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Bogomolov property of some infinite nonabelian extensions
of a totally v-adic field

by

Arnaud Plessis (Beijing)

Abstract. Let E be an elliptic curve defined over a number field K, and let v be a
finite place of K. Write Ktv for the maximal totally v-adic field, and denote by L the field
generated over Ktv by all torsion points of E. Under some conditions, we will show that
the absolute logarithmic Weil height (resp. Néron–Tate height) of any element of L (resp.
E(L)) is either 0 or bounded from below by a positive constant depending only on E,K
and v. This constant will be explicit in the toric case.

1. Introduction. Let h : Q → R denote the (absolute, logarithmic) Weil
height. It is a non-negative function vanishing precisely at µ∞, the set of all
roots of unity, and 0 by a theorem of Kronecker. It satisfies h(αn) = |n|h(α)
and h(ζα) = h(α) for all α ∈ Q, ζ ∈ µ∞ and all n ∈ Z as well as the
inequality h(αβ) ≤ h(α) + h(β) for all α, β ∈ Q. For further information on
this height, we refer to [7].

Given a field K ⊂ Q, an interesting question is whether there exists a
positive constant c such that h(α) ≥ c for all non-zero α ∈ K \ µ∞. Such a
field is said to have the Bogomolov property. This notion was introduced by
Bombieri and Zannier [8]. The field Q does not have the Bogomolov property
since h(21/n) = (log 2)/n→ 0.

By Northcott’s theorem, each number field has the Bogomolov property.
Schinzel gave the first example of an infinite extension of Q having the
Bogomolov property [28], namely the maximal totally real field extension
Qtr of Q. The p-adic version of this theorem was proved by Bombieri and
Zannier [8]. More precisely, they proved that the maximal totally p-adic
extension Qtp of Q has the Bogomolov property.

In recent years, the study of this property mushroomed; see for example
[2, 3, 19, 1, 18, 13, 17, 14, 24, 23].
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The study of this property is not limited to this situation and we can
easily define it for abelian varieties. Let A be an abelian variety defined over
a number field K, and let L be a symmetric ample line bundle on A/K.
Let ĥA : A(K) → R denote the Néron–Tate height attached to L. It is
a non-negative function vanishing precisely at Ators, the group of torsion
points of A. Again, given a field L ⊂ K, the group A(L) is said to have the
Bogomolov property (with respect to L) if there exists a positive constant
c such that ĥA(P ) ≥ c for all P ∈ A(L)\Ators. It is well-known that A(K)
does not have the Bogomolov property.

Northcott’s theorem cited above also states that A(L) has the Bogo-
molov property if L is a number field. Zhang showed the abelian analogue of
Schinzel’s theorem, that is, A(Qtr) has the Bogomolov property [34]. Later,
Baker and Petsche proved that A(Qtp) has the Bogomolov property when
p > 2 and A/Q is an elliptic curve with semistable reduction at p [5, Theorem
6.6]. For more examples concerning the Bogomolov property in the case of
an abelian variety, see [6, 23] (which handle the case of any abelian variety)
and [4, 32, 19, 26, 25] (which treat the special case of an elliptic curve).

A very special case of a recent conjecture due to the author predicts the
following.

Conjecture 1.1 ([25, Conjecture 1.4]). Let A be an abelian variety
defined over a number field K, let L be a symmetric ample line bundle on
A/K, and let L/K be a finite extension. Then L(Ators) and A(L(Ators)) have
the Bogomolov property.

Remark 1.2. The abelian part of this conjecture is due to David.

Conjecture 1.1 was proved to be true when A has complex multiplica-
tion (CM). More precisely, the toric part is due to Amoroso, David and
Zannier [1] (see Theorem 1.9 below for a more general statement) and the
abelian part was proved by Baker and Silverman [6, Section 9]; see also [9,
Théorème 1.8].

The case where A has no CM is much harder. To my knowledge, Habegger
was the first one to provide a result going in the direction of Conjecture 1.1.

Theorem 1.3 (Habegger, [19]). Let E/Q be an elliptic curve. Then
Q(Etors) and E(Q(Etors)) have the Bogomolov property.

For any elliptic curve E and any integer N ∈ N = {1, 2, . . . }, write E[N ]
for the group of N -torsion points of E and define jE to be the j-invariant
of E.

Set Mat2(A) to be the ring of 2 × 2 matrices whose coefficients lie in
a ring A. The set of its invertible elements is denoted by GL2(A). Define
SL2(A) as the kernel of the determinant map GL2(A) → A∗ (here, A∗ is the
set of invertible elements in A).
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Given a number field K, a finite place v of K and an algebraic extension
L/K, we say that L has bounded local degree at v if dv(L) = supw[Lw : Kv]
is finite, where w ranges over all extensions of v to L. In that case, we denote
by ew(L|K) (resp. fw(L|K)) the ramification index (resp. inertia degree) of
the extension w|v. Finally, we define Ktv as the maximal totally v-adic field,
that is, the set of α ∈ K such that v is totally split in K(α). It is Galois over
K and dv(Ktv) = 1.

Recently, Frey pointed out a quite remarkable fact: Conjecture 1.1 may
be true for some infinite extensions L/K.

Theorem 1.4 (Frey, [16, Theorem 7.1]). Let E/Q be a non-CM elliptic
curve, and let L/Q be a Galois extension such that the exponent exp(L) of
its Galois group is finite. Then there exists a rational prime p satisfying:

(a) E has supersingular reduction at p and jE ̸≡ 0, 1728 (p);
(b) the natural representation Gal(Q(E[p])/Q) → GL2(Z/pZ) is surjective;
(c) p≥max {2 supq dq(L)+2, exp(L)}, where q runs over all rational primes,

and for such a p, for all α ∈ L(Etors)
∗ \ µ∞ we have

h(α) ≥ (log p)4

p5p4
.

Remark 1.5. By a theorem of Checcoli [10, Theorem 1], if L/Q is Galois,
then the exponent of its Galois group is finite if and only if supq dq(L) is finite,
where q ranges over all rational primes. So item (c) makes sense here.

The main goal of this paper is to establish that Conjecture 1.1 is true for
some Galois extensions L/K whose Galois group has infinite exponent.

Theorem 1.6. Let E be an elliptic curve defined over a number field K,
and let L/K be a finite Galois extension. If there is a finite place v of K
satisfying:

(a) E has supersingular reduction at v and jE ̸≡ 0, 1728 (v);
(b) the image of the natural representation Gal(L(E[p])/L) → GL2(Z/pZ)

contains SL2(Z/pZ), where pZ = v ∩ Z;
(c) p > max {3, 2dv(L)};
(d) ev(K|Q) = 1 and fv(K|Q) ≤ 2,

then for all α ∈ LKtv(Etors)
∗ \ µ∞, we have

h(α) ≥ 1

4p2dv(L) + 1

(
log p

dv(L)(40
√
2 + 2)[K : Q]p2p2dv(L)+2

)2+ 4

pp
2dv(L)/4−2

.

Moreover, if v is unramified in L and if the natural representation in (b) is
surjective, then E(LKtv(Etors)) has the Bogomolov property.
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Remark 1.7. (1) Lemma 5.10 prevents us from providing an explicit
lower bound of the Néron–Tate height for points lying in E(LKtv(Etors)).

(2) Assume that K = Q(
√
D) with D ∈ N and that E/K has no CM.

Then (a) is satisfied for infinitely many places by Elkies’ thesis [12]. The
natural representation in (b) is surjective for all but finitely many rational
primes by Serre’s open image theorem [30]. Item (c) holds for all p large
enough since dv(L) ≤ [L : K]. Finally, all but finitely many finite places of
K are unramified in L and satisfy (d). So we can find a place v ofK satisfying
all conditions of Theorem 1.6. Thus LKtv(Etors) and E(LKtv(Etors)) have
the Bogomolov property. In particular, Conjecture 1.1 is true for elliptic
curves defined over a real quadratic field.

