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A NOTE ON OPTIMAL JOINT PREDICTION
OF ORDER STATISTICS

Abstract. The problem of prediction of several future order statistics,
based on previous ones, is considered. An optimal predictor is defined as
one minimizing the determinant of the covariance matrix of the predictor
or of the predictive error vector. It is shown that the Lagrange multipliers
method works well in all cases, despite some statements in the papers by
Balakrishnan et al. [Metrika 85 (2022), 253–267; J. Multivariate Anal. 188
(2022), art. 104854; Statistics 57 (2023), 1239–1250].

1. Introduction. The problem of optimal joint prediction of several
future order statistics, based on previous order statistics, is classical, and
much literature is devoted to this topic. In this context it is worth mentioning
the paper by Goldberger [G], whose ideas were developed by Kaminsky and
Nelson [KN1]. They established the so-called marginal best linear unbiased
predictor, that is, the optimal predictor for a single future order statistic.
A review can be found in [KN2].

In the last two years Balakrishnan and Bhattacharya [BB1]–[BB3] and
Balakrishnan and Mukerjee [BM1]–[BM3] published a series of papers on
that problem in different settings.

Here, we are going to discuss the setting described in [BB1, BB2, BM1],
concentrating on the results of [BB1].

Let X1, . . . , Xn be a sample from a location-scale family of distributions
with unknown location parameter µ and unknown scale parameter σ > 0,
and let X1:n, . . . , Xn:n be order statistics from this sample. Let Zi:n :=
(Xi:n−µ)/σ be the corresponding order statistics corresponding to the stan-
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dard distribution with zero location and unit scale, and let αi := EZi:n,
i = 1, . . . , n.

Given 2 ⩽ r < n, define

X := (X1:n, . . . , Xr:n)
′, Z := (Z1:n, . . . , Zr:n)

′, α := (α1, . . . , αr)
′.

Evidently, EX = µ1r + σα, where 1r denotes the column vector consisting
of r units. In addition, we denote by Σ the covariance matrix of Z. Then
the covariance matrix of the vector X equals σ2Σ.

We are interested in prediction of the vector

X∗ := (Xu1:n, . . . , Xup:n)
′,

where 1 ⩽ p ⩽ n−r, r < u1 < · · · < up ⩽ n. As in [BB1], the main attention
will be paid to the cases p = 2 or p = 3; other cases can be considered
similarly.

We consider linear predictors AX of X∗ with p× r matrix A satisfying
the unbiasedness conditions, i.e. EAX = EX∗ for any µ and σ, which means
that A1r = 1p and Aα = α∗, where α∗ := (αu1 , . . . , αup)

′.
In order to determine the optimality of the predictor AX, we take into

account two matrices:

• the covariance matrix of the predictor, Cov(AX) = σ2AΣA′,
• the covariance matrix of the predictive error vector,

Cov(X∗ −AX) = σ2[AΣA′ −AW ′ −WA′ +CovZ∗],

where Z∗ := (Zu1:n, . . . , Zup:n)
′, whereas the p× r matrix W is the cross-

covariance matrix of the vectors Z∗ and Z, i.e. W := Cov(Z∗,Z).

As in [BB1], we use the D-optimality criterion to choose an optimal
predictor. That is, we consider two problems:

(a) find a matrix A such that detCov(AX) is minimal,
(b) find a matrix B such that detCov(X∗ −BX) is minimal.

It should be noted that a more general optimality criterion is considered in
[BM1], which allows the results obtained to be generalized.

We apply the well-known method of Lagrange multipliers, as is usual for
an optimization problem with constraints. This method was also used in
[BB1], although some of the statements there are invalid. In the later papers
[BB2, BM1], the authors claimed that the method of Lagrange multipliers
did not work in those special cases. We show that, on the contrary, the
method, correctly applied, works in all those cases, although the proof is not
straightforward.

2. Optimal prediction of order statistics. We start by recalling the
well-known solution of both problems (a) and (b) for a single future order
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statistic to be predicted, i.e. for the case p = 1 (see, e.g., [KN1]). Denote

∆ :=

[
∆11 ∆12

∆12 ∆22

]
:=

[
1′rΣ

−11r 1′rΣ
−1α

1′rΣ
−1α α′Σ−1α

]
, det ∆ > 0.

