,n(·|x) →∗ ϕi,o(·|x) as
n→ ∞ for all x ∈ X. Assume that Φ =

∏
i∈N Φi is given the product topol-

ogy. Let ϕϕϕn = (ϕ1,n, . . . , ϕN,n) and ϕϕϕo = (ϕ1,o, . . . , ϕN,o) belong to Φ. The
following fact is important for our proof (see [13, Chapter 7.4]). If ϕϕϕn → ϕϕϕo
in Φ and g ∈ C(A1(x)× · · · ×AN (x)) for every x ∈ X, then

(4.1) lim
n→∞

�

A(x)

g(aaa)ϕϕϕn(daaa|x) =
�

A(x)

g(aaa)ϕϕϕo(daaa|x) for all x ∈ X.

Here we have ϕϕϕk(daaa|x) = ϕ1,k(da1|x)⊗ · · · ⊗ ϕN,k(daN |x), k = o or k = n.

Lemma 4.4. Under Assumption A, for each i ∈ N and x ∈ X, the
function ϕϕϕ 7→ Ui(ϕϕϕ)(x) is continuous on Φ.

Proof. From Lemma 4.3(c), it follows that it is sufficient to prove the
assertion for all n-stage games with n ∈ N. For 1-stage games, it is a simple
corollary to (4.1). Now we prove the induction step. Assume that ϕϕϕk → ϕϕϕo
in Φ and

gk(y) := U
[2,n]
i (ϕϕϕk)(y) → go(y) := U

[2,n]
i (ϕϕϕo)(y) as k → ∞.

Here we recall that U [2,n]
i (ϕϕϕ)(y) denotes the utility in the (n−1)-stage game

from period 2 to n, if the profile ϕϕϕ of stationary strategies is used and x2 = y.
Note that since r < 0 and ui ≥ 0, we have

(4.2)
∣∣∣∑
y∈X

er(ui(x,aaa)+βgk(y))q(y|x,aaa)−
∑
y∈X

er(ui(x,aaa)+βgo(y))q(y|x,aaa)
∣∣∣

≤ zk(x) := sup
aaa∈A(x)

∑
y∈X

|erβgk(y) − erβgo(y)|q(y|x,aaa).
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We wish to show that limk→∞ zk(x) = 0. Suppose, on the contrary, that
there exist ϵ > 0 and an infinite set N1 ⊂ N such that zk′(x) ≥ ϵ for all
k′ ∈ N1. Under Assumption A, from Lemma 4.1 it follows that for each
k′ ∈ N1 there exists aaak′ ∈ A(x) such that

zk′(x) =
∑
y∈X

|erβgk′ (y) − erβgo(y)|q(y|x,aaak′).

Without loss of generality, assume that aaak′ → aaa′ ∈ A(x) as k′ → ∞. Using
Lemma 4.1 again, we find that limk′→∞ zk′(x) = 0. This contradiction proves
that limk→∞ zk(x) = 0. Now from (4.2), it follows that∑

y∈X
er(ui(x,aaa)+βgk(y))q(y|x,aaa) →

∑
y∈X

er(ui(x,aaa)+βgo(y))q(y|x,aaa)

as k → ∞, uniformly in aaa ∈ A(x). This fact and the convergence of ϕϕϕk(·|x)
to ϕϕϕo(·|x) in Pr(A(x)) imply that
�

A(x)

∑
y∈X

er(ui(x,aaa)+βgk(y))q(y|x,aaa)ϕϕϕk(daaa|x)

→
�

A(x)

∑
y∈X

er(ui(x,aaa)+βgo(y))q(y|x,aaa)|ϕϕϕo(daaa|x) as k → ∞.

Finally, the above convergence leads to

lim
k→∞

U
[1,n]
i (ϕϕϕk)(x) = U

[1,n]
i (ϕϕϕo)(x).

This completes the induction step.