Nonetheless, Theorem 1.6 does not permit us to treat the case D < 0 in
full generality. For example, we do not know so far if the elliptic curve

E : iy2 = x3 + (i− 2)x2 + x

defined over Q(i) has at least one place of supersingular reduction (it is
however conjectured that there exist infinitely many) [12, Section 5.2].

(3) Our lower bound is much stronger than that of Theorem 1.4. Let us
see this through a concrete example. Consider the elliptic curve

E : y2 + y = x3 − x2 − 10x− 20

defined over K = Q. According to [21, elliptic curve 11.a2], E has conductor
N = 11 and j-invariant jE = −21211−5313. By the same reference, (b) with
L = Q holds for all p ≥ 7. Next, jE ̸≡ 0 (p) for all p /∈ {2, 11, 31} and
jE ̸≡ 1728 (p), that is,

26412612 = 1151728 + 212313 ̸≡ 0 (p),

for all p /∈ {2, 41, 61}. Finally, E has supersingular reduction at p = 19
[33, Chapter 5, Example 4.6]. From all this, Theorem 1.6 claims that for all
α ∈ Qt19(Etors)

∗ \ µ∞,

h(α) ≥ 1

4192 + 1

(
log 19

(40
√
2 + 2)192·192+2

)2+ 4

1919
2/4−2 ≥ 2.6 · 10−2072.

We cannot deduce this lower bound from Theorem 1.4 because Gal(Qt19/Q)
has infinite exponent. Consider a number field F ⊂ Qt19 of degree d ≥ 9.
Even under this restriction, it is not always possible to get the lower bound
above from Theorem 1.4 since p = 19 is not a suitable choice there, item (c)
not being satisfied.

Let n ∈ N be an integer and write V(n) =
∑

p prime ≤n log p. We have the
inequality V(n) < 1.01624n [27]. Applying [14, Theorem 4.13] to M = 2d+2
proves the existence of a rational prime p between n = max {2d + 2, 7654}
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and

e1.3×108e2V(n)+ 11
15 eV(n)

< ee
eV(n)

< ee
e1.01624n

such that E has supersingular reduction at p. For such a choice of p, items
(a)–(c) of Theorem 1.4 are all satisfied, which leads to the lower bound

∀α ∈ F (Etors)
∗ \ µ∞, h(α) ≥

(
ee

ee
1.02n )−1

.

We can compare the two lower bounds above and check that ours is much
better.

Our theorem suggests that Conjecture 1.1 can be extended as follows.

Conjecture 1.8. Let A be an abelian variety defined over a number
field K. Let L be a symmetric ample line bundle on A/K, and let L/K be
an algebraic extension. If dv(L) is finite for at least one finite place v of K,
then L(Ators) and A(L(Ators)) have the Bogomolov property.

The best argument in favor of this statement is probably the result below.

Theorem 1.9 (Amoroso–David–Zannier [1]). Let A be a CM abelian
variety defined over a number field K. Let L be a symmetric ample line
bundle on A/K, and let L/K be a Galois extension. If dv(L) is finite for at
least one finite place v of K, then L(Ators) has the Bogomolov property.

Proof. As A is CM, there exists a finite Galois extension M/K such
that M(Ators)/M is abelian. Choose σ ∈ Gal(LM(Ators)/LM) and a τ ∈
Gal(LM(Ators)/M). If α ∈ M(Ators), then στα = τσα since M(Ators)/M
is abelian. If α ∈ LM , then σ(τα) = τ(σα) = τα since LM/M is Galois
(because L/K is by assumption) and σ fixes the elements of LM . From all
this, we get στ = τσ, i.e., Gal(LM(Ators)/LM) is contained in the center
of Gal(LM(Ators)/M). As dv(LM) is bounded from above by dv(L)dv(M)
<∞, the theorem now arises from [1, Theorem 1.2].

2. An elementary result. Write ⟨X⟩ for the group generated by a
subset X of a group G. Let L/K be a Galois extension of number fields,
and let w be a finite place of L. Set D(w|w ∩K) to be the decomposition
group of the extension w|w ∩K, that is, the set of ψ ∈ Gal(L/K) such that
ψw = w.

Fix for this section a number field K as well as a finite place v of K. For
any finite extension L/K, we write VL for the set of places of L above v.

Lemma 2.1. Consider a totally v-adic finite Galois extension M/K and
a tower of number fields K ⊂ K ′ ⊂ L with L/K ′ Galois. Assume that

H ′ :=
〈 ⋃
w∈VL

D(w|w ∩K ′)
〉
= Gal(L/K ′).
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Then
H :=

〈 ⋃
w∈VLM

D(w|w ∩K ′M)
〉
= Gal(LM/K ′M).

Proof. Choose a w ∈ VLM , and let Res : Gal(LM/K ′M) → Gal(L/K ′)
be the restriction map. It is injective and induces a homomorphism from
Gal((LM)w/(K

′M)w) to Gal(Lw/K
′
w), and so from D(w|w ∩ K ′M) to

D(w ∩ L|w ∩K ′). As M is a totally v-adic field, we have Mw = Kv, whence
Gal((LM)w/(K

′M)w) = Gal(Lw/K
′
w). In particular, D(w|w ∩ K ′M) and

D(w ∩L|w ∩K ′) have the same cardinality, and so Res : D(w|w ∩K ′M) →
D(w ∩ L|w ∩K ′) is an isomorphism for all w ∈ VLM . Hence, Res : H → H ′

is an isomorphism too. By assumption, we have the chain of inclusions
Gal(L/K ′) = H ′ = Res(H) ⊂ Res(Gal(LM/K ′M)) ⊂ Gal(L/K ′) and the
lemma follows.

Keep the notation of Lemma 2.1 and assume that both K ′/K and L/K
are Galois. Let w be a finite place of L. Then ψD(w|w ∩K ′)ψ−1 = D(ψw|ψ
w ∩K ′) for all ψ ∈ Gal(L/K). The fact that Gal(L/K) acts transitively on
VL leads to

(1) ⟨ψD(w|w ∩K ′)ψ−1, ψ ∈ Gal(L/K)⟩ =
〈 ⋃
w′∈VL

D(w′|w′ ∩K ′)
〉
.

Corollary 2.2. Consider a totally v-adic finite Galois extension M/K
and a tower of number fields K ⊂ K ′ ⊂ L with K ′/K and L/K Galois. Let
w be a place of LM above v and assume that

Gal(L/K ′) = ⟨ψD(w ∩ L|w ∩K ′)ψ−1, ψ ∈ Gal(L/K)⟩.
If γ ∈ LM with σγ ∈ K ′

w for all σ ∈ Gal(LM/K), then γ ∈ K ′M .

Proof. By assumption, it follows from (1) that

Gal(L/K ′) =
〈 ⋃
w′∈VL

D(w′|w′ ∩K ′)
〉
.

Using Lemma 2.1, then (1) applied to L = LM and K ′ = K ′M , gives

Gal(LM/K ′M) =
〈 ⋃
w′∈VLM

D(w′|w′ ∩K ′M)
〉

= ⟨ψD(w|w ∩K ′M)ψ−1, ψ ∈ Gal(LM/K)⟩.
We have Mw = Kv since M is a totally v-adic field. Thus D(w|w ∩K ′M) is
equal to Gal((LM)w/(K

′M)w) = Gal(Lw/K
′
w). The lemma follows since γ

is fixed by ψD(w|w ∩K ′M)ψ−1 for all ψ ∈ Gal(LM/K).