In (a) the optimal predictor of Xu1:n has the form

a′X = µ̂+ σ̂αu1 ,

where
µ̂ :=

∆22

det ∆
1′rΣ

−1X − ∆12

det ∆
α′Σ−1X,

σ̂ :=
∆11

det ∆
α′Σ−1X − ∆12

det ∆
1′rΣ

−1X

(note that µ̂ and σ̂ are the best linear unbiased estimators of µ and σ,
respectively). In (b) the optimal predictor of Xu1:n has the form

b′X = µ̂+ σ̂αu1 +w′
u1
Σ−1(X − µ̂1r − σ̂α),

where wu1 := Cov(Zu1:n,Z).
As in [BB1, BM1], if p > 1, then we define a predictor of the vector

X∗ to be the marginal predictor if each of its components looks like a′X in
the case of (a) or b′X in case of (b). That is, e.g., for p = 2 the marginal
predictor has the form[

µ̂+ σ̂αu1

µ̂+ σ̂αu2

]
in (a),

[
µ̂+ σ̂αu1 +w′

u1
Σ−1(X − µ̂1r − σ̂α)

µ̂+ σ̂αu2 +w′
u2
Σ−1(X − µ̂1r − σ̂α)

]
in (b).

Theorem 2.1. In (a), the optimal predictor is not uniquely determined
for p ⩾ 3; the marginal predictor is one of the solutions.

Remark 1. In [BB1] the authors, proving their Theorem 1, failed to
notice that the marginal predictor is optimal, giving a complicated formula
for an optimal predictor.

Remark 2. In [BB1, Section 3.1] the authors claimed that there is no
solution in (a) for p = 3. In the later paper [BM1] Balakrishnan and Mukerjee
stated more cautiously that it was not possible to solve (a) with the Lagrange
multipliers method. However, both statements are erroneous: the problem
can be solved with this method, as will be seen from the proof below. It
is worth emphasizing that for p = 3 the proof is in fact similar to that for
p = 2.

Proof of Theorem 2.1. We prove the theorem for the cases p = 2 and
p = 3 only; the proof for p > 3 is similar to that for p = 3. Considering a
linear predictor AX of X∗ in case p = 2, let us write

A :=

[
a′
1

a′
2

]
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with r × 1 vectors a1,a2. Denote the matrix AΣA′ by V, that is,[
a′
1Σa1 a′

1Σa2

a′
1Σa2 a′

2Σa2

]
=:

[
V11 V12

V12 V22

]
,

and consider the following optimization problem:

Q(a1,a2) := detV − 2λ1(a
′
11r − 1)− 2λ∗

1(a
′
1α− αu1)

− 2λ2(a
′
21r − 1)− 2λ∗

2(a
′
2α− αu2) → min

a1,a2

under the unbiasedness conditions

a′
11r = 1, a′

1α = αu1 , a′
21r = 1, a′

2α = αu2 .

Taking partial derivatives of Q with respect to a1 and with respect to a2,
and equating them to 0, we obtain

(2.1)

{
V22Σa1 − V12Σa2 = λ11r + λ∗

1α,

V11Σa2 − V12Σa1 = λ21r + λ∗
2α.

Multiplying each equation in (2.1) by a′
1 and a′

2, we obtain four linear equa-
tions with four unknowns, λ1, λ

∗
1, λ2, λ

∗
2. The solution is unique, but there is

no need to write it down.
Instead, let us obtain expressions for a1 and a2. First, we multiply both

sides of both equations of (2.1) by Σ−1:

(2.2)

{
V22a1 − V12a2 = λ1Σ

−11r + λ∗
1Σ

−1α,

V11a2 − V12a1 = λ2Σ
−11r + λ∗

2Σ
−1α.

Second, we solve (2.2) for a1 and a2:

(2.3)


a1 =

V11λ1 + V12λ2

det V
Σ−11r +

V11λ
∗
1 + V12λ

∗
2

det V
Σ−1α,

a2 =
V12λ1 + V22λ2

det V
Σ−11r +

V12λ
∗
1 + V22λ

∗
2

det V
Σ−1α,

(det V ̸= 0, since the rank of V is 2). This is not the final result yet, since
V11, V12, V22 depend on a1 and a2.

Applying the unbiasedness conditions to (2.3), we obtain four equations,
which help us to get the final result:

(2.4)


V11λ1 + V12λ2

det V
∆11 +

V11λ
∗
1 + V12λ

∗
2

det V
∆12 = 1,

V11λ1 + V12λ2

det V
∆12 +

V11λ
∗
1 + V12λ

∗
2

det V
∆22 = αu1 ,
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(2.5)


V12λ1 + V22λ2

det V
∆11 +

V12λ
∗
1 + V22λ

∗
2

det V
∆12 = 1,

V12λ1 + V22λ2

det V
∆12 +

V12λ
∗
1 + V22λ

∗
2

det V
∆22 = αu2 .