Assume that φφφ ∈ Φ and σi = (σti)t∈N ∈ Σi. For the proof of the Equilib-
rium Theorem we need the following operator:

T i
[φφφ−i,σt

i ]
vi(h

t) =
1

r
ln
( �

A−i(xt)

�

Ai(xt)

∑
xt+1∈X

er(ui(x
t,aaa−i,ai)+βvi(h

t,aaa−i,ai,x
t+1))

× q(xt+1|xt, aaa−i, ai)φφφ−i(daaa−i|xt)σti(dai|ht)
)
.

This operator is monotone, i.e.,

T i
[φφφ−i,σt

i ]
vi(h

t) ≥ T i
[φφφ−i,σt

i ]
v′i(h

t) if vi(h
t+1) ≥ v′i(h

t+1) for all ht+1 ∈ Ht+1.

Proof of the Equilibrium Theorem. Let φφφ ∈ Φ. For each player i ∈ N we
define

BRi(φφφ−i)

=
{
ψi ∈ Φi : Ui([φφφ−i, ψi])(x) ≥ Ui([φφφ−i, ϕi])(x) for all ϕi ∈ Φi, x ∈ X

}
.

The best response correspondence is defined as

φφφ 7→ BR(φφφ) :=
∏
i∈N

BRi(φφφ−i).
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Put wi(x) := Ui([φφφ−i, ψi])(x) for x ∈ X. Notice that ψi ∈ BRi(φφφ−i) if and
only if

wi(x) = F i
φφφ−i

wi(x) = Ei(φφφ−i, ψi(·|x), wi)(x),

and, since r < 0, this is equivalent to the statement that ψi(·|x) satisfies the
equality�

Ai(x)

�

A−i(x)

∑
y∈X

er(ui(x,aaa−i,ai)+βwi(y))q(y|x,aaa−i, ai)φφφ−i(daaa−i|x)ψi(dai|x)

= min
µ∈Pr(Ai(x))

�

Ai(x)

�

A−i(x)

∑
y∈X

er(ui(x,aaa−i,ai)+βwi(y))

× q(y|x,aaa−i, ai)φφφ−i(daaa−i|x)µ(dai).
Hence, BRi(φφφ−i) is non-empty and convex. From the continuity of the utility
functions Ui (Lemma 4.4), it follows that the correspondence φφφ 7→ BR(φφφ) is
upper semicontinuous. By the Kakutani–Fan–Glicksberg fixed point theorem
[1, Corollary 17.55], there exists φφφ∗ ∈ Φ such that φφφ∗ ∈ BR(φφφ∗). From the
definition of BR(φφφ∗), it follows that φφφ∗ is a Nash equilibrium in the class of
all stationary strategy profiles.

Next we show that φφφ∗ is a Nash equilibrium in the class of all strategy
profiles. Fix any player i ∈ N and consider any σi = (σti)t∈N ∈ Σi. Put
w∗
i (x) := Ui(φφφ

∗)(x) for x ∈ X. We have w∗
i (x) = F i

φφφ∗
−i
w∗
i (x) for each x ∈ X.

This implies that, for all t ∈ N, xt ∈ X and all ht ∈ Ht,

(4.3) w∗
i (x

t) = F i
φφφ∗
−i
w∗
i (x

t) ≥ T i
[φφφ∗

−i,σ
t
i ]
w∗
i (h

t).

From (4.3) and the monotonicity of the operator T i
[φφφ∗

−i,σ
t
i ]

we conclude that

w∗
i (x

1) ≥ T i
[φφφ∗

−i,σ
1
i ]
· · ·T i

[φφφ∗
−i,σ

n
i ]
w∗
i (x

1)

≥ T i
[φφφ∗

−i,σ
1
i ]
· · ·T i

[φφφ∗
−i,σ

n
i ]
0(x1) = U

[1,n]
i ([φφφ∗

−i, σi])(x
1)

for all x1 ∈ X. Hence,

w∗
i (x

1) = Ui(φφφ
∗)(x1) ≥ lim

n→∞
U

[1,n]
i ([φφφ∗

−i, σi])(x
1) = Ui([φφφ

∗
−i, σi])(x

1)

for all x1 ∈ X, which completes the proof.
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