3. Some results extracted from [16]. For any number field K and
any finite place v of K, we denote by Kv the completion of K with respect
to | · |v, the normalized v-adic absolute value, that is, |p|v = p−1, where
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pZ = v ∩Z. Further, write Kur
v for the maximal unramified extension of Kv

and Qp2 for the unramified extension of degree 2 of Qp inside Qp.
In [16, Section 3], Frey fixed the following notation: a non-CM elliptic

curve E/Q, a Galois extension L/Q whose Galois group has finite exponent,
a rational prime p satisfying the conditions (a)–(c) of Theorem 1.4, a number
field K ⊂ L, which is Galois over Q, and a finite Galois extension F/Qp2

containing Kv, where v denotes the place of K associated to a fixed field
embedding Q → Qp.

Actually, we can prove most of the results mentioned in [16] without in-
volving most of the conditions above. Strictly speaking, we should reprove
them all using only the minimal conditions. But they are very technical,
making it impossible without considerably burdening this text. As a com-
promise, we mention below the hypotheses and references that Frey used
to prove each one of her results, then we detail one by one the conditions
required to use these references.

3.1. Results extracted from [16, Section 3]. Here, p denotes a ra-
tional prime.

We review the assumptions of Frey’s results:

• In [16, Lemma 3.1], she used [F : Qp] < p,Qp2 ⊂ F and [19, Lemma 3.4].
• In [16, Lemma 3.2], she used [F : Qp] < p,Qp2 ⊂ F and [19, Lemmas 3.3

and 3.4].
• In [16, Lemma 3.3], she used [F : Qp] < p,Qp2 ⊂ F and [19, Lemma 3.3].
• In [16, Lemma 3.4], she used the fact that F/Qp2 is a finite Galois extension

as well as [19, Lemmas 2.1, 3.3, 3.4] and [22, Proposition II.7.12].
• In [16, Lemma 3.5], she used the fact that F/Qp2 is a finite Galois extension

as well as [19, Lemmas 2.1 and 3.3] and [29, Lemme IV.5, Proposition IV.12].
• In [16, Lemma 3.6], she used [19, Lemma 3.5], [22, Proposition II.7.13],

Goursat’s lemma, [F : Qp] < p and Qp2 ⊂ F .
• In [16, Lemma 3.7], she used [22, Proposition II.7.12].
• In [16, Lemma 3.8], she used results of [16].

Now, to prove [16, Lemmas 3.1–3.8], we only need to assume that
F/Qp2 is a finite Galois extension such that [F : Qp] < p, as well as the
conditions that are necessary for [19, Lemmas 2.1, 3.3–3.5], [22, Proposi-
tions II.7.12–II.7.13], [29, Lemme IV.5, Proposition IV.12] and Goursat’s
lemma to hold. Goursat’s lemma is a general fact about group theory,
[29, Lemme IV.5, Proposition IV.12] are general results about ramifica-
tion groups, [22, Propositions II.7.12–II.7.13] are general facts about cy-
clotomic fields, and [19, Lemma 2.1] is a general lemma on local fields.
Finally, the results in [19, Sections 3–5] hold for every rational prime
p ≥ 5 and every elliptic curve E defined over Qp2 with supersingular re-
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duction and whose j-invariant is neither 0 nor 1728 in the residual field
of Qp2 .

In conclusion, all the results of [16, Section 3] work in the following
situation, which we will refer to from now on as (S):

• p ≥ 5 is a rational prime;
• E is an elliptic curve defined over Qp2 with supersingular reduction and

its j-invariant is neither 0 nor 1728 in the residual field of Qp2 ;
• F/Qp2 is a finite Galois extension such that [F : Qp] < p.

Choose N ∈ N. Denote by µN the set of all Nth roots of unity and by
AutE[N ] the set of automorphisms of E[N ]. Let L/K be a finite Galois
extension of local fields, and let π be the prime ideal of L. For i ≥ 0, we
define Gi(L/K) as the ith ramification group of L/K, that is, the set of
ψ ∈ Gal(L/K) such that ψx − x ∈ πi+1 for all x ∈ L with |x|π ≤ 1. It is
well-known that G0(L/K) = Gal(L/L ∩Kur).

We can now state some results extracted from [16, Section 3].

Lemma 3.1. Let p,E and F be as in (S). Let N ∈ N be an integer with
p-adic valuation n. Then:

(i) The extension F (E[pn])/F (E[p]) is totally ramified of degree p2(n−1).
(ii) The extension F (E[N ])/F (E[pn]) is unramified.
(iii) Gal(F (E[N ])/F (E[N/p])) ≃ Gal(F (E[pn])/F (E[pn−1])) ≃ (Z/pZ)2 if

n ≥ 2.
(iv) For m ∈ N coprime to p, the image of Gal(F (E[pn])/F ) → AutE[pn]

contains the multiplication-by-m[F :Qp2 ] map.
(v) For M ∈ N coprime to p, the order of Gal(F (E[pM ])/F (E[M ])) di-

vides p2 − 1.
(vi) Gal(F (E[N ])/F (E[N/p])) ⊂ Gs(F (E[N ])/F ) if n ≥ 2, where s =

p2(n−1) − 1.
(vii) If n ≥ 2, then F (E[N ]) ∩

⋃
m∈N µpm = µpn.

(viii) Let n ≥ 2. If ψ ∈ Gal(F (E[N ])/F (E[N/p])) and a ∈ F (E[N ])∗ satisfy
(ψa/a)p

2 ̸= 1, then ψa/a /∈ µ∞ (in particular, (ψa/a)p2 /∈ µ∞).

Proof. See [16, Lemmas 3.3–3.6, 3.8].

3.2. Some results extracted from [16, Section 4]. In [16, Lemma
4.1(i, ii, iv, v)], Frey only used [19, Lemmas 2.1, 3.1, 5.1]. In [16, Lemmas
4.2–4.5], she only used results of [16, Section 4] except [16, Lemma 4.1(iii)].
All these statements therefore hold in the situation (S).

Lemma 3.2. Let p, E and F be as in (S) and put E = (p2 − 1)[F : Qp2 ].
Take an integer N ∈ N not divisible by p2 and denote by n its p-adic valua-
tion. Then there is ϕ ∈ Gal(F (E[N ])/F (E[pn])) such that:
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(i) ϕ acts on E[N/pn] as multiplication by pE ;
(ii) for all a ∈ F (E[N ]), we have |ϕa− ap

2E |p ≤ p−1/E max {1, |a|p}1+p2E .

Proof. (i) Let ϕ̃ ∈ Gal(Qur
p /Qp2) be the lift of the Frobenius automor-

phism squared. Write N/pn =
∏

l l
vl for the decomposition of N/pn into a

product of rational primes. Let l be a rational prime dividing N/pn. Then
l ̸= p and [19, Lemma 3.2] implies that ϕ̃ acts on E[lvl ] as multiplication
by ±p. The isomorphism

⊕
lE[lvl ] ≃ E[N/pn] being compatible with the

action of the Galois group, we deduce that ϕ̃ acts on E[N/pn] as multipli-
cation by ±p. By [16, Lemma 4.1(ii)], there is ϕ ∈ Gal(F (E[N ])/F (E[pn]))
such that ϕ and ϕ̃E coincide on E[N/pn]. This shows (i) since E is even.

(ii) This follows from [16, Lemma 4.4] and from the equality |ϕa|p = |a|p,
which holds since any two Galois conjugates of Qp have the same p-adic
absolute value [29, Chapter II, §2, Corollaire 3].

A proof of the next lemma can be found in [15, Lemma 3.5]. It is based
only on elementary calculations.