Solving both systems of linear equations for

V11λ1 + V12λ2

det V
,

V11λ
∗
1 + V12λ

∗
2

det V
,

and
V12λ1 + V22λ2

det V
,

V12λ
∗
1 + V22λ

∗
2

det V
,

we obtain

(2.6)
V11λ1 + V12λ2

det V
=

∆22 − αu1∆12

det ∆
,

V11λ
∗
1 + V12λ

∗
2

det V
=

αu1∆11 −∆22

det ∆
,

(2.7)
V12λ1 + V22λ2

det V
=

∆22 − αu2∆12

det ∆
,

V12λ
∗
1 + V22λ

∗
2

det V
=

αu2∆11 −∆22

det ∆
.

After substitution of (2.6) and (2.7) into (2.3), we get the final result:

(2.8) a1 =
∆22 − αu1∆12

det ∆
Σ−11r +

αu1∆11 −∆12

det ∆
Σ−1α,

(2.9) a2 =
∆22 − αu2∆12

det ∆
Σ−11r +

αu2∆11 −∆12

det ∆
Σ−1α.

Thus, the optimal predictor for X∗ in (a) has the form AX =

[
µ̂+ σ̂αu1

µ̂+ σ̂αu2

]
.

If p = 3, then

A :=

 a′
1

a′
2

a′
3

 ,

and the optimization problem can be written as

Q(a1,a2,a3)

:= detV − 2λ1(a
′
11r − 1)− 2λ∗

1(a
′
1α− αu1)− 2λ2(a

′
21r − 1)

− 2λ∗
2(a

′
2α− αu2)− 2λ3(a

′
31r − 1)− 2λ∗

3(a
′
3α− αu3) → min

a1,a2,a3

under the unbiasedness conditions

a′
11r = 1, a′

1α = αu1 , a′
21r = 1, a′

2α = αu2 , a′
31r = 1, a′

3α = αu3 .
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Here

V :=

 V11 V12 V13

V12 V22 V23

V13 V23 V33

 :=

 a′
1Σa1 a′

1Σa2 a′
1Σa3

a′
1Σa2 a′

2Σa2 a′
2Σa3

a′
1Σa3 a′

2Σa3 a′
3Σa3

 .

Taking partial derivatives of Q with respect to a1,a2 and a3, and equating
them to 0, we obtain a system of equations, which is the analogue of (2.1):

(2.10)



[V22V33−V 2
23]Σa1+[V13V23−V12V33]Σa2+[V12V23−V13V22]Σa3

= λ11r + λ∗
1α,

[V13V23−V12V33]Σa1+
[
V11V33−V 2

13

]
Σa2+[V12V13−V23V11]Σa3

= λ21r + λ∗
2α,

[V12V23−V13V22]Σa1+[V12V13−V23V11]Σa2+
[
V11V22−V 2

12

]
Σa3

= λ31r + λ∗
3α.

A simple analysis of (2.10) leads to the following conclusion: all λi, λ
∗
i ,

i = 1, 2, 3, are zeroes. Indeed, if we multiply each equation in (2.10) on the
left by a′

1, by a′
2 and by a′

3, we obtain nine equalities for the six parameters
λ1, λ

∗
1, λ2, λ

∗
2, λ3, λ

∗
3 :

detV = λ1 + λ∗
1αu1 , 0 = λ1 + λ∗

1αu2 , 0 = λ1 + λ∗
1αu3 ,

0 = λ2 + λ∗
2αu1 , detV = λ2 + λ∗

2αu2 , 0 = λ2 + λ∗
2αu3 ,

0 = λ3 + λ∗
3αu1 , 0 = λ3 + λ∗

3αu2 , detV = λ3 + λ∗
3αu3 .

As a solution, we get λi = λ∗
i = 0, i = 1, 2, 3, and, in addition, detV = 0.

This means that the unconditional minimum of detV, which is 0, lies on the
surface defined by the constraints. Therefore, the vectorsa1,a2,a3 are linearly
dependent and belong either to a two-dimensional or to a one-dimensional
subspace of Rr. Assume that they belong to a two-dimensional subspace,
that is, there exist two linearly independent vectors ζ,ν ∈ Rr such that

a1 = s1ζ + s2ν, a2 = t1ζ + t2ν, a3 = y1ζ + y2ν.