Lemma 3.3. Let 0 < δ < 1/2, and let β ∈ Q∗ \ µ∞ be such that [Q(β) :
Q] ≥ 16 and h(β) ≤ 1/4. Then

1

[Q(β) : Q]

∑
τ :Q(β)↪→C

log |τβ − 1| ≤ 40

δ4
h(β)1/2−δ.

3.3. Some results extracted from [16, Sections 5–6]. In [16, Lem-
mas 5.1–5.2], Frey only used results proved in [16, Section 3]. So we can
use [16, Lemma 5.2] under the more general conditions of the situation (S),
which gives:

Lemma 3.4. Let p,E and F be as in (S), and letN ∈ N be an integer divis-
ible by p2. Then for all a ∈ F (E[N ]) and all ψ ∈ Gal(F (E[N ])/F (E[N/p])),
we have

|ψap2 − ap
2 |p ≤ p−1/[F :Qp2 ]max {1, |a|p}2p

2
.

(Again, we have exploited the fact that |ψa|p = |a|p).
The cardinality of a finite set X is denoted by #X. Apparently, [16,

Lemma 5.3] seems to involve the conditions (a)–(c) of Theorem 1.4. Actually,
they are not needed and we prove a more general fact below.

Lemma 3.5. Let L/K be a Galois extension of number fields, and let H
be a normal subgroup of Gal(L/K). Let ψ ∈ H, and set

C = {σ ∈ Gal(L/K) : σψσ−1 = ψ},

the centralizer of ψ. Then for all finite places w of L, the cardinality of the
orbit Cw := {σw : σ ∈ C} is at least [L : K]/([Lw : Kw]#H).
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Proof. The orbit of ψ under the conjugation action of Gal(L/K) on itself
is included in H since the latter is normal in Gal(L/K). The orbit-stabilizer
theorem ensures us that #C ≥ [L : K]/#H. Let w be a finite place of L.
The Galois group Gal(L/K) acts transitively on all places of L above w∩K
and the total number of such places is [L : K]/[Lw : Kw]. So the orbit Cw
has cardinality at least

1

[Gal(L/K) : C]

[L : K]

[Lw : Kw]
≥ [L : K]

[Lw : Kw]#H
,

which concludes the proof of the lemma.

The proof of [16, Lemma 6.1] only requires results present in [16, Sec-
tion 3].

Lemma 3.6. Let p, E and F be as in (S). Let N ∈ N be an integer whose
p-adic valuation n is at least 2. Take an integer m ∈ N coprime to p. Then
there is τm ∈ Gal(F (E[N ])/F ) such that

(i) τm acts by raising to the power of m2[F :Qp2 ](p
2−1) on µpn;

(ii) τm acts by multiplication by m[F :Qp2 ](p
2−1) on E[pn];

(iii) τm acts trivially on E[N/pn].

Proof. For (i) and (ii), see [16, Lemma 6.1] (Frey gave the proof for
m = 2, but it easily extends to m coprime to p thanks to Lemma 3.1(iv)).
For (iii), see the last paragraph in the proof of [16, Lemma 6.1].

The next statement is a general lemma of linear algebra.

Lemma 3.7. Consider an odd rational prime p. Let U be a Z/pZ-vector
subspace of Mat2(Z/pZ) of cardinality greater than p, that contains at least
one non-zero scalar matrix. Then ⟨AUA−1, A ∈ SL2(Z/pZ)⟩ = Mat2(Z/pZ).

Proof. See [16, Lemma 6.4].

For the convenience of the reader, we give a (quick) proof of the last
lemma of this section although it is only a “copy-paste” of that of [16, Lemma
6.5(i)].

Lemma 3.8. Let p, E and F be as in (S), and let L ⊂ F be a number field.
Assume thatE is defined overL and that the image of the natural representation
Gal(L(E[p])/L) → GL2(Z/pZ) contains SL2(Z/pZ). Take N ∈ N such that
its p-adic valuation n is at least 2 and put G = Gal(F (E[N ])/F (E[N/p])).
Then

H := ⟨ψGψ−1, ψ ∈ Gal(L(E[N ])/L)⟩ = Gal(L(E[N ])/L(E[N/p])) =: H ′.

Proof. Let ρ : Gal(L(E[N ])/L) → GL2(Z/NZ) be the natural represen-
tation. As n ≥ 2, it is well-known that we can define an injective homomor-
phism L from H ′ to Mat2(Z/pZ) as follows: For σ ∈ H ′, L(σ) is the unique
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element of Mat2(Z/pZ) satisfying ρ(σ) = 1 + (N/p)L(σ), where 1 denotes
the identity matrix.

By definition, H is the normal closure of G in Gal(L(E[N ])/L), whence
H ⊂ H ′. Let π : GL2(Z/NZ) → GL2(Z/pZ) be the natural projection. If
ψ ∈ G ⊂ H ⊂ H ′ and if σ ∈ Gal(L(E[N ])/L), then σψσ−1 ∈ H ⊂ H ′ and
an easy calculation gives

ρ(σψσ−1) = ρ(σ)ρ(ψ)ρ(σ)−1 = ρ(σ)(1 + (N/p)L(ψ))ρ(σ)−1

= 1 + (N/p)ρ(σ)L(ψ)ρ(σ)−1 = 1 + (N/p)πρ(σ)L(ψ)πρ(σ)−1,

leading to L(σψσ−1) = πρ(σ)L(ψ)πρ(σ)−1 ∈ L(H). By assumption, the im-
age of πρ contains SL2(Z/pZ). This implies that ⟨AL(G)A−1, A∈ SL2(Z/pZ)⟩
⊂ L(H).

Lemma 3.1(iii) tells us that G, and so L(G), has cardinality p2. If L(G)
contains a non-zero scalar matrix, then Lemma 3.7 applied to U = L(G)
shows that Mat2(Z/pZ) = L(H) ⊂ L(H ′) ⊂ Mat2(Z/pZ), and so H = H ′

by injectivity of L.
Letm be a generator of (Z/pnZ)∗. As [F : Qp] < p, and so is coprime to p,

it follows that M = m[F :Qp2 ](p
2−1)pn−2

has order p in (Z/pnZ)∗. Moreover,
M ≡ 1 (pn−1) by Euler’s theorem. Consequently, the multiplication-by-M
map has order p in AutE[pn] and acts trivially on E[pn−1].

Lemma 3.6(ii) applied to N = pn and m = mpn−2 tells us that there
exists τ ∈ Gal(F (E[pn])/F ) acting on E[pn] as multiplication by M . By the
foregoing, τ is an element of Gal(F (E[pn])/F (E[pn−1])) with order p.

By Lemma 3.1(iii), the restriction map G→ Gal(F (E[pn])/F (E[pn−1]))
is an isomorphism. Let τ̃ ∈ G be the element that gets mapped to τ under
this map. As τ̃ acts on E[pn] as scalar multiplication, we deduce that L(τ̃) ∈
L(G) is a scalar matrix, which cannot be zero since τ̃ has order p and L is
injective.

4. Proof of Theorem 1.4: toric case. Fix for this section the nota-
tion (and assumptions) of Theorem 1.6 in the toric case and a field embed-
ding K → Kv. As everything is now fixed, we ease the notation by putting
M(N) =M(E[N ]) for any field M ⊂ Kv and any integer N ∈ N.

Item (d) leads to either Kv = Qp or Kv = Qp2 . Our elliptic curve is
therefore defined over Qp2 . Moreover, by (a), it has supersingular reduction
and its j-invariant is neither 0 nor 1728 in the residual field of Qp2 . Put
F = Lw0Qp2 , where w0 is the place of L associated to the fixed embedding
K → Kv. It is Galois over Qp2 since L/K is Galois. Next, it follows from (c)
that p ≥ 5 and

(2) p > 2dv(L) ≥ [Qp2 : Qp][Lw0 : Kv] ≥ [F : Qp].

To summarize, our scope is a particular case of the situation (S). By (b),
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E is defined over L ⊂ F and the natural representation Gal(L(p)/L) →
GL2(Z/pZ) contains SL2(Z/pZ). We thus have access to all the results of
Section 3.

The next two results will serve us both in the toric case and in the elliptic
case. We start by putting in place our descent argument.

Lemma 4.1. Let N ∈ N be an integer divisible by p(p2 − 1) such that〈
ψGal(F (N)/F (N/p))ψ−1, ψ ∈ Gal(L(N)/L)

〉
= Gal(L(N)/L(N/p)).

Let M/K be a totally v-adic finite Galois extension. If γ ∈ LM(N) with
σγ ∈ F (N/p) for all σ ∈ Gal(LM(N)/K), then γ ∈ LM(N/p).

Proof. SinceN/p is divisible by p2−1, basic properties of the Weil pairing
prove that ζp2−1 ∈ K(N/p). As Qp2 = Qp(ζp2−1), we get Qp2 ⊂ Kv(N/p) ⊂
Kv(N).

Denote by w the place of LM(N) associated to the embedding K → Kv.
Then L(N)w = Lw0Qp2(N) = F (N). Similarly, L(N/p)w = F (N/p). In
conclusion, Gal(F (N)/F (N/p)) = D(w|w∩L(N/p)). The lemma now follows
from Corollary 2.2 applied to K ′ = L(N/p) and L = L(N).

Lemma 4.2. Take an integer N ∈ N of p-adic valuation n and ψ ∈
Gal(F (N)/F ). If ψ acts as scalar multiplication on both E[pn] and E[N/pn],
then it belongs to the center of Gal(LKtv(N)/K). In particular, the elements
ϕ and τm introduced in Lemmas 3.2 and 3.6, respectively, lie in the center
of Gal(LKtv(N)/K).

Proof. Clearly, ψ fixes LKtv ⊂ F . Taking the sum of points gives an
isomorphism between E[pn] × E[N/pn] and E[N ], which is compatible
with the action of Gal(K/K). We infer that ψ must lie in the center of
Gal(LKtv(N)/K).

A proof of the well-known result below can be found in [11, Lemma 2(i)].

Lemma 4.3. Let a ∈ Q∗, and let ψ ∈ Gal(Q/Q). If a /∈ µ∞, then
ψab/ac /∈ µ∞ for all distinct integers b, c ∈ N.

Let α ∈ LKtv(Etors)
∗\µ∞. There is a totally v-adic finite Galois extension

M/K such that α ∈ LM(Etors). For brevity, put L′ = LM .
The proof of the proposition below is largely inspired by that of [16,

Lemma 4.6].

Proposition 4.4. Let N ∈ N be an integer with p-adic valuation n, and
let a ∈ L′(N)∗ \ µ∞. Assume that n ≤ 1 or that n ≥ 2 and ap2 /∈ F (N/p).
Then

h(a) ≥ k =

(
log p

dv(L)(40
√
2 + 2)[K : Q]p2p2dv(L)+2

)2+ 4

pp
2dv(L)/4−2

.
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Proof. Construct ψ ∈ Gal(L′(N)/L′) as follows: If n ≤ 1, then ψ is
the homomorphism ϕ of Lemma 3.2. Otherwise, define ψ to be any element
of Gal(F (N)/F (N/p)) satisfying ψap

2 ̸= ap
2 (such an element exists by

assumption). Next, put

t =

{
0 if n ≤ 1,

4 if n ≥ 2,

E =

{
(p2 − 1)[F : Qp2 ] if n ≤ 1,

[F : Qp2 ] if n ≥ 2,

(b, c) =

{
(1, p2E) if n ≤ 1,

(p2, p2) if n ≥ 2,

and x = ψab − ac. Note that the latter is non-zero (for n ≥ 2, it is by
construction and for n ≤ 1, it is by Lemma 4.3).

Denote by v0 the place of L′(N) associated to the embedding K →
Kv. Let C be the centralizer of ψ in Gal(L′(N)/K). Lemma 4.2 gives C =
Gal(L′(N)/K) if n ≤ 1, and so the orbit Cv0 is the set of all places of
L′(N) above v. In particular, it has cardinality [L′(N) : K]/[L′(N)v0 : Kv]. If
n ≥ 2, then Lemma 3.5 applied to L = L′(N) andH = Gal(L′(N)/L′(N/p)),
which has cardinality at most p4, proves that Cv0 has cardinality at least
[L′(N) : K]/(p4[L′(N)v0 : Kv]).

Let w be a place of L′(N). If w is a finite place, the ultrametric inequality
gives

(3) |x|w ≤ max {|ψab|w, |a|cw} ≤ (max {1, |ψa|w})b(max {1, |a|w})c.

If we further assume that w ∈ Cv0, then there is σ ∈ C such that w = σ−1v0.
Thus,

|x|w = |x|σ−1v0 = |σx|v0 = |σ(ψa)b − σac|v0 = |ψ(σa)b − σac|v0 .

Lemma 3.2 (if n ≤ 1) or Lemma 3.4 (if n ≥ 2) applied to a = σa gives

(4) |x|w ≤ p−1/E(max {1, |σa|v0})b+c = p−1/E(max {1, |a|w})b+c.

If w is an infinite place, we have to take a little detour. Put β = ψab/ac ̸= 1
and note that h(β) ≤ h(ψab) + h(ac) = (b + c)h(α) ≤ 2p2Eh(a). Moreover,
β /∈ µ∞ (it is clear by Lemma 3.1(viii) if n ≥ 2 and by Lemma 4.3 otherwise).
Clearly,

(5) |x|w = |β − 1|w|a|cw ≤ |β − 1|w max {1, |a|b+c
w }.

Recall that x ̸= 0. Collecting (3)–(5), it follows from the product formula
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that

0 =
∑
w

[L′(N)w : Qp] log |x|w(6)

≤
∑

w∈Cv0

[L′(N)w : Qp] log
(
p−1/E(max {1, |a|w})b+c

)
+

∑
w/∈Cv0,w∤∞

[L′(N)w : Qw] log
(
(max {1, |ψa|w})b(max {1, |a|w})c

)
+

∑
w|∞

[L′(N)w : Qw] log(|β − 1|w max {1, |a|b+c
w }).

As L′(N)/K is Galois, the degree of the extension L′(N)w/Kv does not
depend on the place w of L′(N) above v. Thus∑

w∈Cv0

[L′(N)w : Qp] = [Kv : Qp][L
′(N)w0 : Kv]#(Cv0)

≥ [Kv : Qp][L
′(N) : K]

pt
.

After dividing (6) by [L′(N) : Q], we infer, thanks to a small calculation,
that

(7)
[Kv : Qp] log p

E [K : Q]pt
≤ (b+c)h(a)+

1

[L′(N) : Q]

∑
w|∞

[L′(N)w : Qw] log |β−1|w.

If h(β) ≥ 1/4, then the proposition follows from the inequality h(β) ≤
2p2Eh(a). If [Q(β) : Q] ≤ 15, then Dobrowolski’s inequality [11] gives

h(β) ≥ 1

15
log

(
1 +

1

1200

(
log log 15

log 15

)3)
≥ 10−6

and the proposition arises from the inequality h(β) ≤ 2p2Eh(a). If h(β) ≤ 1/4
and [Q(β) : Q] ≥ 16, then Lemma 3.3 applied to δ = 1/pE/4 gives

1

[L′(N) : Q]

∑
w|∞

[L′(N)w : Qw] log |β − 1|w ≤ 40pEh(β)(1/2)−δ

≤ 40
√
2p2Eh(a)(1/2)−δ.