The vectors a1,a2,a3 should satisfy the unbiasedness conditions a′
11r = 1,

a′
21r = 1, a′

31r = 1, a′
1α = αu1 , a′

2α = αu2 , a′
3α = αu3 . From those

equalities we calculate s1, s2, t1, t2, y1, y2, and obtain the final result under
the condition that ζ′1r · ν ′α ̸= ζ′α · ν ′1r:

a1 =
ν ′α− αu1ν

′1r
ζ′1r · ν ′α− ζ′α · ν ′1r

ζ +
αu1ζ

′1r − ζ′α

ζ′1r · ν ′α− ζ′α · ν ′1r
ν,(2.11)

a2 =
ν ′α− αu2ν

′1r
ζ′1r · ν ′α− ζ′α · ν ′1r

ζ +
αu2ζ

′1r − ζ′α

ζ′1r · ν ′α− ζ′α · ν ′1r
ν,(2.12)

a3 =
ν ′α− αu3ν

′1r
ζ′1r · ν ′α− ζ′α · ν ′1r

ζ +
αu3ζ

′1r − ζ′α

ζ′1r · ν ′α− ζ′α · ν ′1r
ν.(2.13)
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Similarly, when the vectors a1,a2,a3 are assumed to belong to a one-
dimensional subspace of Rr, we come to the conclusion that this is not pos-
sible since the unbiasedness conditions cannot be satisfied. So, the general
solution of problem (a) for p = 3 is given by (2.11)–(2.13).

If we take ζ = Σ−11r and ν = Σ−1α, then (2.11)–(2.13) can be rewritten
in the form

a1 =
∆22 − αu1∆12

det∆
Σ−11r +

αu1∆11 −∆12

det∆
Σ−1α,(2.14)

a2 =
∆22 − αu2∆12

det∆
Σ−11r +

αu2∆11 −∆12

det∆
Σ−1α,(2.15)

a3 =
∆22 − αu3∆12

det∆
Σ−11r +

αu3∆11 −∆12

det∆
Σ−1α,(2.16)

and we obtain a particular solution, where an optimal predictor for X∗ has
the form

AX =

 µ̂+ σ̂αu1

µ̂+ σ̂αu2

µ̂+ σ̂αu3

 .

Remark 3. Balakrishnan and Bhattacharia [BB1, Section 3.2] claimed
that there is no solution of (a) for p = 2 in the case of a scale family of
distributions. Again, it is an erroneous statement. We can solve the problem
of optimal prediction with the Lagrange multipliers method in the same way
as above, and obtain the following result (non-unique): mina1,a2 detV = 0
and it is attained when a1,a2 are such that a1 = (αu1/αu2)a2, while
a2 is any vector satisfying a′

2α = αu2 . In particular, one can take a2 =
(αu2/∆22)Σ

−1α and, as a consequence,

AX =

[
σ̂αu1

σ̂αu2

]
,

where σ̂ := α′Σ−1X/∆22 is the best linear unbiased estimator of σ in this
case.

Theorem 2.2. In (b), the optimal predictor is uniquely determined and
it is the marginal predictor.

Proof. We prove the statement for p = 2 only; for p > 2 the proof is
similar. Consider linear predictors BX of X∗, and write

B :=

[
b′1
b′2

]
with r× 1 vectors b1, b2. Denote the matrix BΣB′ −BW ′ −WB′ +CovZ∗
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by H, that is,[
b′1Σb1 − 2b′1wu1 + z11 b′1Σb2 − b′1wu2 − b′2wu1 + z12

b′1Σb2 − b′1wu2 − b′2wu1 + z12 b′2Σb2 − 2b′2wu2 + z22

]

=:

[
H11 H12

H12 H22

]
,

where wu1 := Cov(Zu1:n, Z),wu2 := Cov(Zu2:n,Z), whereas {zij}2i,j=1 are
the elements of the matrix CovZ∗.