The proposition is trivial if h(a) ≥ 1. Otherwise, from (7) we get
log p

E [K : Q]pt
≤ 2p2Eh(a) + 40

√
2p2Eh(a)(1/2)−δ ≤ (40

√
2 + 2)p2Eh(a)1/2−δ

since b+ c ≤ 2pE . Recall that [F : Qp] = 2[F : Qp2 ] ≤ 2dv(L) by (2). So we
have E ≤ p2dv(L) and 2E + t ≤ 2p2dv(L). We finally get

h(a) ≥
(

log p

dv(L)(40
√
2 + 2)[K : Q]p2p2dv(L)+2

) 2
1−2δ

.
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The proposition follows since

2/(1− 2δ) = 2 + 4/(pE/4 − 2) > 2 + 4/(pp
2dv(L)/4 − 2).

Proof of Theorem 1.6, toric case. Let N ∈ N be an integer such that
α ∈ L′(N). By enlarging N if needed, we can assume that it is divisible
by p2(p2 − 1). Let n ≥ 2 denote the p-adic valuation of N . Recall that
[F : Qp] < 2dv(L) by (2).

Put τ = τ2 ∈ Gal(F (N)/F ), the homomorphism introduced in Lem-
ma 3.6, as well as γ = (τα)/αD ∈ L′(N), where D = 4[F :Qp2 ](p

2−1) ≤
4p

2dv(L). We get

h(γ) ≤ h(τα) + h(αD) = (1 +D)h(α) ≤ (1 + 4p
2dv(L))h(α)

and γ /∈ µ∞ by Lemma 4.3. Our theorem will follow if we show h(γ) ≥ k (see
Proposition 4.4). Let n′ ∈ N be the least integer such that σγ ∈ F (pn

′−nN)
for all σ ∈ Gal(L′(N)/K). We have n′ ≤ n since γ ∈ L′(N).

We show by decreasing induction on t that γ ∈ L′(pt−nN) for all t ∈
{n′, . . . , n}. The base case t = n is obvious. We now assume that our assertion
is true for t > n′ ≥ 1 and show that it also holds for t − 1. Recall that pn
divides N .

Clearly, p2(p2 − 1) divides Nt = pt−nN . Lemma 3.8 applied to N = Nt

gives

⟨ψGal(F (Nt)/F (Nt/p))ψ
−1, ψ ∈ Gal(L(Nt)/L)⟩ = Gal(L(Nt)/L(Nt/p)).

By assumption, σγ ∈ F (Nt/p) for all σ ∈ Gal(L′(Nt)/K) and Lemma 4.1
applied to N = Nt ends the induction. In particular, γ ∈ L′(N ′) where
N ′ = Nn′ .

Case n′ = 1. As γ ∈ L′(N ′) is neither 0 nor a root of unity, we can
apply Proposition 4.4 to N = N ′ and a = γ, which gives us h(γ) ≥ k.

Case n′ ≥ 2. The minimality of n′ proves that there is σ ∈ Gal(L′(N)/K)
such that σγ /∈ F (N ′/p). We want to apply Proposition 4.4 to N = N ′ and
a = σγ, which would prove our theorem since h(γ) = h(σγ). As γ ∈ L′(N ′),
it remains to show that σγp2 /∈ F (N ′/p). For this, assume by contradiction
that it is the case.

Since σγ /∈ F (N ′/p), there is ψ ∈ Gal(F (N)/F (N ′/p)) such that ψσγ
̸= σγ. Moreover, ψσγp2 = σγp

2 by assumption. Thus ψσγ = ζσγ for some
ζ ∈ µp2\{1}. As τ commutes with both ψ and σ by Lemma 4.2, we get

ζ =
ψσγ

σγ
=
ψ((στα)/σαD)

(στα)/σαD
=
τ(ψσα)

τ(σα)

(σα)D

(ψσα)D
=
τη

ηD
,

where η = (ψσα)/σα. As ζ ∈ µ∞, we have η ∈ µ∞ by the contrapositive of
Lemma 4.3. Let T ∈ N be an integer coprime to p such that ηT has order
a power of p. Lemma 3.1(vii) gives ηT ∈ µpn and Lemma 3.6 proves that
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τηT = (ηT )D. We conclude that ζp2 = ζT = 1, and so ζ = 1 since T and p
are coprime, a contradiction.

5. Proof of Theorem 1.6: elliptic case. We now fix the notation
(and assumptions) of Theorem 1.6 in the elliptic setting as well as a field
embedding K → Kv. Let w0 be the place of L associated to this embedding
and put F = Lw0Qp2 . Recall that E, p and F satisfy the conditions of the
situation (S) and that every result of [19, Sections 3–5] works in this setting.
For the convenience of the reader, we state [19, Lemmas 3.3(iii), 3.4(ii, iv)].

Lemma 5.1. Let N ∈ N be an integer with p-adic valuation n. Then:

(i) Gal(Qp2(p
n)/Qp2) acts transitively on the torsion points of order pn;

(ii) The extension Qp2(N)/Qp2(N/p
n) is totally ramified;

(iii) If n = 1, then Gal(Qp2(N)/Qp2(N/p)) is cyclic of order p2 − 1.

Note that F/Qp2 is unramified since v is unramified in L by assumption.
The proof of the next lemma becomes obvious thanks to Lemma 5.1(ii).

Lemma 5.2. Let N ∈ N be an integer with p-adic valuation n. Then
F (N)/F (N/pn) is totally ramified and

Gal(F (N)/F (N/pn)) ≃ Gal(Qp2(N)/Qp2(N/p
n)).

We now state our descent argument.

Lemma 5.3. Let N ∈ N be an integer divisible by p(p2 − 1) with p-adic
valuation n, and let M/K be a totally v-adic finite Galois extension. If γ ∈
LM(N) with σγ ∈ F (N/p) for all σ ∈ Gal(LM(N)/K), then γ ∈ LM(N/p).

Proof. By Lemma 4.1, it suffices to establish that

H :=
〈
ψGψ−1, ψ ∈ Gal(L(N)/L)

〉
= Gal(L(N)/L(N/p)),

where G = Gal(F (N)/F (N/p)). This holds when n ≥ 2 by Lemma 3.8.
Assume then that n = 1. The left-hand side is the normal closure of G ⊂
Gal(L(N)/L(N/p)) in Gal(L(N)/L); it is therefore contained in the right-
hand one. Moreover, as p does not divide N/p, we know we can identify
Gal(L(N)/L(N/p)) with a subgroup of GL2(Z/pZ). To obtain what we wish,
it suffices to show #H ≥ #GL2(Z/pZ).

Let ρ : Gal(L(N)/L) → GL2(Z/pZ) be the composition of the two nat-
ural maps Gal(L(N)/L) → Gal(L(p)/L) and Gal(L(p)/L) → GL2(Z/pZ).
It is surjective by assumption and Galois theory tells us that its kernel is
Gal(L(N)/L(p)). Thus,

ρ(H) = ⟨ρ(ψ)ρ(G)ρ(ψ)−1, ψ ∈ Gal(L(N)/L)⟩
= ⟨hρ(G)h−1, h ∈ GL2(Z/pZ)⟩.

Combining Lemma 5.1(iii) with Lemma 5.2 shows that G is a cyclic group
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of order p2 − 1. As

G ∩Gal(L(N)/L(p)) ⊂ Gal(L(N)/L(N/p)) ∩Gal(L(N)/L(p)) = {1},
it follows that ρ restricted to G is injective. Hence, ρ(G) is a cyclic group
of order p2 − 1. This finishes the proof since [19, Lemma 6.1] shows that
ρ(H) = GL2(Z/pZ).

The rest of the proof faithfully follows the lines of [19, Section 8.2].

Lemma 5.4. Let N ∈ N be an integer with p-adic valuation n ≥ 1. Then
E(F (N)) ∩

⋃
m∈NE[pm] = E[pn].

Proof. The ⊃ inclusion is obvious. Let T ∈ E(F (N)) be a torsion point
of order pn′ and obtain n′ ≤ n. By Lemma 5.1(i), for each T ′ ∈ E[pn

′
], there

is σ in Gal(Qp2(p
n′
)/Qp2) such that T ′ = σT . The field F (N) being Galois

over Qp2 , we get T ′ ∈ E(F (N)). Hence, E[pn
′
] ⊂ E(F (N)) or, equivalently,

F (pn
′
) ⊂ F (N).

The lemma is obvious if n′ = 0. So assume that n′ ≥ 1. By Lemma 3.1(i),
the extension F (pn′

)/F (p) has ramification index p2(n′−1). Next, F (N)/F (pn)
is unramified by Lemma 3.1(ii). Again, Lemma 3.1(i) shows that the ram-
ification index of F (N)/F (p) is p2(n−1). We conclude that n′ ≤ n since
F (pn

′
) ⊂ F (N).

As E/Qp2 has good reduction, the criterion of Néron–Ogg–Shafarevich
asserts that F (N)/F is unramified for all integers N ∈ N coprime to p.

Lemma 5.5. Let N = pnM ∈ N be an integer with M coprime to p
and n ≥ 1. Consider ψ ∈ Gal(F (N)/F (N/p)) and A ∈ E(F (N)) such that
B = ψA−A ∈ Etors. Then B ∈ E[Q(n)], where Q(n) = p2(p2 − 1) if n = 1
and Q(n) = p2 otherwise.

Proof. The order of B is N ′ = pn
′
M ′ for some integers n′ ≥ 0 and

M ′ ∈ N coprime to p. Put T = [pn
′
]B and note that T has order M ′.

The extension F (MM ′)/F is unramified since MM ′ is coprime to p. As
F (M)(T ) is included in F (MM ′), we infer that F (M)(T )/F (M) is unrami-
fied. Moreover, T ∈ E(F (N)), which implies that F (M)(T )/F (M) is totally
ramified by Lemma 5.2. In conclusion, T ∈ E(F (M)). In particular, T is
fixed by ψ.

The order of [M ′]B ∈ E(F (N)) is pn′ . So by Lemma 5.4 we see that
[M ′]B ∈ E[pn]. Hence, [pM ′]B ∈ E[pn−1] ⊂ E[N/p] is fixed by ψ too.

Bézout’s identity tells us that 1 = apn
′
+ bM ′ for some integers a, b ∈ Z.

Then B = [a]T+[bM ′]B and by the foregoing, we conclude that [p]B is fixed
by ψ. Let t be the order of ψ. A small calculation proves that B ∈ E[pt]
since

[pt]B = (ψt−1+· · ·+1)([p]B) = [p](ψt−1+· · ·+1)(ψA−A) = [p](ψtA−A) = 0.
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Lemma 3.1(iii) (when n ≥ 2) and Lemma 3.1(v) (if n = 1) now prove the
desired conclusion.

Recall that ĥ = ĥE : E(K) → R denotes the Néron–Tate height. It is
non-negative, invariant under the action of Gal(K/K) and vanishes precisely
at Etors. It is also quadratic, that is,

∀m ∈ Z ∀P ∈ E(K), ĥ([m]P ) = m2ĥ(P ).

This implies

∀P ∈ E(K) ∀T ∈ Etors, ĥ(P + T ) = ĥ(P ).

Finally, it also satisfies the parallelogram law, that is,

∀P,Q ∈ E(K), ĥ(P +Q) + ĥ(P −Q) = 2(ĥ(P ) + ĥ(Q)).

For more information on ĥ, we refer to [33, Chapter VIII, §9].

Lemma 5.6. Let P ∈ E(K), and let σ ∈ Gal(K/K). If [n]σP − [m]P ∈
Etors for some distinct n,m ∈ N, then P ∈ Etors.

Proof. The properties of ĥ recalled above show that

m2ĥ(P ) = ĥ([m]P ) = ĥ([m]P + [n]σP − [m]P ) = n2ĥ(σP ) = n2ĥ(P )

and the lemma follows since n,m ∈ N are distinct.

Let O be the neutral element of E. For each place w of a finite exten-
sion M of K, denote by λw : E(Mw)\{O} → R the local Néron height
function on E associated to w. It can be described in an explicit way, see
[31, Chapter VI]. For the purpose of our text, we only need to know that if
E has good reduction at w, then λw(P ) = (1/2)max {0, log |x(P )|w}, where
x(P ) is the first coordinate of a point P ∈ E(Mw) with respect to some
Weierstrass model of E/K that we fix from now.

Let A ∈ E(M). If ν is a place of K, we define the partial height function
at ν as

ĥν(A) =
1

[M : Q]

∑
w|ν

[Mw : Qw]λw(A),

where w ranges over all places ofM above ν. It is well-known that ĥν does not
depend on the choice of the finite extension M/K(A). By [31, Chapter VI,
Theorem 2.1], we have ĥ =

∑
ν ĥν onE(M), where ν runs over all places ofM .

Finally, put ĥ∞ to be the sum of all ĥν , where ν runs over all infinite places ofK.

Lemma 5.7. Take an integer N ∈ N with p-adic valuation n ≥ 1. If
A ∈ E(LKtv(N)) satisfies [Q(n)]A /∈ E(F (N/p)), then there exists a non-
torsion point B ∈ E(K) with ĥ(B) ≤ 4ĥ(A) and

ĥv(B) ≥ l :=
log p

2p4[K : Q][F (p) : Qp]
.
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Proof. Let L′ ⊂ LKtv ⊂ F be a number field, Galois over K, such that
A ∈ E(L′(N)). By hypothesis, we can find a ψ ∈ Gal(F (N)/F (N/p)) ⊂
Gal(L′(N)/L′(N/p)) such that ψ[Q(n)]A ̸= [Q(n)]A. Note that B = ψA−A
/∈ Etors by Lemma 5.5. Moreover, the parallelogram law implies ĥ(B) ≤
2(ĥ(ψA) + ĥ(A)) = 4ĥ(A).

We prove the lower bound for ĥv(B). Denote by w0 the place of L′(N)
associated to the fixed embedding K → Kv. Let C be the centralizer of ψ in
Gal(L′(N)/K). Let w ∈ Cw0 = {ψw0, ψ ∈ C}. Then w = σ−1w0 for some
σ ∈ C, and so

|x(B)|w = |x(B)|σ−1w0
= |x(σ(ψA−A))|w0 = |x(ψσA− σA)|v.

As σB = ψσA− σA ̸= O, we get λw(B) = λv(ψσA− σA).
We check that ψ lies in the ramification group Gs(F (N)/F ), where s =

p2(n−1) − 1. This is obvious when n ≥ 2 thanks to Lemma 3.1(vi). If n = 1,
then it suffices to check that F (N)/F (N/p) is totally ramified, which is true
thanks to Lemma 5.2.