In what follows, we repeat the solution given in Theorem 2.1. Aiming to
minimize detH under the unbiasedness conditions, we create the function
Q = Q(b1, b2). Equating to 0 its partial derivatives with respect to b1 and
with respect to b2, we obtain

(2.1′)

{
H22(Σb1 −wu1)−H12(Σb2 −wu2) = λ11r + λ∗

1α,

H11(Σb2 −wu2)−H12(Σb1 −wu1) = λ21r + λ∗
2α,

(2.2′)

{
H22(b1−Σ−1wu1)−H12(b2−Σ−1wu2)=λ1Σ

−11r+λ∗
1Σ

−1α,
H11(b2−Σ−1wu2)−H12(b1−Σ−1wu1)=λ2Σ

−11r+λ∗
2Σ

−1α,

(2.3′)


b1=Σ−1wu1+

H11λ1+H12λ2

detH
Σ−11r+

H11λ
∗
1+H12λ

∗
2

detH
Σ−1α,

b2=Σ−1wu2+
H12λ1+H22λ2

detH
Σ−11r+

H12λ
∗
1+H22λ

∗
2

detH
Σ−1α,

(detH ̸= 0, since the rank of the matrix H is 2). From the unbiasedness
conditions we have

(2.4′)


H11λ1 +H12λ2

detH
∆11 +

H11λ
∗
1 +H12λ

∗
2

detH
∆12 = 1− 1′rΣ

−1wu1 ,

H11λ1 +H12λ2

detH
∆12 +

H11λ
∗
1 +H12λ

∗
2

detH
∆22 = αu1 −α′Σ−1wu1 ,

(2.5′)


H12λ1 +H22λ2

detH
∆11 +

H12λ
∗
1 +H22λ

∗
2

detH
∆12 = 1− 1′rΣ

−1wu2 ,

H12λ1 +H22λ2

detH
∆12 +

H12λ
∗
1 +H22λ

∗
2

detH
∆22 = αu2 −α′Σ−1wu2 .

Solving both systems of linear equations we obtain

(2.6′)


H11λ1+H12λ2

detH
=

(1−1′rΣ
−1wu1)∆22−(αu1−α′Σ−1wu1)∆12

∆
,

H11λ
∗
1+H12λ

∗
2

detH
=

(αu1−α′Σ−1wu1)∆11−(1−1′rΣ
−1wu1)∆12

∆
,
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(2.7′)


H12λ1+H22λ2

detH
=

(1−1′rΣ
−1wu2)∆22−(αu2−α′Σ−1wu2)∆12

∆
,

H12λ
∗
1+H22λ

∗
2

detH
=

(αu2−α′Σ−1wu2)∆11−(1−1′rΣ
−1wu2)∆12

∆
.

After substitution of (2.6′) and (2.7′) to (2.3′), we get the final result:

(2.8′) b1 = Σ−1wu1 +
(1−1′rΣ

−1wu1)∆22−(αu1−α′Σ−1wu1)∆12

∆
Σ−11r

+
(αu1−α′Σ−1wu1)∆11−(1−1′rΣ

−1wu1)∆12

∆
Σ−1α,

(2.9′) b2 = Σ−1wu2 +
(1−1′rΣ

−1wu2)∆22−(αu2−α′Σ−1wu2)∆12

∆
Σ−11r

+
(αu2−α′Σ−1wu2)∆11−(1−1′rΣ

−1wu2)∆12

∆
Σ−1α.

So, the optimal predictor B∗X of X∗ in the case of (b) has the form

B∗X =

[
µ̂+ σ̂αu1 +w′

u1
Σ−1(X − µ̂1r − σ̂α)

µ̂+ σ̂αu2 +w′
u2
Σ−1(X − µ̂1r − σ̂α)

]
.

Remark 4. In general, detCov(X∗−B∗X) ̸= 0, since for all c ̸= 0 ∈ Rp,

c′Cov(X∗ −B∗X)c = σ2c′E(Z∗ −B∗Z)(Z ′
∗ −Z ′B′

∗)c

= σ2E(c′Z∗ − c′B∗Z)2 > 0.

The exceptional case is W = 0, CovZ∗ = 0 for p ⩾ 3.

Remark 5. From the solution in (b) one can obtain the solution of (a)
by formally setting W = 0, CovZ∗ = 0.

It is also worth pointing out that in Section 4 of [BB1], devoted to numer-
ical computations, the authors compare the optimal predictor in (a) with the
non-optimal predictor, namely with the marginal predictor obtained for (b),
aiming to show the advantage of the first predictor if the criterion is the
determinant of the covariance matrix of the predictor. But since the optimal
predictor in (a), under D-optimality, coincides with that under A-optimality,
which can also be proved by the Lagrange multipliers method (and it also
follows immediately from the more general result proved by Balakrishnan
and coathors in [BB2, BM1]), it does not make sense to define ‘efficiency
loss’ as 1 minus trace-efficiency, and then to define ‘overall efficiency gain’
as ‘efficiency gain’ minus ‘efficiency loss’ [BB1, Section 4].

Acknowledgements. The author is grateful to the reviewer for helpful
corrections that improved the paper.
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