Let P be the maximal ideal of the ring of integers of F (N). Then ψσA

and σA map to the same element on E reduced modulo Pp2(n−1) . Thus,
log |x(ψσA − σA)|v ≥ (p2(n−1)/e) log p, where e denotes the ramification
index of F (N)/Qp. By Lemma 3.1(i), we have e ≤ p2(n−1)[F (p) : Qp]. From
all of this, we get

λw(B) ≥ log p

2[F (p) : Qp]

for all w ∈ Cw0. As L′(N)/K is Galois, it follows that [L′(N)w : Kv] =
[L′(N)w0 : Kv] for all places w of L′(N) above v. In conclusion,

ĥv(B) =
[Kv : Qp][L

′(N)w0 : Kv]

[L′(N) : Q]

∑
w|v

λw(B) ≥ [L′(N)w0 : Qp]

[L′(N) : Q]

∑
w∈Cw0

λw(B)

≥ [L′(N)w0 : Qp]

[L′(N) : Q]

log p

2[F (p) : Qp]
#(Cw0) ≥

log p

2p4[K : Q][F (p) : Qp]
,

the last inequality coming from Lemma 3.5 applied to L = L′(N) and H =
Gal(L′(N)/L′(N/p)), which has cardinality at most p4.

Let Φ̃ ∈ Gal(κ/κ) be the Frobenius element, where κ denotes the residual
field of F . By [20, Chapter 13, Theorem 6.3], there are k,m ∈ N satisfying
Φ̃k = [pm] on Ẽ, the reduction of E modulo v. As F/Qp is unramified,
Φ̃ identifies with an element Φ ∈ Gal(Qur

p /F ).

Lemma 5.8. Take N ∈ N divisible by p2 − 1, but not by p2. If A ∈
E(LKtv(N))\Etors, then there is B ∈ E(K)\Etors with ĥ(B) ≤ 4p2m+8ĥ(A)

and ĥv(B) ≥ l.
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Proof. By replacing N with pN if needed, we can assume that p |N and
p2 ∤ N .

LetM ⊂ Ktv be a number field, Galois overK, such thatA ∈ E(LM(N)).
Suppose that some conjugate A′ of A over K satisfies [p2(p2 − 1)]A′ /∈
E(F (N/p)). Then the lemma is a trivial consequence of Lemma 5.7 applied
to A = A′. So assume that σA′ = [p2(p2 − 1)]σA ∈ E(F (N/p)) for all
σ ∈ Gal(LM(N)/K), where A′ = [p2(p2 − 1)]A. We can apply Lemma 5.3
to the coordinates of A′ with respect to our fixed Weierstrass model to find
that A′ actually lies in E(LM(N/p)).

The extension F (N/p)/F is unramified since p does not divide N/p. By
abuse of notation, we denote the restriction of Φ to F (N/p) also by Φ. As
N/p is coprime to p, we see that E[N/p] ≃ Ẽ[N/p]. As Φ̃k = [pm], we deduce
from the last isomorphism that Φk acts on E[N/p] as multiplication by [pm].
By Lemma 4.2 applied to N = N/p, we conclude that Φk belongs to the
center of Gal(LM(N/p)/K).

Put B = ΦkA′ − [pm]A′, which is non-zero by Lemma 5.6. We have

ĥ(B) ≤ 2(ĥ(ΦkA′) + ĥ([pm]A′)) = 2(1 + p2m)ĥ(A′) ≤ 4p2m+8ĥ(A).

Denote by v0 the place of LM(N/p) associated to the embedding K → Kv.
Let w be a place of LM(N/p) above v. There is σ ∈ Gal(LM(N/p)/K) such
that w = σ−1v0. A small calculation gives

λw(B) =
1

2
logmax {1, |x(B)|w} =

1

2
logmax {1, |x(σB)|v0} = λv(σB).

As Φk commutes with σ, we get σB = ΦkσA′ − [pm]σA′ ̸= O. However, it is
clear that σB reduces to O modulo v. Thus |x(σB)|v ≥ p since F (N/p)/Qp

is unramified. In conclusion, λw(B) ≥ (log p)/2 for all places w of LM(N/p)

above v and the definition of ĥv leads to ĥv(B) ≥ (log p)/2 ≥ l, which finishes
the proof.

Proposition 5.9. Let A ∈ E(LKtv(Etors))\Etors. Then there is B ∈
E(K)\Etors with ĥ(B) ≤ 16D2p2m+8ĥ(A) and ĥv(B) ≥ l, where D =

2[F :Qp2 ](p
2−1).

Proof. There are N ∈ N divisible by p2−1 and a number field M ⊂ Ktv,
Galois over K, such that A ∈ E(LM(N)). Put L′ = LM and write n for
the p-adic valuation of N . Let τ = τ2 be the homomorphism coming from
Lemma 3.6 and set C = τA− [D]A ∈ E(L′(N)). It is not a torsion point by
Lemma 5.6. Moreover, the parallelogram equality and other basic properties
of the Néron–Tate height give

ĥ(C) ≤ 2(ĥ(τA) + ĥ([D]A)) ≤ 4D2ĥ(A).

Let n′ ≥ 0 be the least integer such that C ∈ E(L′(pn
′−nN)). Of course,

n′ ≤ n.
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If n′ ≤ 1, then Lemma 5.8 applied to A = C provides a non-torsion point
B ∈ E(K) satisfying ĥ(B) ≤ 4p2m+8ĥ(C) ≤ 16D2p2m+8ĥ(A) and ĥv(B) ≥ l,
which proves the proposition. So assume that n′ ≥ 2. By minimality of n′
and by Lemma 5.3, there exists σ ∈ Gal(L′(N)/K) such that C ′ = σC /∈
E(F (N ′/p)), where N ′ = pn

′−nN . Choose ψ ∈ Gal(F (N)/F (N ′/p)) such
that ψC ′ ̸= C ′.

Set A′ = σA. As τ and σ commute by Lemma 4.2, we obtain

C ′ = τA′ − [D]A′ ∈ E(L′(N ′)).

To deduce the proposition, it suffices to apply Lemma 5.7 to A = C ′ and
N = N ′. For this, we only need to show that [p2]C ′ /∈ E(F (N ′/p)). Suppose
that the contrary is true. Then ψC ′ − C ′ = T ∈ E[p2]\{O}. As ψ and τ
commute by Lemma 4.2, it follows from the definition of C ′ that

C ′ + T = ψC ′ = τψA′ − [D]ψA′.

A short calculation proves that T = τP − [D]P , where P = ψA′ − A′ ∈
E(L′(N)). By Lemma 5.6, P is a torsion point. We fix M ′ ∈ N coprime to p
such that [M ′]P has order a power of p. By Lemma 5.4, [M ′]P ∈ E[pn] and
Lemma 3.6(ii) ensure that τ([M ′]P ) = [DM ′]P . Hence, [M ′]T = [p2]T = O,
which is possible only if T = O sinceM ′ and p are coprime, a contradiction.

A proof of the next lemma can be found in [25, Lemme 4.4].

Lemma 5.10. Let (Qn) be a sequence in E(K)\Etors such that ĥ(Qn)→0.
Then lim infn→∞ ĥ∞(Qn) ≥ 0. Also, lim infn→∞ ĥν(Qn) ≥ 0 if ν is a finite
place of K. More precisely, ĥν(Qn) ≥ 0 for all n if E has good reduction at ν.

Proof of Theorem 1.6, elliptic case. Assume by contradiction that there
is a sequence (An) of non-torsion points in E(LKtv(Etors)) with ĥ(An)→0.
Proposition 5.9 yields a new sequence (Bn) of non-torsion points in E(K)

such that ĥ(Bn) → 0 and ĥv(Bn) ≥ l for all n. Lemma 5.10 shows that

ĥ(Bn) =
∑
ν

ĥν(Bn) ≥ ĥv(Bn) + ĥ∞(Bn) +
∑
ν∈M

ĥν(Bn)

≥ l + ĥ∞(Bn) +
∑
ν∈M

ĥν(Bn),

where M is the (finite) set of places of K with bad reduction. Again, Lemma
5.10 allows us to conclude that lim infn→∞ ĥ(Bn) ≥ l, a contradiction.
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